

Environmental Report

WGC-One YMCA, Peartree Lane, Welwyn Garden City Presented to Pinnacle Consulting Engineers

Issued: April 2020 Delta-Simons Project No. 20-0093.01

Head Office: 3 Henley Office Park, Doddington Road, Lincoln, LN6 3QR Tel: 01522 882555 | www.deltasimons.com

Report Details

Client	Pinnacle Consulting Engineers	
Report Title	nvironmental Report	
Site Address	YMCA, 90 Peartree Lane, Welwyn Garden City, AL7 3UL	
Project No.	20-0093.01	
Report Date	1 st April 2020	
Delta-Simons Contact	Redmond Parker-Dunn (<u>Redmond.parker-dunn@deltasimons.com</u>)	

Quality Assurance

lssue No.	Status	lssue Date	Comments	Author	Technical Review	Authorised
1	Final	1 st April 2020				ê
				Jessica Rowe Consultant	Redmond Parker-Dunn Principal	Paul Huteson Associate

About us

Delta-Simons is a trusted, multidisciplinary environmental consultancy, focused on delivering the best possible project outcomes for customers.

Specialising in Environment, Health & Safety and Sustainability, Delta-Simons provide support and advice within the property development, asset management, corporate and industrial markets. Operating from ten locations - Lincoln, Birmingham, Bristol, Dublin, Leeds, London, Manchester, Newcastle, Norwich and Nottingham - we employ over 100 environmental professionals, bringing experience from across the private consultancy and public sector markets.

Delta-Simons is proud to be a founder member of the Inogen[®] Environmental Alliance, a global corporation providing multinational organisations with consistent, high quality and cost effective environmental, health, safety, energy and sustainability solutions. Inogen assists multinational clients by resolving liabilities from the past, addressing today's requirements and delivering solutions for the future. With more than 200 offices located on every continent, more than 6,430 staff worldwide, and projects completed in more than 120 countries, Inogen provides a single point of contact for diverse markets as Automotive, Chemical, Consumer Products & Retail, Financial, Food & Beverage, Healthcare, Insurance, Manufacturing, Non Profit Organisations, Oil & Gas, Real Estate, Services Firms, Technology and Transportation, among others.

Table of Contents

1.0 INTRODUCTION	1
1.1 Authorisation	
1.2 Context & Purpose	
1.3 Scope	
1.4 Limitations	2
2.0 INVESTIGATION METHODOLOGY	3
2.1 Desk Study	3
2.2 Conceptual Site Model	
2.3 Planning, Health & Safety (CDM), Setting Out & Services	4
2.4 Dynamic Sampler Boreholes	4
2.5 Standpipe Installations	4
2.6 Standard Penetration Tests	4
2.7 Monitoring Groundwater & Ground Gas	4
2.8 Chemical Analysis	
2.9 Generic Quantitative Risk Assessment (GQRA)	5
3.0 RESULTS & INTERPRETATION	6
3.1 Desk Study	6
3.2 Fieldworks Interpretation	8

Figures

Figure 1	Site Location Map
Figure 2	Site Layout Plan
Figure 3	Approximate Intrusive Location Plan

Drawings

Appendices

Appendix A	Limitations
Appendix B	Risk Definitions
Appendix C	Key to Logs, Field Records & Compliance Certificates
Appendix D	Monitoring Records
Appendix E	Chemical Analysis

1.0 Introduction

1.1 Authorisation

Delta-Simons Environmental Consultants Limited ("Delta-Simons") was instructed by Pinnacle Consulting Engineers (the "Client") to prepare an Environmental Assessment for YMCA, 90 Peartree Lane, Welwyn Garden City, AL7 3UL (the "Site"). A Site Location Map is included as Figure 1.

1.2 Context & Purpose

It is understood that the proposed development comprises the demolition of all structures at the Site and the construction of a four-storey 100 bed YMCA Hostel and a 2, 3 and 4 storey building providing up to 43 residential apartments as detailed in Welwyn Hatfield Borough Council Planning Application 6/2019/2714/OUTLINE. The Proposed Site Layout is included as Drawing 1.

Correspondence with the Local Planning Authority has been provided by the Client, indicating the requirement of a ground investigation to assess the potential presence and associated mobilisation of contamination beneath the Site as part of the proposed surface water drainage strategy for the Site. This investigation does not represent a Geotechnical investigation.

The following Third-Party information has been made available to Delta-Simons for review:

Argyle Environmental, Site Solutions Combined, Ref. AEL-0046-TSC-959119, dated December 2018.

In addition, Delta-Simons has produced a factual BRE365 infiltration report , dated 1st April 2020, which is reported under a separate cover.

The scope of the investigation and layout of this report has been designed with consideration of guidance on Land Contamination: Risk Management pages of the <u>GOV.UK</u> web pages, the relevant requirements of the National Planning Policy Framework 2019 (NPPF) (paragraphs 170 & 178-180)¹ and the Planning Practice Guidance (Land Affected by Contamination)².

The project was carried out to an agreed brief as set out in Delta-Simons' proposal dated January 2020 (Ref. 20-0093.01).

This Report has been based on a review of a previous Third-Party report together with fieldworks comprising soil sampling. Selected soil samples were scheduled for laboratory chemical analysis. Monitoring was carried out on the Site for water levels and concentrations of hazardous ground gas.

The results of the sampling, with the relevant laboratory work, have been presented in the Appendices.

The methods of desk study and fieldworks have been described in Section 2.

The interpretation of the results has been presented as a table in Section 3 with desk study, a conceptual site model (CSM) and initial risk assessment based on the source-pathway-receptor principle and recommendations for aspects of planning design and construction.

1.3 Scope

The scope of works performed for this Report comprised the following:

- Review of previous Third-Party report;
- Soil sampling;
- In-situ penetration testing;
- Laboratory testing;
- Ground gas monitoring; and

¹ <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/779764/NPPF_Feb_2019_web.pdf</u>

² <u>https://www.gov.uk/guidance/land-affected-by-contamination</u>

▲ Contamination assessment.

1.4 Limitations

The assessment is limited to the issues agreed within the proposal for the works. Notes on limitations associated with this assessment are provided in Appendix A.

Due to the presence of buildings, associated infrastructure and pedestrian access intrusive locations were limed to accessible areas of the Site to not disrupt the overall operation of the facility.

2.0 Investigation Methodology

2.1 Desk Study

The following third-party information has been provided to Delta-Simons, which should be read in conjunction with this Report:

Argyle Environmental, SiteSolutions Combined, Ref. AEL-0046-TSC-959119, dated December 2018.

2.2 Conceptual Site Model

A Conceptual Site Model (CSM) represents the relationships between contaminant sources, pathways and receptors. Where all three components may be present on a risk basis an identification and assessment of Possible Pollutant Linkages (PPL) is achieved. Assessing risk in land contamination underpins the "suitable for use" approach adopted for Part 2A of the EPA 1990 regulatory regime and government guidance on land affected by contamination (published 12 June 2014 on gov.uk web site).

Risk is based on the assessor's judgement and a Delta-Simons standard approach. The standard approach is derived from government guidance and uses definitions and a matrix system derived from government guidance and CIRIA document C552 (Contaminated land risk assessment. A Guide to Good Practice).

Sources are listed as part of hazard identification and for this report typically comprise soil and groundwater contaminants on-Site, or off-site where potentially mobile across property boundaries. Ground gas hazards are always considered mobile and subject to ground conditions. Waste items including asbestos are also considered, as are; soil stockpiles, chemical stores and obviously presented invasive weeds.

Relevant potential receptors are considered to include:

- R1 Construction workers.
- ▲ R2 Third parties during construction (adjacent site users and adjacent residents).
- R3 Future residents.
- R4 The underlying Aquifer / Controlled waters.
- R5 The Built Environment (new buildings and infrastructure).
- ▲ R6 Plants/ vegetable/ livestock in any proposed landscaped areas.

Relevant potential pathways are considered to include:

- A P1 Direct contact, ingestion or inhalation of soil bound contaminants / dust during redevelopment.
- ▲ P2 Inhalation of vapours associated with contamination.
- ▲ P3 Migration of ground gas into on-site buildings causing asphyxiation or risk of explosion.
- P4 Leaching of contamination into groundwater followed by migration to the wider environment or surface waters.
- ▲ P5 Direct contact between aggressive ground conditions and new infrastructure.
- ▲ P6 Plant and animal uptake.

