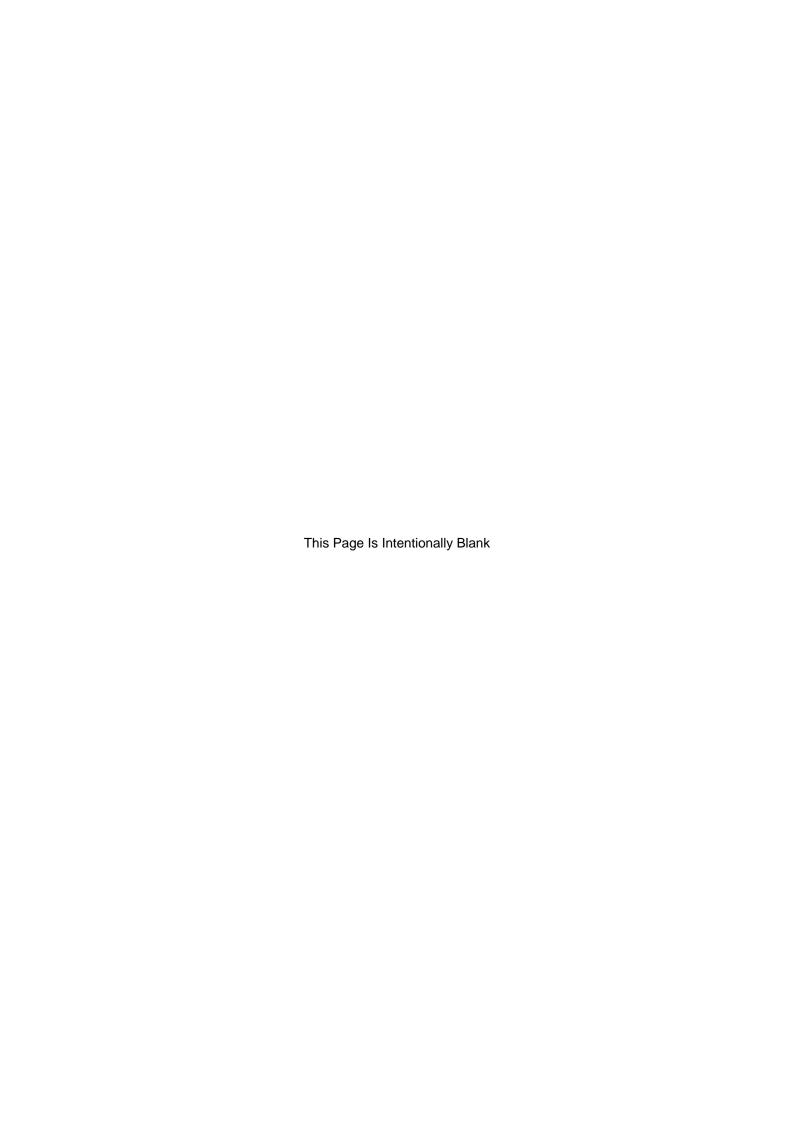
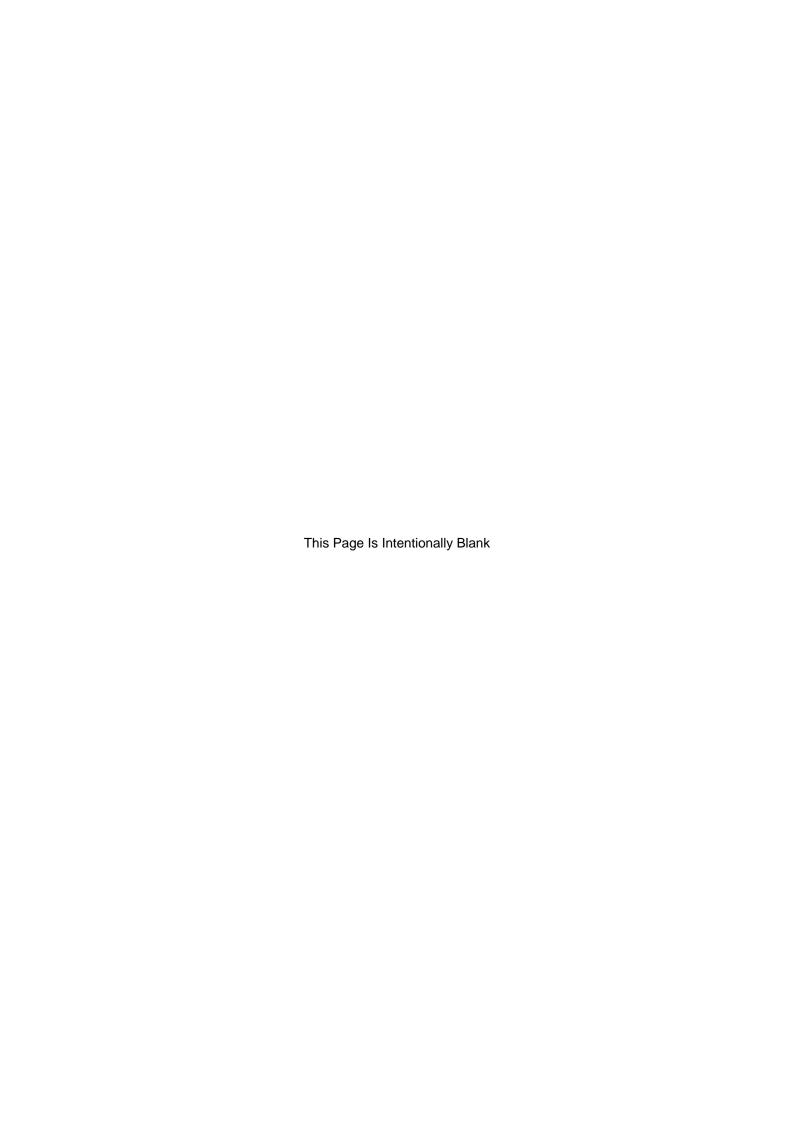