Where hazards are identified, a Preliminary Risk Assessment (PRA) is undertaken to assess the PPL, and to apply a justified risk ranking (very low - high). Where the PPL is sufficient to result in land being considered as 'contaminated land' under the terms of Part 2A of the Environmental Protection Act (EPA) 1990, a Significant Pollutant Linkage (SPL) may be defined.

A revised CSM is presented which takes into account the relevant findings of the field and laboratory outcomes.

Appendix B also contains the applied risk definitions and matrices.

2.3 Planning, Health & Safety (CDM), Setting Out & Services

Unless otherwise stated, the investigation has been planned on a scope of works agreed with the Client which is typically based on multiples of one day on-Site with various drilling and sampling equipment, or a measured amount of drilling and testing.

For most projects Delta-Simons adopts a role equivalent to principal contractor (PC) where none exists for the project and complies a construction phase plan (CPP) The CPP is incorporated into a comprehensive Health and Safety Plan with relevant information, risk assessments and method statements where applicable intended to keep the field staff safe.

Clients are requested to provide all service plans in original form from suppliers so a service avoidance risk assessment (SARA) can be undertaken as part of a formal Site-specific Health and Safety Plan. The SARA is based on guidance provided in HSG47 Avoiding danger from underground services.

Exploratory hole and subsequent sample locations are selected to provide suitable coverage of the Site, having regard for the likely presence of services and any other constraints such as existing structures and substructures. Where applicable, suspected emissions locations, or geological variations may have been targeted.

The locations of the investigations are shown on Figure 3 and the field records are provided in Appendix C.

2.4 Dynamic Sampler Boreholes

Dynamic sampler borehole systems are not explicitly described in Eurocodes, or in the relevant British Standard BSENISO 22475-1:2006 Geotechnical investigation and testing – Sampling methods and groundwater measurements – Part 1: Technical principles for execution.

The dynamic sampler system comprises a series of varying diameter metal tubes of 1 m or 2 m length, which allows a liner to be inserted. The tubes are driven into the ground using a percussive weight falling through a standard drop onto an anvil attached to solid rods, and withdrawn by use of a hydraulic jack. The soil is pushed into the tube/liner during the driving, and samples are recovered from the tube once it has been split for description. Alternatively, liners are omitted and the metal tubes have slots or windows cut into the sides where samples can be taken directly by hand. The liner method potentially offers a lower degree of sample disturbance.

The system can achieve typical depths of around 3 m to 5 m in favourable soil conditions. The system is limited by coarse gravel or other large fragments, and also in wet sands where the hole collapses. Some casing systems exist. The details of the ground conditions encountered are presented on the relevant field record sheets, which also detail the type and depths of samples taken and the results of any in-situ tests. Other relevant information may also be recorded including groundwater levels and details of any standpipe installations.

2.5 Standpipe Installations

Three of the dynamic sampler boreholes has been fitted with a gas/water monitoring standpipe of 50 mm internal diameter UPVC slotted and plain casing to the required depth as appropriate, capped by a gas tap bung and cover generally in accordance with BSENISO 22475-1:2006 for an open standpipe. The locations of the monitoring installations are shown on Figure 3.

2.6 Standard Penetration Tests

Standard penetration testing is undertaken generally in accordance with BS EN ISO 22476-2:2005+A1:2011 *Geotechnical investigation and testing. Field testing. Standard probing*

2.7 Monitoring Groundwater & Ground Gas

Groundwater monitoring is undertaken using an electronic dip meter, which records the depth to water in a standpipe. Ground gas composition and flow monitoring is undertaken where standpipes have been installed. Both flow (litres per hour) and composition (%) are measured using an infra-red gas monitor, calibrated for methane, carbon dioxide & oxygen. Records are also taken of atmospheric pressure. The monitoring field records are presented in Appendix D.

2.8 Chemical Analysis

The results of the chemical analysis are presented in Appendix E.

2.9 Generic Quantitative Risk Assessment (GQRA)

Human Health

In the absence of a statutory contamination thresholds in the UK a set of Generic Assessment Criteria (GAC derived principally using the Contaminated Land Exposure Assessment (CLEA) Framework have been adopted to assess the significance of the contamination encountered. The values adopted are for a residential without plant uptake end-use.

The Delta-Simons methodology for GQRA comprises comparison of limited chemical analysis results with the criteria for the most sensitive plausible end-use scenario in the proposed scheme.

Exceedance of criteria indicates that risk above "minimal" level may exist in a worst-case scenario across the whole Site. The precautionary principle is applied with respect to protection of human health recommending; further risk assessment (increased characterisation including extents/zones), or site-wide remediation.

If no criteria exceedance is observed, recommendations for further risk assessment, or remediation due to uncertainty over full characterisation of the Site.

Post-report action should be Site-specific and based on a Client's resource/risk profile in undertaking developments in accordance with any regulator requirements. Under the planning control, the responsibility for a safe development remains with the Developer.

Controlled Waters

For the purposes of assessment of risks to controlled waters, where water samples have been obtained these have been compared to appropriate water quality standards.

Ground Gas

Two rounds of ground gas monitoring have been undertaken as part of this assessment, the results of which are provided in Appendix D.

3.0 Results & Interpretation

3.1 Desk Study

A brief desk study is provided below using readily available online resources and a review of existing Third-Party information for the Site, which should be read in conjunction with this Report.

Site Description & Walkover	Delta-Simons undertook a Site visit on 6 th March 2020. A Site Layout Plan is included as Figure 2. Relevant Features identified during the walkover are summarised below.
(Reconnaissance, Internet Air Photography)	The Site was occupied by an active YMCA Hostel comprising a mixture of one and two storey buildings of brick construction. No access was afforded inside the existing buildings. Vehicular access and parking was noted along the northern area of the Site.
	The Site surfacing was noted to mainly comprise of either concrete and macadam in pedestrian and vehicular routes. The remainder of the Site comprised two soft landscaped courtyards in the central areas and soft landscaped areas along western, northern and eastern boundaries. A number of mature trees were noted along the eastern boundary.
	A number of manhole covers indicating buried utilities were noted across the Site.
	The car parking area in the north was noted to be raised by approximately 0.5 m above the remaining Site topography. In addition, a retaining wall approximately 1.0 m high was noted along the western area of the Site as part of a raised soft landscaped area.
	No evidence was observed during the Site walkover of potential Asbestos Containing Materials (ACMs), however, the presence within existing building construction cannot be discounted. The presence for plant/ boiler rooms within buildings cannot be discounted.
Proposed Development	It is understood that the proposed development of the Site comprises the demolition of all structures and the construction of a four-storey 100 bed YMCA Hostel and a 2, 3 and 4 storey building providing up to 43 residential apartments. The Proposed Site Layout is included as Drawing 1.
Environmental Setting	From the British Geological Survey (BGS) Geology of Britain Viewer the Site is indicated as being underlain by superficial Diamicton deposits of the Lowestoft Formation. In addition, superficial sand and gravel deposits of the Kesgrave Catchment Subgroup may encroach onto Site in the northern area. The underlying bedrock is mapped as the Lewes Nodular Chalk Formation and Seaford Chalk Formation (Undifferentiated). Given the current developed nature of the Site, Made Ground is likely to be present, however, is anticipated to be limited in thickness.
	The EA classify the superficial deposits of the Lowestoft Formation and Kesgrave Catchment Subgroup as Secondary A and Secondary Undifferentiated Aquifers, respectively. The bedrock is classified as a Principal Aquifer.
	The EA data also indicates that the Site is located within a Zone III Total Catchment Source Protection Zone (SPZ).
Previous Report	Delta-Simons has been provided with the following Third-Party report:
Review (Argyle Environmental, 2018)	▲ Argyle Environmental, SiteSolutions Combined, (Ref. AEL-0046-TSC-959119), dated 7 th December 2018.
	Historically the Site formed part of Peartree Farm comprising farmyard buildings in the northern area of the Site from the earliest map edition dated 1878. The Site remained in agricultural use until circa 1938 when a building is noted in the southern area of the Site mapped as a Youth Hostel and Club. Alterations to the farm buildings in the north of the Site are noted circa 1985. The farm buildings are assumed demolished prior to

	1990 as they are no longer mapped and the Youth Hostel is noted to occupy the majority of the Site area. The Site remains consistent until present day.			
	The surrounding area has historically comprised a number of industrial uses with associated tanks, most notable a chemical works located 30 m to the north, a garage warehouse and corporation yard.			
	There are five licenced abstractions located within 1 km of the Site, the closest of which is located approximately 360 m west, relating to the abstraction from groundwater for chemicals: process water. The nearest surface water feature is located approximately 240 m south-west of the Site.			
	Pertinent entries within 250 m of the Site include;			
	 Six Registered Radioactive Substances, all of which relate to Roche Products Ltd, the closest is located approximately 180 m west; 			
	▲ A Registered Landfill Site located approximately 200 m north west of the Site relating to a Landfill accepting aqueous effluent waste and industrial effluent treatment sludge, the input rate is noted as small (<10,000 tonnes per year);			
	 One Registered Waste Treatment or Disposal Site located approximately 160 m west of the Site relating to the above Landfill Site; 			
	▲ Thirty-eight Contemporary Trade Directory Entries, the closest of which is an active tyre repair and rereading entry located approximately 25 m north of the Site; and			
	▲ Five areas of potentially infilled land (water), the closest of which is located approximately 30 m south west of the Site, recorded in 1939 mapping.			
	The Site was considered to have a moderate to high environmental sensitivity and the risk of contaminants being present was considered low to moderate. No further recommendations were required in terms of contamination.			
	The Site was also considered at low to moderate risk of flooding.			
Key Contaminants and Initial CSM	The Site has historically been in agricultural use, including farm yard prior to redevelopment as a Youth Hostel.			
Aspects	On-Site potential sources of contamination include:			
	 Made Ground associated with historical construction/demolition; 			
	Small-scale oil/fuel spills from parked vehicles/plant and machinery related to the historical development and agricultural use;			
	 Potential plant/boiler rooms within existing buildings; 			
	Potential asbestos within existing building construction; and			
	▲ Unrecorded sources.			
	Off-Site potential sources of contamination are limited to infilled land (water) in the surrounding area and industrial uses a chemical works.			
	The off-Site infilled land and landfill may represent potential sources of ground gas, however, underlying cohesive deposits would mitigate migration. The presence of Made Ground is suspected given the current development. Deep Made Ground may be considered as a gas source, if present.			
	The Site overlies a Secondary A Aquifer, Secondary Undifferentiated Aquifer and Principal Aquifer with respect to the superficial and bedrock geology.			
	The Site is located within a Zone III Source Protection Zone.			
	There is uncertainty because unrecorded potentially contaminative activities could have taken place.			

3.2 Fieldworks Interpretation

Scope of	Dynamic Sam	npler Boreho	oles 5 No						
Investigation	Monitoring Well Installs – 3 No.								
	Monitoring rounds -2 No.								
	Site Area = 0	.67 hectares	S.						
Site Specific Investigation Limitations	Intrusive loca	tions were s	et out to a	void unde	rground s	ervices.			
Geology from the Investigation Works	Made Ground was encountered across the Site generally comprising a limited thickness of gravelly clayey sandy Topsoil with brick and flint underlain by gravelly clay with brick fragments. Made Ground was identified to a maximum depth of 0.68 m bgl.								
		ey gravelly s	ands with f	lints. Coa			ntly sandy gravell as identified withi		
	There were n	o visual or c	olfactory in	dications	of significa	ant contamin	ation.		
	The natural superficial ge						of the publishe		
	Bedrock (cha	lk) was not e	encountere	ed.					
	Groundwater	was identifi	ed during o	Irilling wit	hin DS10	5 only at 3.50) m bgl.		
	See Appendix	See Appendix C for further details.							
Groundwater in Standpipes		Two monitoring visits were completed on 10 th and 17 th March 2020. A summary of the readings is provided below:							
	Borehol	Borobolo Maximum Depth to Minimum Depth to Bosponse Zono							
	DS101	water (m bgi) water (m bgi)							
	DS103	, ,		Dry	Lowestoft Formation				
	DS105		1.51		1.47	Lowestoft Formation			
	See Appendix	See Appendix D for further details.							
Gas in Standpipes	Two monitoring visits were completed on 10 th and 17 th March 2020. The worst-case gas scenario is summarised below.								
	Borehole	Methane (%v/v)	Carbon Dioxide (%v/v)	Oxygen (%v/v)	Steady Flow (I/hr)	GS	GSV/CS		
		Max	Max	Min	Мах	GSV	CS		
	DS102	<0.1	1.4	17.4	0.1	0.0014	1		
	DS103	<0.1	0.8	18.2	<0.1	0.0008	1		
	DS105 <0.1 0.5 19.2 <0.1 0.0005 1 Conditions During Monitoring Round Date Atmospheric Pressure (mb)						1		
		Auno	(Trend			Weather Conditions			
	10/03/20 994 (Steady) Dry		\$						
	17/03/20 1022 (Rising) Dry					Iry			

	CS = Characteristic S	ituation as per CIRIA C665				
	See Appendix D for further details.					
Chemical Analysis	Five samples were scheduled for the following analytes: selected heavy metals suite, Total Petroleum Hydrocarbons (TPH) (total), TPH CWG, BTEX, MTBE, speciated Polycyclic Aromatic Hydrocarbons (PAH) (EPA-16), leachable metals and asbestos screen.					
	Slight exceedances of ar assessment Criteria (GA Made Ground from a sin at 41 mg/kg marginally a mg/kg marginally above	AC) for residential v gle location (DS10 bove the stringent	vithout plant up 1 at 0.15 m bgl) GAC of 40 mg/	otake end us . Arsenic ha	se within shallow s been identified	
	Slightly elevated individe identified within a single the table below.					
	Parameter	Maximum Concentration (Mg/kg)	Screening Value ^(Source)	Volatile	Location	
	PAHs					
	Benzo(b)fluoranthene	<u>5.1</u> 4.3	3.9 ^{LQM} 3.2 ^{LQM}	N N	DS104 DS104	
	Benzo(a)pyrene Dibenzo(a,h)anthracene	0.66	0.31 ^{LQM}	N	DS104	
	Further elevated concentrations of hydrocarbons, sPAH and heavy metals were not identified above their respective GAC. Asbestos has been identified within one sample from DS105 at 0.5 m bgl as Chrysotile, quantified as <0.001%.					
	The leachable metal results have been compared against the GAC for Potable Waters given the underlying Secondary A and Principal Aquifers. Concentrations of lead have been identified marginally above very stringent GAC of 10 μ g/l in two samples; DS103 (0.20 m bgl) at 13 μ g/l and DS104 (0.30 m bgl) at 11 μ g/. However, the results are not considered representative of real-life processes and represent a worst-case laboratory conditions.					
	See Appendix E for further details.					
Contamination	The Site has historically been in agricultural use, including farm yard prior to redevelopment as a Youth Hostel.					
	Marginally elevated individual PAH compounds, arsenic and lead have been identified above the stringent applied GAC and slightly elevated leachable lead has also been identified in two locations. Further concentrations of heavy metals, PAHs and TPH was not identified above generic assessment criteria.					
	Asbestos fibres have been identified within one location (DS105) as Chrysotile, quantified as <0.001%.					
	Given the identified concentrations of arsenic, lead and sPAH are marginally above stringent GAC, the risk to Human Health (construction workers/ future maintenance workers and future Site users) is considered low. Furthermore, the Site is to be covered predominantly in buildings or hardstanding, effectively encapsulating the soils and preventing direct contact.					
	It is recommended that proposed new landscaped areas have a minimum 450 mm clean certified layer of topsoil. Should landscaped areas be proposed for the growing of fresh produce, the depth of clean cover should be increased to 600 mm, with appropriate geotextile membrane.					