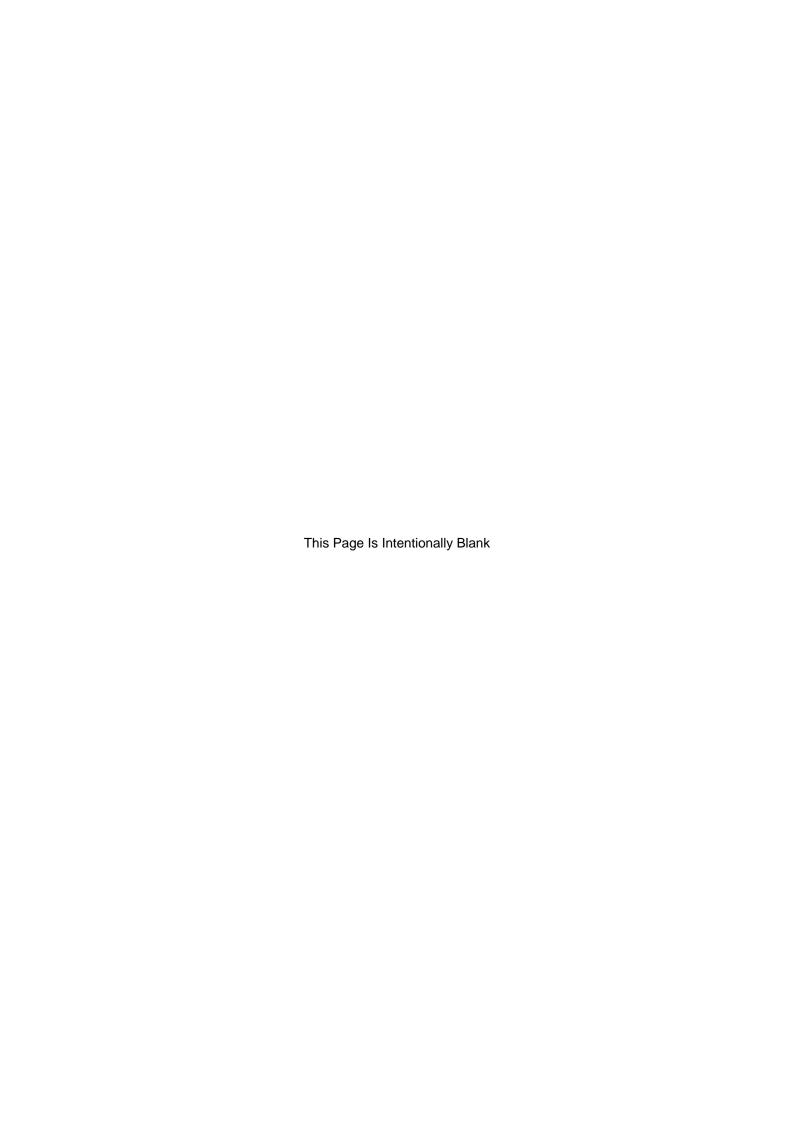