	Given significantly elevated concentrations of contaminants have not been identified, and the geology has been identified as predominantly cohesive, the risk to controlled waters is considered very low risk.
Fresh Water Pipes	The Local Water Authority should be contacted at an early stage in order that any abnormal costs can be calculated, if required.
Ground Gas	Potential sources of ground gas are limited to Made Ground and off-Site infilled land and landfill.
	The gas monitoring recorded low concentrations of ground gases and low flow. Methane was not detected above 0.1 $\%$ v/v and carbon dioxide was identified at a maximum concentration of 1.4 $\%$ v/v.
	The ground gas regime beneath the Site has been classified as a Characteristic Situation 1, in line with CIRIA C665.
Groundwater/ Drainage	The natural ground conditions at the Site were found to be variable sandy clays and clayey sand.
	Groundwater was encountered at approximately 1.50 m bgl within one location during return monitoring visits.
	BRE365 Infiltration testing has been undertaken at the Site. This is reported under sperate cover and should be read in conjunction with this Report.
Conclusions and Recommendations	The Site has historically been in agricultural use prior to redevelopment as a Youth Hostel.
	The Site is proposed for the demolition of existing buildings and the construction of a four-storey 100 bed YMCA Hostel and a 2, 3 and 4 storey building providing up to 43 residential apartments. It is also understood that the development will comprise surface water drainage to two soakaways in the central area of the Site, via interceptors.
	Significant contamination has not been identified in the shallow soils, however, elevated PAHs, arsenic and lead have been identified within shallow Made Ground. It is considered that the risk to future Site users will be mitigated through hardstanding and clean cover.
	The risk to controlled water is also considered low, given the following;
	 Marginal exceedances of PAHs, arsenic and lead have been identified within shallow soils above stringent guidance values and are not considered significantly elevated;
	▲ The shallow Made Ground is likely to be excavated and removed from Site in the areas of proposed surface water drainage, as such removing the identified source;
	 Interceptors are proposed prior to water entering the proposed soakaways;
	Cohesive clay deposits have been identified above the mapped chalk, effectively limiting vertical migration of contamination; and
	▲ There are no Licensed Abstraction Records from groundwater for potable water supply within 250 m of the Site.
	The following development abnormals should be considered appropriate at this stage:
	▲ A 'hotspot' protocol to be put in place during any sub-surface works for groundworkers to act upon should potential contamination be identified;
	 Consultation with the Local Water Authority to confirm the requirements for upgraded potable water pipes;
	Additional soil testing (WAC) may be required to optimise off-Site disposal of soils;

	An asbestos survey of the current buildings should be undertaken prior to demolition; and
A	Importation of suitable certified topsoil for any proposed for any proposed landscaped areas.

	Pollutant Linkage Assessment				
Source(s)	Pathway(s)	Receptor(s)	Risk Rating	Justification & Mitigation (if required)	
Marginally elevated concentrations of PAHs within shallow	concentrations of PAHs within shallow Construction workers.			Detectable concentrations of heavy metals and PAHs have been identified in shallow Made Ground. However, the Site is to mainly be covered in hardstanding, as such, the risk to future Site users is considered low.	
Made Ground in DS104 0.3 m bgl.	Direct contact, ingestion or inhalation of soil bound	Third parties during construction (adjacent site		Should areas of landscaping be proposed a clean certified layer of suitable for use topsoil will be required.	
Marginally elevated arsenic and lead within Made Ground in DS101 at 0.15 m	contaminants / dust during redevelopment and the inhalation of vapours	users and adjacent residents). Future residents.	Low Risk	Given the identified elevated PAHs, arsenic and lead, the short-term risk to construction workers would be mitigated by the use of PPE and provision of suitable welfare facilities. This recommendation should be captured in Site health and safety documentation and in maintenance plans.	
bgl. Slightly elevated				A hotspot protocol should be in place for groundworkers to act upon should potential contamination be identified.	
leachable lead within Made Ground from DS103, DS104 and DS105.	Direct contact between aggressive ground conditions and new infrastructure.	The Built Environment (new buildings and infrastructure)	Low Risk	The Local Water Authority should be contacted to understand their requirements for upgraded water pipes.	
Detectable concentrations of heavy metals, PAHs and TPH in shallow soils.	DS105. etectable entrations of metals, PAHs PH in shallow Etaching of contamination into groundwater followed by migration Agu		Very Low	Significant contamination has not been identified at the Site within shallow soils. However, marginally elevated PAHs, arsenic and lead have been identified above stringent guidance values. Hardstanding within the development will further mitigate the risk by restricting any infiltration and subsequent mobilisation of any soil contaminants.	
Potential contamination in areas not directly investigated.	groundwater environment or surface waters.	Principal Aquifer/ Controlled waters.	Risk	In addition, leachable lead has been marginally identified above the guidance value for potable water, however, is not considered representative of general environmental conditions, as such the risk is considered low.	
Ŭ				The Site is located within a Zone III Source Protection Zone.	
Hazardous Ground Gas.	Migration of ground gas into on- site buildings causing asphyxiation	The Built Environment (new buildings and infrastructure)	Very Low Risk	Following two rounds of ground gas monitoring, low concentrations of Carbon dioxide were recorded at a maximum concentration of 1.4%v/v.	
Gas.	or risk of explosion.	Future residents.	KI2K	The Site can provisionally be classified as a Characteristic Situation 1.	

Standard risk definitions and matrices are presented in Appendix D.

	Pollutant Linkage Assessment						
Source(s)	Pathway(s)	Receptor(s)	Risk Rating	Justification & Mitigation (if required)			
Chrysotile Asbestos identified within shallow Made Ground form DS105 and 0.5 m bgl. Potential ACMs within existing building construction.	Direct contact of inhalation of Asbestos fibres.	Future Site users. Groundworkers during the redevelopment or during any subsurface maintenance works.	Low to Moderate Risk	Asbestos has been identified within a single location (DS105 at 0.5 m bgl), quantified as <0.001%. The risk for further asbestos to be present within Made Ground cannot be discounted. A full asbestos survey should be undertaken prior to demolition of the current buildings and structures.			


```
Figure 1 – Site Location Map
```



```
Figure 2 – Site Layout Plan
```


Bing ma
PROJECT NO:

		TITLE:	DRAWN BY:		PROJECT NO:
		Site Layout Plan	JR	Not to Scale	20-0093.01
				REVISION:	20-0000.01
	deltasimons	WCG-One YMCA	RPD	1	FIGURE NO:
		PeartreeLane, Welwyn Garden City	DATE:		2
En	vironment - Health & Safety - Sustainability	FearlieeLane, Weiwyn Garden Gry	24th Ma	arch 2020	2

Figure 3 – Approximate Intrusive Location Plan

Drawing 1 – Proposed Development Plan

N	π	Έ	s

This drawing to be read in accordance with the specification/Bills of Quantities and related drawings. No Dimensions to be scaled from this drawing. All stated dimensions to be verified on site and the Architect notified of any discrepancies.

Scale bar 50mm at 1:1

FOR PLANNING

IN

REV DATE NOTE

Project

YMCA PEARTREE LANE WELWYN GARDEN CITY

Title

PROPOSED SITE LAYOUT

 Scale
 Date

 1:500
 @ A3
 SEPT 2019

 Drawn
 Checked

 SD
 AL

 Drawing Number
 Revision

 8057 / P101

Saunders Architecture+UrbanDesign

saundersarchitects.com | 01707 385300 | London | Manchester | Bristol | Welwyn

Appendix A - Limitations

Limitations

The recommendations contained in this Report represent Delta-Simons professional opinions, based upon the information listed in the Report, exercising the duty of care required of an experienced Environmental Consultant. Delta-Simons does not warrant or guarantee that the Site is free of hazardous or potentially hazardous materials or conditions.

Delta-Simons obtained, reviewed and evaluated information in preparing this Report from the Client and others. Delta-Simons conclusions, opinions and recommendations has been determined using this information. Delta-Simons does not warrant the accuracy of the information provided to it and will not be responsible for any opinions which Delta-Simons has expressed, or conclusions which it has reached in reliance upon information which is subsequently proven to be inaccurate.

This Report was prepared by Delta-Simons for the sole and exclusive use of the Client and for the specific purpose for which Delta-Simons was instructed. Nothing contained in this Report shall be construed to give any rights or benefits to anyone other than the Client and Delta-Simons, and all duties and responsibilities undertaken are for the sole and exclusive benefit of the Client and not for the benefit of any other party. In particular, Delta-Simons does not intend, without its written consent, for this Report to be disseminated to anyone other than the Client or to be used or relied upon by anyone other than the Client. Use of the Report by any other person is unauthorised and such use is at the sole risk of the user. Anyone using or relying upon this Report, other than the Client, agrees by virtue of its use to indemnify and hold harmless Delta-Simons from and against all claims, losses and damages (of whatsoever nature and howsoever or whensoever arising), arising out of or resulting from the performance of the work by the Consultant.

Appendix B - Risk Definitions

Contaminated Land Risk Definitions

The following methodology is based on the methodology presented in CIRIA C552 Contaminated Land Risk Assessment: A Guide to Good Practice 2001. It requires the classification of the:

- ▲ Magnitude of the potential consequence (severity) of the Risk occurring: and
- ▲ Magnitude of the Probability (likelihood) of the Risk occurring.

The classifications are then compared to indicate the risk presented by each pollutant linkage.

Consequence to Receptor Definition Matrix

	Human Health	Controlled Waters	Buildings/Services	
Severe Consequence	Acute or chronic permanent impact on human health.	Sensitive controlled water pollution ongoing, or just about to occur.	Catastrophic collapse	
Medium Consequence	Chronic permanent impact on human health	Gradual pollution of sensitive controlled water	Degradation of materials	
Mild Consequence	Chronic temporary impact on human health	Gradual pollution of non- sensitive controlled water	Damage to building rendering it unsafe.to occupy (eg foundation damage resulting in instability).	
Minor Consequence	Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc).	Slight discoloration of water	Easily repairable effects of damage to buildings, structures and services, i.e discoloration of concrete	

Probability Definitions

Probability	Definition in Context	
Higher	There is a pollution linkage and an event that either appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution. Positive evidence of source, pathway and receptor.	
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term. Suspect source, pathway, and receptor	
Low Likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.	
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long term No evidence of hazard, pathway, and receptor	

Standard Risk Matrix

			Consequence/Magnitude of impact		
		Severe	Medium	Mild	Minor
ېر م	High	Very High	High	Moderate	Moderate/Low
Likely		High	Moderate	Moderate/low	Low
Likely C C C C C C C C C C C C C C C C C C C		Moderate	Moderate/low	Low	Very Low
	Unlikely	Moderate/low	Low	Very Low	Very Low

Classified risks and likely action

Significance Level	Definition/Comments	
Very High Risk	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is currently happening.	
	This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.	
	Demonstrable contaminated land situation, highest threat & liability level, urgent action recommended.	
High Risk	Harm is likely to arise to a designated receptor from an identified hazard.	
	Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short term and are likely over the longer term.	
	Likely contaminated land situation, risk assessment and action recommended.	
Moderate	It is possible that harm could arise to a designated receptor from an identified hazard However, if is either relatively unlikely that any such harm would be severe, or if any harr were to occur it is more likely that the harm would be relatively mild	
	Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.	
	Plausible contaminated land situation, risk assessment and possible action recommended.	
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.	
	Unlikely contaminated land situation, possible risk assessment and possible action.	
Very Low Risk	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.	
	Negligible risk, no action recommended except vigilance for changes in conditions.	

Geotechnical Risk Classification

The geohazards listed in the report within Section 4 follow guidance presented in Clayton, C.R.I. (2001) *Managing Geotechnical Risk*, Thomas Telford and the Highways Agency document HD22/08 '*Managing Geotechnical Risk*' (2008) which aims to identify and manage the geotechnical risks associated with a scheme throughout its lifespan, from planning to construction to maintenance.

For each geohazard the probability of the hazard occurring (P) has been considered together with the impact it would have (I) if it were to happen to calculate the risk rating between 1 and 25.

Risks that fall within Moderate, Significant and Severe categories below are considered to be *substantial* and are therefore listed within the report.

Probability	(P)
Very Likely (VLk)	5
Likely (Lk) 4	
Plausible (P) 3	
Unlikely (U) 2	
Very Unlikely (VU)	1

Impact	(I)
Very High (VH)	5
High (H)	4
Medium (M)	3
Low (L)	2
Very Low (VL)	1

(R)	Risk
20 – 25	Severe
15 – 19	Substantial
10 – 14	Moderate
5 – 9	Minor
1 – 4	Negligible

Appendix C - Key to Logs, Field Records & Compliance Certificates

KEY TO BOREHOLE AND TRIAL PIT LOGS

MATERIAL LEGENDS

	Topsoil		Made Ground		Bituminous Material
	Concrete		Clay	× × : × × : × × ×	Silt
	Sand		Gravel	અપર અપર અપર અપર અપ અપર અપર આપ આપ	Peat
	Cobbles		Boulders		Mudstone
× × × × × × × × × × ×	Siltstone		Sandstone		Limestone
	Chalk		Coal		Breccia
	Conglomerate	++++ +++ +++ +++	Igneous		Metamorphic
	Pyroclastic (volcanic ash)	$ \xrightarrow{- \Diamond - i} $	Gypsum		Shale
	Ironstone		Bedrock (Unidentified)		Void

INSTALLATION/BACKFILL LEGENDS

Sand	Gravel	Bentonite/Grout
Arisings	Concrete	Plain Pipe
Slotted Pipe		

Legend symbols in general accordance with BS 5930:1999+A2:2010 and standard industry practice.

Document No: D104	Version: 2.0	Issue Date: 20/11/19	Author: D Ellis/N Harland	Authorised by: W Capps	Page: 1 of 2
© Delta-Simons Environmental	Consultants Limit	ed. No part of this document	may be reproduced unless prior wr	itten permission has been granted.	

KEY TO BOREHOLE AND TRIAL PIT LOGS

SAMPLE TYPES

АСМ	Asbestos Containing Material Sample
В	Bulk Disturbed Sample
BLK	Block Sample
С	Core Sample
CBR	Undisturbed Sample for California Bearing Ratio Test – 154mm diameter
D	Disturbed Sample - Tub
ES	Soil Sample for Environmental Testing
EW	Water Sample for Environmental Testing
G	Gas Sample
U	Undisturbed Driven Tube Sample – 70/102mm diameter, 450mm long
w	Water Sample

TEST TYPES

СРТ	Cone Penetrometer Test (kN/m ²)
FID	Flame Ionisation Detector Test (ppm)
HV	In-Situ Hand Sheer Vane Test (kN/m ²)
PID	Photoionisation Detector Test (ppm)
SPT (S)	Standard Penetration Test – Split Spoon Sampler
SPT (C)	Standard Penetration Test – Solid 60 Degree Cone

CORE DETAILS

lf	Fracture Spacing (mm) – Minimum, Average, Maximum
NI	Non-Intact where >25 fracture spacings per metre
TCR	Total Core Recovery (%)
SCR	Solid Core Recovery (%)
RQD	Rock Quality Designation (%)
AF	Air Flush Return (%)
WF	Water Flush Return (%)

WATER COLUMN DETAILS

2.00	Water Strike
1.00	Water Level

Document No: D104	Version: 2.0	Issue Date: 20/11/19	Author: D Ellis/N Harland	Authorised by: W Capps	Page: 2 of 2
© Delta-Simons Environmental	Consultants Limite	ed. No part of this document	may be reproduced unless prior w	itten permission has been granted.	

			lead Office /ay, Doddingto	on Road	Project	^{No:} 20	0-0093	8.01	Hole	D: DS1	01	Page: 1 of 1
deltasimon Environment - Health & Safety - Sustainabili	Project: WGC-One YMCA, Peartree L Welwyn Garden City							_ane,				
Dynamic S	Dynamic Sampler Log						6/03/20		-	Client: Pinnacle Cons Engineers		sulting
		Strata	Strata		Casing		Samp	le Details		Test Deta	ils	
Description of Strata	Legend	Depth (m bgl)	Thickness (m)	Level (mAOD)	Diameter (mm)	Water	Depth (m)	Type Re	f Depth (m)	Re	sults	Backfi
ADE GROUND: Grass over dark brown lightly gravelly clayey fine to medium SAND. Gravel is fine to medium subangular o subrounded flint and brick fragments. TOPSOIL). ADE GROUND: Dark brown slightly sandy		0.20 	(0.20)	82.89			0.15	ES ES	1			
ightly gravelly CLAY. Sand is fine to edium. Gravel is fine to medium ubangular to subrounded flint and		0.60	(0.20)	82.49								
oft dark brown slightly sandy slightly ravelly CLAY. Sand is fine to medium. iravel is fine to medium subangualr to		0.80 	(0.40)	82.29								
oft to firm light orangish brown slightly oft to firm light orangish brown slightly andy gravelly CLAY. Sand is fine to nedium. Gravel is fine to medium angular		1.20 		81.89					1.20		S) N=23 5,6,6,6)	
o subrounded flint. .OWESTOFT FORMATION) ledium dense light brown slightly clayey ravelly fine to medium SAND. Gravel is ne to coarse angular to rounded flint.		 										
OWESTOFT FORMATION)			(1.80)						2.00		S) N=17 4,5,4,4)	
irm light brown slightly sandy gravelly LAY. Gravel is fine to medium subangular			(0.22)	80.09					3.00		S) N=16 4,4,4,4)	
o subrounded flint. Sand is fine to medium OWESTOFT FORMATION) irm light brown slightly sandy CLAY. Sand fine to medium. Including rare medium ubrounded flints. OWESTOFT FORMATION)		- - <u>3.33</u> - - - -	(0.33)	79.76								
		 4.50	(1.17)	78.59					4.00		S) N=15 4,3,4,4)	
rm dark brown slighly sandy slightly ravelly CLAY. Sand is fine to medium. ravel is fine to medium subangular to ubrounded flint and chalk nodules. OWESTOFT FORMATION)		- - - 5.00	(0.50)	78.09					5.00	OPT(0)	50 (05 (
Borehole complete at 5.00 m bgl.		-							5.00	14Òm	50 (25 for m/50 for Dmm)	
emarks:						Wat	er Strike		Water	Level	Borehole	Diamete
Logged in general accordance with BS 593 Dmm diameter standpipe, gas bung and trai bon completion.					ry Date			Depth Strike	uration (min)	Depth Water	Depth Base	1
	on (mAOD): 33.09	Drilled By: Dyr	namic Sa	mpling	Plant U		nier 11		ogged: AH	Checked: JR	Approved: PH	Scale: 1:30