PP	Post and Panel Fenceline	ER	Earth Rod	TPO	Telegraph Pole
PR	Post and Rail Fenceline	MW	Monitoring Well	EPO	Elecricity Pole
PW	Post and Wire Fenceline	CR	Cable Riser	RS	Road Sign
SM	Post and Steel Mesh Fenceline	EPO	Electric Pole	BO - C	Bollard - Concrete
mH	Height in Metres			BO - S	Bollard - Steel
	-	GSV	Gas Valve	BO - W	Bollard - Wooden
IC	Inspection Cover	GM	Gas Meter	LB	Litter Bin
CL	Cover Level	GR	Gas Riser	PI	Pillar
IL	Invert Level			RS	Road Sign
G	Gully	AV	Air Valve	TS	Tree Stump
DP	Down Pipe	WST	Stop Tap	TCB	Telephone Call Box
RWP	Rain Water Pipe	WSV	Sluice Valve	FP	Flag Pole
FWP	Foul Waste Pipe	WM	Water Meter	TP	Tactile Paving
VC	Vent Cover	WO	Wash Out	FP	Fuel Pump
RE	Rodding Eye			TIL	Traffic Induction Loop
VP	Vent Pipe	SL	Street Light	LA	Ladder .
FWS	Foul Water Sewage	PLM	Pipeline Marker	FB	Flower Bed
SWS	Surface Water Sewage	CAB	Street Cabinet	DK	Dropped Kerb

Appendix B

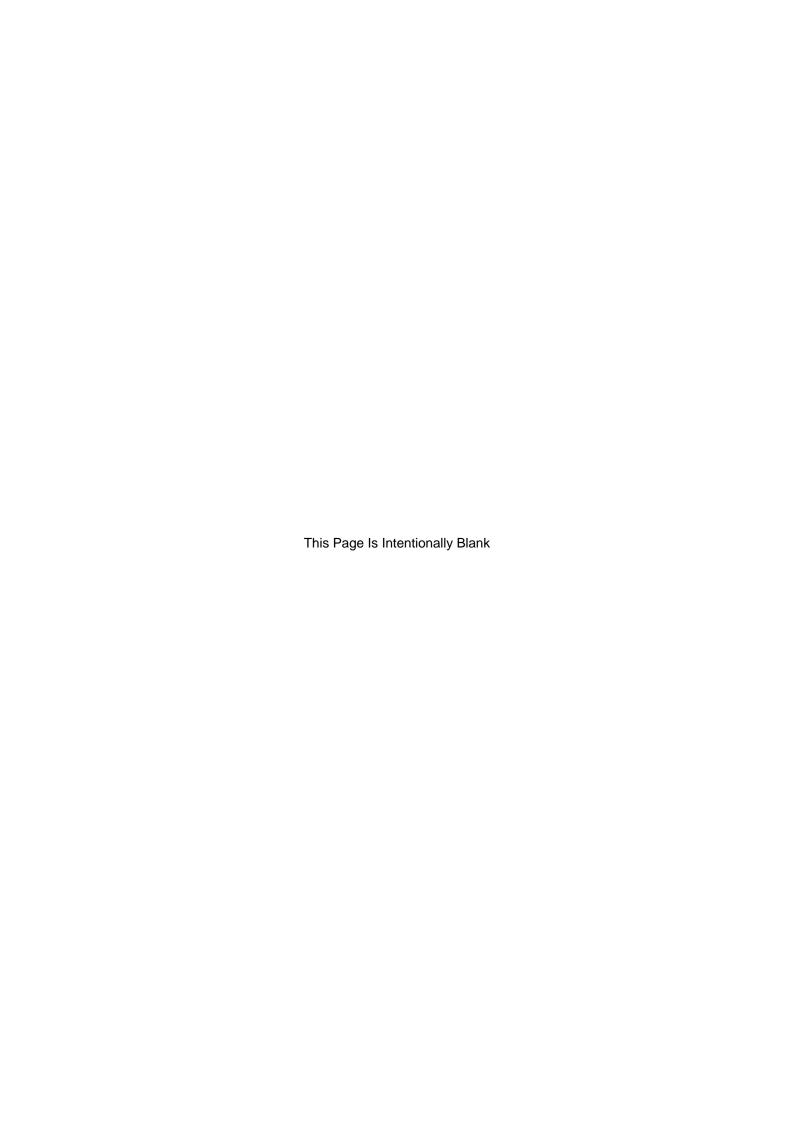




Appendix C

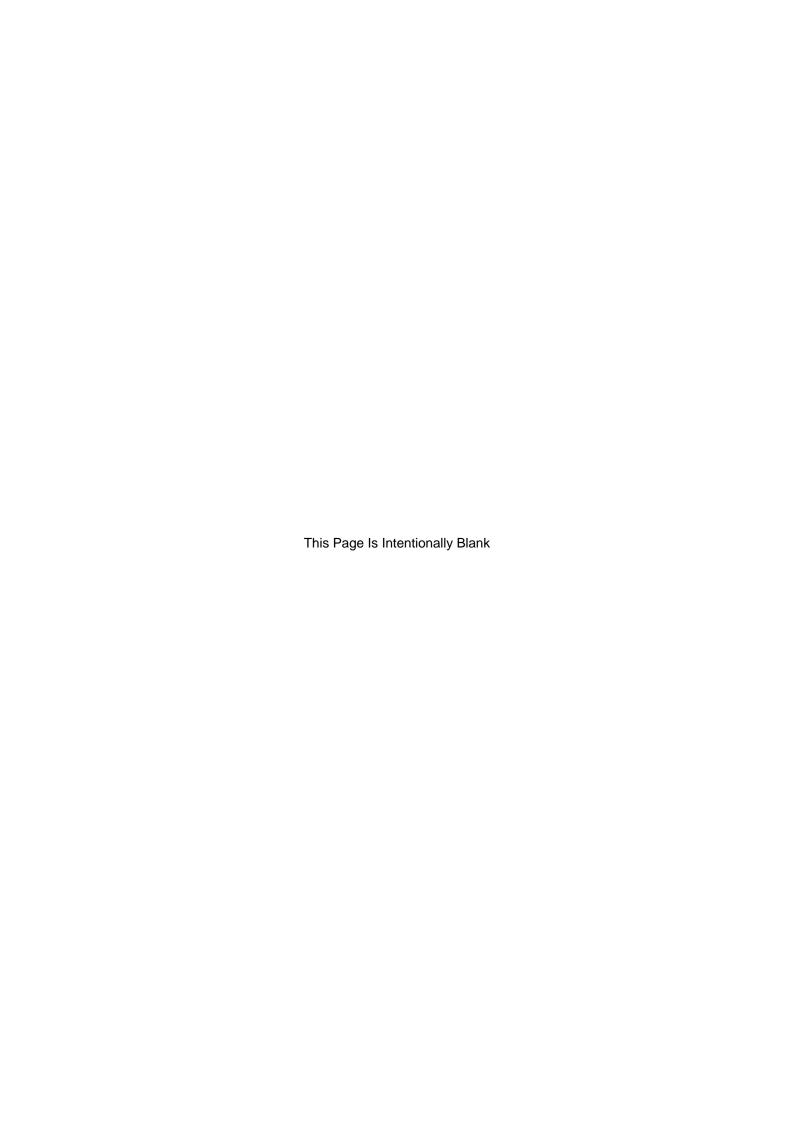


Appendix D


Brookbanks Consulting	Page 1	
6150 Knights Court		
Solihull Parkway		
Birmingham B37 7WY		Tracke ou
Date 04/08/2014 15:07	Designed by dean.ward	
File	Checked by	
Micro Drainage	Source Control W.12.6	

<u>IH 124 Mean Annual Flood</u>

Input


Return Period (years) 100 SAAR (mm) 630 Urban 0.000 Area (ha) 50.000 Soil 0.450 Region Number Region 6

Rest	1/s	
	Rural Urban	194.2 194.2
QDAIN	Olban	174.2
Q100	years	619.4
Q2	l year	165.1
Q2	years	171.1
Q5	years	248.6
Q10	years	314.6
Q20	years	389.0
Q25	years	417.1
Q30	years	440.1
Q50	years	508.8
Q100	years	619.4
Q200	years	728.2
Q250	years	763.1
Q1000	years	1002.0

Appendix E

Brookbanks Consulting		Page 1
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin A	
Birmingham B37 7WY	1 in 100 Year Event	The Charles
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN A R	Checked by	
Micro Drainage	Source Control W.12.6	