		3 Henley W	lead Office /ay, Doddingto	on Road	Project	^{No:} 20	-0093	6.01	Hole	DS1	02	Page: 1 of 1	
deltasimons Environment - Health & Safety - Sustainabilit		Lind Tel: +44 Email: info	Project: WGC-One YMC Welwyn Garde					<u> </u>					
Dynamic S	Dynamic Sampler Log Date: 06/03								Clien		icle Cons leers	sulting	
Description of Strata	Legend	Strata Depth (m bgl)	Strata Thickness (m)	Reduced Level (mAOD)	Casing Diameter (mm)	Water	Depth	ole Details	Depth	Test Deta	ils sults	Backfill	
MADE GROUND: Grass over dark brown slightly gravelly clayey fine to medium SAND. Gravel is fine to medium subangular to subrounded filint and brick fragments.		 	(0.30)	82.68			(m)		51 (m)				
(TOPSOIL). MADE GROUND: Light brown slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subangular to subrounded flint and brick		 	(0.38)	82.30			0.60	ES ES	51				
fragments. Firm brown mottled grey slightly sandy CLAY. Sand is fine to medium. Including occasional fine to medium subangular to													
subrounded flints. (LOWESTOFT FORMATION)			(1.32)										
				00.00									
Dark brown slightly clayey gravelly fine to medium SAND. Gravel is fine to coarse angular to subangular flint. (LOWESTOFT FORMATION)		2.00	(0.85)	80.98									
		 		80.13									
Firm dark brown slighly sandy gravelly CLAY. Sand is fine to medium. Gravel is fine to coarse angular to subrounded flint. (LOWESTOFT FORMATION)													
			(2.15)										
		 5.00		77.98									
Borehole complete at 5.00 m bgl.		- - -											
		-											
Remarks: 1. Logged in general accordance with BS 593 Borehole remained dry upon completion.	L D:2015.2. Bo	ı orehole bac	kfilled with a	arisings.3.	Date		er Strike	Depth Strike	Wate	r Level Depth Water	Borehole Depth Base	Diameter Diameter	
										1			

			lead Office /ay, Doddingto	on Road	Project	20	0-0093	8.01		Hole I	² DS1	03	Page: 1 of 1
deltasimons Environment - Health & Safety - Sustainabilit	555 s.com	Project:	Project: WGC-One YMCA, Peartree Welwyn Garden City							Lane,			
Dynamic S	Dynamic Sampler Log Date: 06/03/2020 Client: Pinnacle C Engineers									sulting			
		Strata	Strata	Reduced	Casing		Sample Details		ls		Test Deta		
Description of Strata	Legend	Depth (m bgl)	Thickness (m)	Level (mAOD)	Diameter (mm)	Water	Depth (m)	Туре	Ref	Depth (m)	Re	sults	Backfi
ADE GROUND: Gravel over dark brown ghtly sandy slightly gravelly CLAY. Sand fine to medium. Gravel is fine to medium bangular flint, brick fragments and glass.		0.30	(0.30)	82.84			0.20	ES	ES1				
ADE GROUND: Light brown slightly andy slightly gravelly CLAY. Sand is fine to edium. Gravel is fine to medium		- 0.60	(0.30)	82.54									
Jbangular to subrounded flint and brick agments. oft light brown slightly sandy slightly ravelly CLAY. Sand is fine to medium.		-	(0.60)										
Bravel is fine to medium subangular to ubrounded flint. _OWESTOFT FORMATION)		 	()	81.94						1.20	SPT(S) N=5	
oft light brown slightly sandy gravelly LAY. Sand is fine to medium. Gravel is fine o coarse angular to subrounded flint. LOWESTOFT FORMATION)		-										l,2,1,1)	
		-	(1.40)							2.00		6) N=10 2,3,2,3)	
ght brown slightly clayey gravelly fine to edium SAND. Gravel is fine to coarse		2.60		80.54									
ngular to subrounded flint. .OWESTOFT FORMATION) irm light brown slightly sandy gravelly		 	(0.40)	80.14						3.00		6) N=16 I,4,4,4)	
LAY. Sand is fine to medium. Gravel is fine coarse angular to subrounded flint. .OWESTOFT FORMATION)		3.40	(0.40)	79.74								,,,,	
rown sandy subangular to subrounded fine coarse flint GRAVEL. Sand is fine to parse. .OWESTOFT FORMATION)		-	(0.60)										
irm to stiff dark brown slightly sandy ightly gravelly CLAY. Sand is fine to edium. Gravel is fine to coarse angular to		4.00		79.14						4.00		6) N=22 5,5,6,6)	
Jorounded flint and rare chalk nodules. OWESTOFT FORMATION)		-	(1.00)										
Borehole complete at 5.00 m bgl.		5.00 _		78.14						5.00		6) N=37 ,9,9,10)	
		-											
e marks: Logged in general accordance with BS 593	0.2015.2 P-	rebolo inci	alled to 5 m	bal with		Wate	er Strike			Water	Level	Borehole	Diamet
Logged in general accordance with BS 593 Dmm diameter standpipe, gas bung and traff pon completion.					ry Date	•	Time [Depth Strike	Dura	tion (min)	Depth Water	Depth Base	Diame
		3 Henley W	lead Office /ay, Doddingto	on Road	Project	^{No:} 20)-0093	3.01	H	Hole ID	DS10	04	Page: 1 of 1
--	--------------	---------------------------------	---	----------------------------	----------------------------	-------------------	----------------------	---------------	----------	-------------------	----------------	------------------	--
deltasimons Environment - Health & Safety - Sustainabilit		Tel: +44	coln, LN6 3QF (0) 1522 882 o@deltasimor	2555	Project:	**		ne YM Gard			artree l	_ane,	
Dynamic Sa	ampler L	og			Date:		5/03/20			Client:	Pinna Engin	cle Cons eers	sulting
Description of Strata	Legend	Strata Depth (m bgl)	Strata Thickness (m)	Reduced Level (mAOD)	Casing Diameter (mm)	Water	Samp Depth (m)	ole Details	of C	- Depth (m)	Test Deta	ils sults	Backfill
MADE GROUND: Grass over dark brown slightly clayey slightly gravelly fine to		0.15	(0.15)	82.80			(11)			(11)			
medium SAND. Gravel is fine to medium subangular to subrounded flint.(TOPSOIL) MADE GROUND: Dark brown slightly sandy slightly gravelly CLAY. Gravel is fine to		0.50	(0.35)	82.45			0.30	ES E	S1				
coarse subangular to subrounded flint and brick fragments. Sand is fine to coarse. Soft light brown slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subangular to subrounded flint.		-	(0.62)										
(LOWESTOFT FORMATION)		1.12		81.83									
Firm light brown slightly sandy gravelly CLAY. Sand is fine to medium. Gravel is fine to coarse angular to subrounded flint. (LOWESTOFT FORMATION)													
			(1.98)										
Firm light brown slightly sandy slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium subangular to		- - - - - - -		79.85									
(LOWESTOFT FORMATION)			(1.90)										
				77.05									
Borehole complete at 5.00 m bgl.	<u></u>	5.00		77.95									<u>×////////////////////////////////////</u>
		- - - -											
	1	1	1			Wat	er Strike	1	v	Vater L	.evel	Borehole	Diameter
Remarks:					1								
 Logged in general accordance with BS 593 	0:2015.2. Bo	rehole bac	kfilled with a	arisings.3.	Date	e	Time [Depth Strike	Duration	i (min) E	Depth Water	Depth Base	Diameter
Remarks: 1. Logged in general accordance with BS 593 Borehole remained dry upon completion. Coordinates:		Drilled By:	kfilled with a	arisings.3.	Plant U		Time [Depth Strike	Duration			Depth Base	Diameter Scale:

		3 Henley W	lead Office /ay, Doddingto	on Road	Project	^{No:} 20	-0093	8.01	Hole	DS1	05	Page: 1 of 1
deltasimo Environment - Health & Safety - Sustain	nability	Tel: +44	coln, LN6 3QF 4 (0) 1522 882 o@deltasimor	2555	Project:	vv		ne YMO Garde			Lane,	
Dynam	ic Sampler L	.og			Date:		5/03/2		Clien		icle Cons neers	sulting
Description of Strata	Legend	Strata Depth	Strata Thickness	Reduced Level	Casing Diameter	Water	Samp Depth	ole Details	,₅ Deptł	Test Deta	iils	Backfi
		(m bgl)	(m)	(mAOD)	(mm)		(m)	Type Re	of (m)	' Re	sults	
MADE GROUND: Grass over dark brow slightly gravelly clayey fine to medium SAND. Gravel is fine to medium subang lint and brick fragments. (TOPSOIL).		0.15	(0.15)	83.14								
ADE GROUND: Dark brown slightly s lightly gravelly CLAY. Gravel is fine to oarse subangular to subrounded flint a		0.60	(0.45)	82.69			0.50	ES ES	51			
rick fragments. Sand is fine to coarse. Boft light brown slightly sandy slightly ravelly CLAY. Sand is fine to medium. Bravel is fine to medium subangular to			(0.40)									
ubrounded flint. _OWESTOFT FORMATION)		1.00		82.29								
irm light brown slightly sandy gravelly CLAY. Sand is fine to medium. Gravel is o coarse angular to subrounded flint.	s fine								1.20		S) N=27 5,7,7,8)	
OWESTOFT FORMATION)												
			(2.00)						2.00	SDT/	S) N=30	
			(2.00)						2.00		7,7,8,8)	
		4 										
irm light brown slightly sandy slightly		3.00		80.29					3.00		S) N=30 7,7,8,8)	
avelly CLAY. Sand is fine to medium. ravel is fine to medium subangular to ibrounded flint. OWESTOFT FORMATION)						3.50				(0,0)		
			(2.00)						4.00	SPT(3 (3,2/3	S) N=11 3,2,3,3)	
				78.00								
Borehole complete at 5.00 m bgl.				78.29					5.00		S) N=23 5,6,6,6)	
		- -										
		_										
marks: Logged in general accordance with B	S 5930:2015.2. Bo	prehole inst	talled to 5 m	bgl, with			er Strike			r Level	Borehole	
)mm diameter standpipe, gas bung an icountered at 3.50 m bgl.	d traffic strength f	lush cover.	3. Groundw	ater was	Date	e .	Time [3.50 m	Ouration (min)	Depth Water	Depth Base	Diame
	levation (mAOD):	Drilled By:			Plant U				ogged:	Checked:	Approved:	Scale:
E524431.20 N212575.46	83.29	Dyr	namic Sa	mpling		Pren	nier 11	U	AH	JR	PH	1:3

Appendix D - Monitoring Records

Environment | Health & Safety | Sustainability

	Site I	Name			WGC-One	e YMCA, Pe	eartree Lane	e, Welwyn	Garden City	,		Job numbe	er		20-0	093.01		WEATHER Time	Time 10.15 10.45			
	0.1					D: 1	0 11	_ ·										Pressure (mb)	994	994		
	Cli	ent				Pinnacle	Consulting	Engineers			1	Recorded b	у		L	D		Wind speed (m/s)	11.00	11.00		
	Date (DD/	ΜΜ/ΥΥΥΥ)	1				10/03/2020											Wind Dir. (from)	W	W		
	Gas Ai	-				GFM438	5 (Gas Kit 5					/isit Numb				1		Temperature (°C)	11.00	11.00		
		s at start		CH ₄ (% v/v)	<0.1	CO ₂ (% v/v)	<0.1	- •	% v/v)		20.2	-	(ppm)	0		Dry/Rain/Snow/Ice	DRY	DRY		
	Instrume	ent used						Dip meter		Water I	evels mea	sured to	Groun	d Level								
	General c	comments																		FEADY		
						G	ROUND G	AS						GR	ROUNDWA	TER						
	Fle	ow	c	H₄	c	CO ₂		D ₂	H₂S	со	voc	Differential (Relative) Pressure	Atmos. Pressure	o free uct	water	base	Notes	r colour sheen adour d	Product state: is product looked for but absent			
Ref	1/1		%	v/v		v/v	%	v/v		ppm		Diffe (Rel Pres	Atr Pre	Depth to free product	Depth to water	Depth to base	For Depth	to Product state:	sing/Falling Trend (for the three days before visit) STEADY blour, sheen, odour, damage to well or gas tap, flooded grour Product state: is product looked for but absent is product looked for but absent DRY AT BASE DRY AT BASE DRY AT BASE			
	Mat	Steady	Mat	Steady	Mat	Steady	MIN	steady	Mat	Mat	Mat	mb	mb	m	m	ă m				ecting product		
				Ilae require	1	1	1	1	as and flow					1		1.00						
BH101 BH103	<0.1 0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.8	0.8	18.5 18.2	18.5 18.2	0.0	0.0	NR NR	0.0	994 993	NR NR	NR NR	4.92 4.90						
BH103 BH105	<0.1	<0.1	<0.1	<0.1	0.8	0.8	10.2	19.4	0.0	0.0	NR	1.0	993	NR	1.51	4.90		L	INT AT DAGE			
DITIOS	-0.1	×0.1	~0.1	~0.1	0.5	0.5	13.4	13.4	0.0	0.0	INIX	1.0	333		1.51	4.54						
					 			 														
					1			1						1			1					
Document	No. C101		Version: 2	.4		Issue Date	e: 27-2-19		Author: J F	Rhoades / S	S Steele					Authorise	d By:K Hug	hes				
© Delta-Si	mons Envir	onmental (Consultants	Limited. N	lo part of t	his docume	nt may be r	eproduced	unless prior	written pe	rmission h	as been gra	anted.							deltasimons		