Summary of Results for 100 year Return Period

	Stor	rm		Max	M	ax	Ma	эx	Max	Status
	Ever	ıt	:	Level	De	pth	Con	trol	Volume	
				(m)	(1	m)	(1,	/s)	(m³)	
15	min	Sumr	ner	0.518	0.	518		1.6	110.7	O K
30	min	Sumr	ner	0.632	0.	632		1.8	141.7	O K
		Sumr		0.735				1.9	171.5	O K
				0.823				2.0	198.9	O K
				0.866				2.1	212.7	O K
		Sumr		0.890				2.1	220.8	O K
				0.915				2.2	228.8	O K
				0.925				2.2	232.4	0 K
		Sumr		0.928				2.2	233.2	0 K
		Sumr		0.925 0.914				2.2	232.2	0 K
				0.893				2.1	220.7	O K
		Sumr		0.858				2.1	210.0	O K
				0.820				2.0	198.0	0 K
				0.748				1.9	175.7	0 K
		Sumr		0.684				1.9	156.5	0 K
				0.627				1.8	140.3	ОК
8640	min	Sumr	ner	0.577	0.	577		1.7	126.4	ОК
10080	min	Sumr	ner	0.532	0.	532		1.6	114.4	ОК
15	min	Wint	cer	0.568	0.	568		1.7	124.1	ОК
30	min	Wint	er	0.692	0.	692		1.9	158.8	O K
60	min	Wint	cer	0.803	0.	803		2.0	192.5	0 K
120	min	Wint	cer	0.899	0.	899		2.1	223.7	O K
180	min	Wint	cer	0.946	0.	946		2.2	239.5	O K
				0.974				2.2	249.0	O K
360	min	Wint	er Stor	1.002	1.	002 Ra	in	2.3 Time	258.9 e-Peak	O K
			Ever				/hr)		ins)	
		15	min	Summ	er	102	.824		19	
		30	min	Summ	er	66	.164		34	
		60	min	Summ	er	40	.510		64	
		120	min	Summ	er	23	.988		124	
		180	min	Summ	er	17	.446		182	
		240	min	Summ	er		.849		242	
		360	min	Summ	er	9	.946		362	
				Summ			.870		482	
				Summ			.558		600	
				Summ			.649		720	
				Summ			.460		824	
				Summ			.194		1068 1472	
				Summ			.798		1876	
				Summ			.283		2684	
				Summ			.009		3464	
				Summ			.837		4256	
				Summ					5016	
				Summ					5752	
				Wint					19	
		30	min	Wint					33	
		60	min	Wint	er	40	.510		62	
				Wint	er	23	.988		122	
				Wint					180	
				Wint					238	
		360	min	Wint	er	9	.946		354	

©1982-2011 Micro Drainage Ltd

Brookbanks Consulting		Page 2
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin A	
Birmingham B37 7WY	1 in 100 Year Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN A R	Checked by	
Micro Drainage	Source Control W.12.6	

Summary of Results for 100 year Return Period

	Stor Even			Max Level (m)	Max Depth (m)		rol	Max Volume (m³)	Statı	ıs
480	min	Wint	er	1.016	1.016		2.3	264.0	0	K
600	min	Wint	er	1.022	1.022		2.3	265.9	0	K
720	min	Wint	er	1.022	1.022		2.3	266.0	0	K
960	min	Wint	er	1.012	1.012		2.3	262.6	0	K
1440	min	Wint	er	0.983	0.983		2.2	252.4	0	K
2160	min	Wint	er	0.938	0.938		2.2	236.8	0	K
2880	min	Wint	er	0.888	0.888		2.1	220.1	0	K
4320	min	Wint	er	0.790	0.790		2.0	188.6	0	K
5760	min	Wint	er	0.702	0.702		1.9	161.7	0	K
7200	min	Wint	er	0.624	0.624		1.8	139.3	0	K
8640	min	Wint	er	0.556	0.556		1.7	120.8	0	K
10080	min				0.497		1.6		0	K
			Sto					e-Peak		
			Eve	nt	(mm	/hr)	(m	ins)		
		480	mir	Winte	er 7	.870		470		
					er 6			582		
				Winte		.649		694		
				Winte		.460		904		
				Winte		.194		1126		
		2160	mir	Winte	er 2	.283		1580		
		2880	mir	Winte		.798		2044		
		4320	mir	Winte	er 1	.283		2896		
		5760	mir	Winte	er 1	.009		3744		
		7200	mir	Winte	er 0	.837		4536		
		8640	mir	Winte	er 0	.718		5280		
	1	0080	mir	Winte	er O	.631		6048		

Brookbanks Consulting		Page 3
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin A	
Birmingham B37 7WY	1 in 100 Year Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN A R	Checked by	
Micro Drainage	Source Control W.12.6	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.450 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time / Area Diagram

Total Area (ha) 0.580

Time Area (mins) (ha)

0-4 0.580

Brookbanks Consulting		Page 4		
6150 Knights Court	Land at Cuffley			
Solihull Parkway	Detention Basin A			
Birmingham B37 7WY	1 in 100 Year Event			
Date 30.09.14	Designed by Brookbanks			
File DETENTION BASIN A R	Checked by			
Micro Drainage	Source Control W.12.6			

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m) Area (m ²)	Depth (m) Area (m²)	Depth (m) Area (m²)	Depth (m) Area (m ²)	Depth (m) Area (m ²)
0.000 169.6	1.200 392.8	2.400 0.0	3.600 0.0	4.800 0.0
0.200 202.6	1.400 434.1	2.600 0.0	3.800 0.0	5.000 0.0
0.400 238.8	1.600 0.0	2.800 0.0	4.000 0.0	
0.600 275.1	1.800 0.0	3.000 0.0	4.200 0.0	
0.800 313.7	2.000 0.0	3.200 0.0	4.400 0.0	
1.000 352.5	2.200 0.0	3.400 0.0	4.600 0.0	

Orifice Outflow Control

Diameter (m) 0.033 Discharge Coefficient 0.600 Invert Level (m) 0.000

Brookbanks Consulting		Page 1
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin A	
Birmingham B37 7WY	1 in 100 Year +30% Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN A R	Checked by	
Micro Drainage	Source Control W.12.6	

Summary of Results for 100 year Return Period (+30%)

	Storm Event								Dep			ol	Volume		cus
		Summer					1	.8			0 K				
		Summer						.1			0 K 0 K				
		Summer							279.2		O K				
		Summer							290.6		ОК				
360	min	Summer	1.1	L23	1.12	23	2	. 4	303.0		ОК				
		Summer						. 4			O K				
		Summer						. 4			0 K				
		Summer						.4			O K				
		Summer						.4			O K				
		Summer						.3			ОК				
2880	min	Summer	1.0)45	1.0	45	2	.3	274.3		O K				
4320	min	Summer	0.9	970	0.9	70			247.6		O K				
		Summer							223.7		ОК				
		Summer						.1			0 K				
		Summer						.0			O K				
		Winter						.9			O K				
		Winter						.1			ОК				
60	min	Winter	0.9	979	0.9	79			251.1		ОК				
120	min	Winter	1.0	95	1.09	95		. 4			O K				
		Winter							314.2		O K				
		Winter							327.5	D11	O K				
360	mın	Winter	Stor		1.2			.5 Ti	342.3 [me-Peal	Flood k	KISK				
									(mins)						
		15	min	Sun	nmer	13	3.672		1:	9					
							6.013		3						
							2.662		6.						
			min min				1.184 2.679		124 182						
							8.004		242						
							2.930		362						
		480	min	Sun	nmer	1	0.231		482	2					
							8.526		602						
			min				7.344		720						
			min				5.799 4.152		914 1138						
							2.968		151						
		2880	min	Sun	nmer		2.338		1932						
		4320	min	Sun	nmer		1.668		2728						
		5760	min	Sun	nmer		1.312		3568	3					
		7200	min	Sun	nmer		1.088 0.934		4328						
		8640	min	Sun	nmer		0.934		510						
		10080					0.821 3.672		585 1						
							6.013		33						
							2.662		6.						
							1.184		122						
		180	min	Wir	nter	2	2.679		180)					
							8.004		240						
		360	min	Wir	nter	1	2.930		35	Ó					

©1982-2011 Micro Drainage Ltd

Brookbanks Consulting	Page 2	
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin A	
Birmingham B37 7WY	1 in 100 Year +30% Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN A R	Checked by	
Micro Drainage	Source Control W.12.6	

Summary of Results for 100 year Return Period (+30%)

	Storm Event				Control		Status
480 min 600 min 720 min 960 min 1440 min	Winter Winter Winter	1.256 1.261 1.257	1.256 1.261 1.257	2.5 2.5	355.2 356.9 355.7	Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk	
2160 min 2880 min 4320 min 5760 min 7200 min	Winter Winter Winter Winter	1.186 1.137 1.036 0.940	1.186 1.137 1.036 0.940	2.5	327.2 308.4 271.0 237.3		
8640 min 10080 min	Winter Winter	0.774	0.774 0.703	2.0	183.4	0 K 0 K	
	600 720 960 1440 2160 2880 4320 5760 7200 8640	min Wir	nter nter nter nter nter nter nter nter	8.526 7.344 5.799 4.152 2.968 2.338 1.668 1.312 1.088	472 586 700 920 1212 1624 2080 2980 3808 4616 5440 6160		

Brookbanks Consulting	Page 3	
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin A	There ~
Birmingham B37 7WY	1 in 100 Year +30% Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN A R	Checked by	
Micro Drainage	Source Control W.12.6	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.450 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time / Area Diagram

Total Area (ha) 0.580

Time Area (mins) (ha)

0-4 0.580

Brookbanks Consulting	Page 4	
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin A	Micro
Birmingham B37 7WY	1 in 100 Year +30% Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN A R	Checked by	
Micro Drainage	Source Control W.12.6	