	Site I	Name			WGC-One	e YMCA, Pe	artree Lane	e, Welwyn (Garden City	,		Job numbe	er		20-0	093.01		WEATHER Time	Start 12.10	End 12.40		
																		Pressure (mb)	1022	1022		
	Cli	ent				Pinnacle	Consulting	Engineers				Recorded b	y		L	D		Wind speed (m/s)	6.00	6.00		
	Date (DD/	MM/YYYY)					17/03/2020)										Wind Dir. (from)	SW	SW		
	Gas Ar	nalyser				GFM43	5 (Gas Kit 5) - 12233			١	/isit Numb	er			2		Temperature (°C)	13.00	13.00		
	Reading	s at start		CH4 (% v/v)	<0.1	CO ₂ (% v/v)	<0.1	O ₂ (%	% v/v)		19.8	H ₂ S	(ppm)	0		Dry/Rain/Snow/Ice	DRY	DRY		
	Instrume	ent used						Dip meter		Water I	evels mea	sured to	Groun	d Level								
	General c	comments																Rising/Falling Trend (for the three days before visit)	RIS	SING		
						G	ROUND G	AS						GR	ROUNDWA	TER			<u>.</u>			
	Fle	ow	c	H₄	c	CO2		D ₂	H₂S	со	voc	Differential (Relative) Pressure	nos. ssure	o free uct	water	base	Notes	r colour, sheen, odour, damar	Product state: is product looked for but absent			
Ref		hr		v/v		v/v	%	v /v		ppm	Ī	Diffe (Rel Pres	Atmos. Pressure	Depth to free product	Depth to water	Depth to base	For Depth	to Product state:	three days before visit)			
	Mat	Steady	Mat	Steady	Wat	Steady	Min	Steady	Mat	Mat	Mat	mb	mb	m	m	۵ m				ting product		
DUITO	0.4		-	· · · ·		numbers,			as and flow					1		4.02		DRY				
BH101 BH103	0.1 <0.1	0.1 <0.1	<0.1 <0.1	<0.1 <0.1	1.4 0.6	1.4 0.6	17.4 19.7	17.4 19.7	0.0	0.0	NR NR	1.0 1.0	1018 1018	-	NR NR	4.93 4.92						
BH105	<0.1	<0.1	<0.1	<0.1	0.0	0.0	19.7	19.7	0.0	0.0	NR	1.0	1018	-	1.47	4.94		Diri /				
Dirioo	-0.1	-0.1	-0.1	-0.1	0.4	0.4	10.2	10.2	0.0	0.0		1.0	1010			4.04						
																	-					
																	-					
												l					+					
																	+					
						1						1			1	1	+					
Document			Version: 2			Issue Date			Author: J F			·		•	•	Authorise	d By:K Hugl	nes				
© Delta-Si	mons Envir	onmental (Consultants	Limited. N	io part of th	his docume	nt may be r	eproduced	unless prior	r written pe	rmission ha	as been gra	nted.							leltasimons		

Appendix E - Chemical Analysis

Environment | Health & Safety | Sustainability

Alex Hunter Delta-Simons 3 Henley Office Park Doddington Road Lincoln LN6 3QR

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: alex.hunter@deltasimons.com

Analytical Report Number : 20-91543

Project / Site name:	Peartree Lane, Welwyn	Samples received on:	09/03/2020
Your job number:	20-0093.01	Samples instructed on:	10/03/2020
Your order number:	DS53453	Analysis completed by:	16/03/2020
Report Issue Number:	1	Report issued on:	16/03/2020
Samples Analysed:	5 leachate samples - 5 soil samples		

Signed:

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils leachates waters asbestos	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 20-91543

Project / Site name: Peartree Lane, Welwyn Your Order No: DS53453

Lab Sample Number				1466933	1466934	1466935	1466936	1466937
Sample Reference				DS101	DS102	DS103	DS104	DS105
Sample Number				ES1	ES1	ES1	ES1	ES1
Depth (m)				0.15	0.60	0.20	0.30	0.50
Date Sampled				06/03/2020	06/03/2020	06/03/2020	06/03/2020	06/03/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	12	21	12	9.4
Total mass of sample received	kg	0.001	NONE	1.3	1.4	1.1	0.98	1.2
rotar mass of sample received	kg	0.001	HONE	1.5	1.1	1.1	0.50	1.2
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	Chrysotile
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	< 0.001
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.2	8.0	8.0	8.8	8.1
Water Soluble Sulphate as SO₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	34	16	37	270	40
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.017	0.0081	0.019	0.13	0.020
Water Soluble SO4 16hr extraction (2:1 Leachate		4.95				10 7	194	20.4
Equivalent)	mg/l	1.25	MCERTS	16.9	8.1	18.7	134	20.1
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.62	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.15	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.39	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.38	< 0.05	1.3	5.2	0.41
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.4	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.75	< 0.05	1.7	11	1.1
Pyrene	mg/kg	0.05	MCERTS	0.66	< 0.05	1.5	9.2	1.1
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.39	< 0.05	0.95	4.9	0.78
Chrysene	mg/kg	0.05	MCERTS	0.49	< 0.05	1.0	4.3	0.85
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.48	< 0.05	0.98	5.1	0.91
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.21	< 0.05	0.55	2.6	0.54
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.35	< 0.05	0.72	4.3	0.78
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.24	< 0.05	0.39	2.6	0.57
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.66	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.31	< 0.05	0.51	2.8	0.68
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	4.26	< 0.80	9.64	55.2	7.68
Henry Metals / Metallaid -								
Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	41	23	28	28	21
Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	MCERTS	1.0	0.4	1.5	0.6	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (nexavalent) Chromium (aqua regia extractable)	mg/kg mg/kg	1.2	MCERTS	37	< 1.2 31	< 1.2	< 1.2 32	< 1.2
Chromium (aqua regia extractable) Copper (aqua regia extractable)		1		59	31 24	28 79	42	28
	mg/kg	1	MCERTS					
Lead (aqua regia extractable)	mg/kg	0.3	MCERTS	330 < 0.3	110 < 0.3	270 < 0.3	180 < 0.3	170 < 0.3
Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS MCERTS	< 0.3 40	< 0.3	< 0.3	< 0.3 35	< 0.3 27
Zinc (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	260	130	190	170	170
בוויב נטקטם וכעום כגנו מננמטול)	пц/ку	1	INCERTS	200	130	190	1/0	1/0

Analytical Report Number: 20-91543

Project / Site name: Peartree Lane, Welwyn Your Order No: DS53453

Lab Sample Number				1466933	1466934	1466935	1466936	1466937
Sample Reference				DS101	DS102	DS103	DS104	DS105
Sample Number				ES1	ES1	ES1	ES1	ES1
Depth (m)				0.15	0.60	0.20	0.30	0.50
Date Sampled				06/03/2020	06/03/2020	06/03/2020	06/03/2020	06/03/2020
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
p & m-xylene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
o-xylene	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC35 - EC40	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	2.4	13	< 2.0
	mg/kg	10	MCERTS	< 10	< 10	< 10	70	< 10
TPH-CWG - Aromatic >EC16 - EC21		10	MCERTS	17	< 10	18	120	11
TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10						
	mg/kg mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10

TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
				-		-	-	

Analytical Report Number: 20-91543 Peartree Lane, Welwyn Project / Site name: Your Order No: DS53453

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1466937	DS105	0.50	147	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Analytical Report Number: 20-91543

Project / Site name: Peartree Lane, Welwyn

Your Order No: DS53453

Lab Sample Number				1466938	1466939	1466940	1466941	1466942
Sample Reference				DS101	DS102	DS103	DS104	DS105
Sample Number				ES1	ES1	ES1	ES1	ES1
Depth (m)				0.15	0.60	0.20	0.30	0.50
Date Sampled				06/03/2020	06/03/2020	06/03/2020	06/03/2020	06/03/2020
Time Taken				None Supplied				
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status					

Heavy Metals / Metalloids

Arsenic (dissolved)	µg/l	1.1	ISO 17025	6.8	9.1	2.3	6.6	7.6
Boron (dissolved)	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08
Chromium (dissolved)	µg/l	0.4	ISO 17025	1.4	1.0	2.1	6.2	3.4
Copper (dissolved)	µg/l	0.7	ISO 17025	11	4.9	14	19	9.1
Lead (dissolved)	µg/l	1	ISO 17025	2.8	3.8	13	11	10
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Nickel (dissolved)	µg/l	0.3	ISO 17025	2.1	< 0.3	0.8	0.8	1.7
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Zinc (dissolved)	µg/l	0.4	ISO 17025	11	8.2	58	32	78

Analytical Report Number : 20-91543

Project / Site name: Peartree Lane, Welwyn

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1466933	DS101	ES1	0.15	Brown clay and loam with gravel and vegetation.
1466934	DS102	ES1	0.60	Brown clay and loam with gravel and vegetation.
1466935	DS103	ES1	0.20	Brown clay and loam with gravel.
1466936	DS104	ES1	0.30	Brown loam and clay with gravel and vegetation.
1466937	DS105	ES1	0.50	Brown clay and sand with gravel.

Analytical Report Number : 20-91543

Project / Site name: Peartree Lane, Welwyn

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

					1
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number A001-PL	Wet / Dry Analysis D	Accreditation Status ISO 17025
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248			
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	w	ISO 17025
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
NRA Leachate Prep	10:1 extract with de-ionised water shaken for 24 hours then filtered.	In-house method based on National Rivers Authority	L020-PL	w	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
	1				1

Iss No 20-91543-1 Peartree Lane, Welwyn 20-0093.01

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number : 20-91543

Project / Site name: Peartree Lane, Welwyn

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------	--

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Abundance

Abundance

Abundance