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m) Area (n²) Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.000 16	9.6 1.200	392.8	2.400	0.0	3.600	0.0	4.800	0.0
0.200 20	2.6 1.400	434.1	2.600	0.0	3.800	0.0	5.000	0.0
0.400 23	1.600	0.0	2.800	0.0	4.000	0.0		
0.600 27	5.1 1.800	0.0	3.000	0.0	4.200	0.0		
0.800 31	3.7 2.000	0.0	3.200	0.0	4.400	0.0		
	2.5 2.200			0.0		0.0		

Orifice Outflow Control

Diameter (m) 0.033 Discharge Coefficient 0.600 Invert Level (m) 0.000

Brookbanks Consulting	Page 1	
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin B	
Birmingham B37 7WY	1 in 100 Year Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN B R	Checked by	
Micro Drainage	Source Control W.12.6	

Summary of Results for 100 year Return Period

Storm Event	Max Level (m)	Max Depth (m)	Max Contro (1/s)	Max 1 Volume (m³)	Status
15 min Summe	r 0.421	0.421	3.	2 231.2	ОК
30 min Summe	r 0.529	0.529	3.	6 296.0	ОК
60 min Summe			3.	9 358.7	ОК
120 min Summe	r 0.718	0.718	4.	2 416.4	ОК
180 min Summe		0.763	4.	3 445.8	ОК
240 min Summe	r 0.789	0.789	4.	4 463.2	ОК
360 min Summe	r 0.815	0.815	4.	5 480.9	ОК
480 min Summe	r 0.827	0.827	4.	5 489.3	ОК
600 min Summe	r 0.831	0.831	4.	5 491.8	ОК
720 min Summe	r 0.829	0.829	4.	5 490.5	ОК
960 min Summe	r 0.820	0.820	4.	5 484.6	ОК
1440 min Summe	r 0.802	0.802	4.	4 472.1	ОК
2160 min Summe	r 0.770	0.770	4.	3 450.9	ОК
2880 min Summe	r 0.736	0.736	4.	2 428.1	O K
4320 min Summe	r 0.669	0.669	4.	0 384.2	O K
5760 min Summe	r 0.608	0.608	3.	8 345.7	O K
7200 min Summe	r 0.556	0.556	3.	7 312.7	O K
8640 min Summe	r 0.510	0.510	3.	5 284.3	O K
10080 min Summe	r 0.469	0.469	3.	3 259.7	O K
15 min Winte	r 0.468	0.468	3.	3 259.1	O K
30 min Winte	r 0.586	0.586	3.	8 331.7	O K
60 min Winte	r 0.696	0.696	4.	1 402.2	O K
120 min Winte	r 0.796	0.796	4.	4 467.8	O K
180 min Winte	r 0.845	0.845	4.	5 501.5	O K
240 min Winte	r 0.875	0.875	4.	6 521.7	O K
360 min Winte		0.906	4.		O K
	torm			me-Peak	
F.	vent	(mm,	/hr)	(mins)	
15 m	nin Summe	er 102	.824	19	
30 m	nin Summe	er 66	.164	34	
60 m	nin Summe	er 40	.510	64	
120 m	nin Summe	er 23	.988	124	
	nin Summe		.446	182	
	nin Summe		.849	242	
	nin Summe		.946	362	
	nin Summe		.870	482	
	nin Summe		.558	600	
	nin Summe		.649	720	
	nin Summe		.460	826	
	nin Summe			1068	
	nin Summe			1472	
	nin Summe		.798	1876	
	nin Summe		.283	2684	
	nin Summe	er I	.009	3512	
	nin Summe	er 0	.837	4256	
	nin Summe	er U	. /18	5016	
	nin Summe			5752	
	nin Winte			19	
	nin Winte nin Winte			33	
				62 122	
	nin Winte			122	
740 TOU II	nin Winte nin Winte	=1 1/.	.446	180	
	nin Winte nin Winte			238 354	
300 II	WALLU	-± 9	0	204	

©1982-2011 Micro Drainage Ltd

Brookbanks Consulting	Page 2	
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin B	
Birmingham B37 7WY	1 in 100 Year Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN B R	Checked by	
Micro Drainage	Source Control W.12.6	

Summary of Results for 100 year Return Period

	Stor Even			Max Level (m)	Max Depth (m)		rol	Max Volume (m³)	Statı	ıs
480	min	Wint	er	0.922	0.922		4.7	554.5	0	K
600	min	Wint	er	0.929	0.929		4.8	559.3	0	K
720	min	Wint	er	0.930	0.930		4.8	560.1	0	K
960	min	Wint	er	0.921	0.921		4.7	554.3	0	K
1440	min	Wint	er	0.895	0.895		4.7	535.6	0	K
2160	min	Wint	er	0.852	0.852		4.6	506.3	0	K
2880	min	Wint	er	0.805	0.805		4.4	474.0	0	K
4320	min	Wint	er	0.711	0.711		4.2	412.0	0	K
5760	min	Wint	cer	0.628	0.628		3.9	358.2	0	K
7200	min	Wint	cer	0.556	0.556		3.7	313.0	0	K
8640	min	Wint	er	0.495	0.495	:	3.4	275.3	0	K
10080	min				0.442		3.2		0	K
			Sto					e-Peak		
			Eve	nt	(mm	/hr)	(m	ins)		
		400		7-7-2 4	7	070		470		
				Winte	er 6	.870		470 582		
				Winte		.649		694		
				Winte		.460		904		
				Winte		.194		1126		
				Winte		.283		1580		
				Winte		.798		2044		
				Winte		.283		2896		
				Winte		.009		3744		
				Winte		.837		4536		
				Winte		.718		5280		
				Winte		.631		6056		

Brookbanks Consulting	Page 3	
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin B	
Birmingham B37 7WY	1 in 100 Year Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN B R	Checked by	
Micro Drainage	Source Control W.12.6	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.450 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time / Area Diagram

Total Area (ha) 1.210

Time Area (mins) (ha)

0-4 1.210

Brookbanks Consulting	Page 4	
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin B	Micro
Birmingham B37 7WY	1 in 100 Year Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN B R	Checked by	
Micro Drainage	Source Control W.12.6	

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m)	Area (m²)								
0.000	506.7	1.200	766.4	2.400	0.0	3.600	0.0	4.800	0.0
0.200	546.3	1.400	815.6	2.600	0.0	3.800	0.0	5.000	0.0
0.400	587.5	1.600	0.0	2.800	0.0	4.000	0.0		
0.600	629.9	1.800	0.0	3.000	0.0	4.200	0.0		
0.800	674.0	2.000	0.0	3.200	0.0	4.400	0.0		
1.000	719.8		0.0	3.400	0.0		0.0		

Orifice Outflow Control

Diameter (m) 0.049 Discharge Coefficient 0.600 Invert Level (m) 0.000

Brookbanks Consulting	Page 1	
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin B	
Birmingham B37 7WY	1 in 100 Year +30% Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN B R	Checked by	
Micro Drainage	Source Control W.12.6	

Summary of Results for 100 year Return Period (+30%)

illillaly O	1 1/6	Sul	LS.	101 1	.00 ye	tar .	IVE CC	illi i ei	.100 (1.
	Stor	m		Max	Max	М	ax	Max	Status
	Even							Volume	
				(m)	(m)		/s)		
					0.537		3.6		O K
				0.671	0.671			385.4	O K
					0.795			467.6	O K
					0.907		4.7		O K
					0.963		4.9		0 K
								608.2	0 K
					1.034		5.0 5.1	634.6 648.9	0 K 0 K
					1.062			655.3	O K
							5.1	656.8	O K
					1.056		5.1		O K
					1.036			636.3	ОК
					1.003			612.0	O K
					0.966		4.9	585.6	ОК
					0.891		4.7	533.0	O K
5760	min	Summ	er	0.821	0.821			485.0	ОК
7200	min	Summ	er	0.759	0.759		4.3	443.1	O K
8640	min	Summ	er	0.703	0.703		4.1	406.3	O K
10080	min	Summ	er	0.653	0.653		4.0	373.9	O K
15	min	Wint	er	0.595	0.595		3.8	337.1	O K
30	min	Wint	er	0.742	0.742		4.2		O K
					0.878			524.3	O K
					1.002			611.3	O K
					1.064		5.1		
					1.102			684.7	0 K
360	mın		er Stoi	1.144	1.144	ain	5.3	716.2 -Peak	O K
			Ever			/hr)		ins)	
					•		•		
					er 133			19	
				Summe		.013		34	
				Summe		.662		64	
				Summe		.184		124	
				Summe		.679		182	
				Summe		.004		242 362	
				Summe		.930		482	
				Summe		.526		602	
				Summe		.344		720	
				Summe		.799		912	
				Summe		.152		1126	
				Summe		.968		1512	
				Summe		.338		1928	
		4320	min	Summe		.668		2728	
		5760	min	Summe	er 1	.312		3568	
		7200	min	Summe	er 1	.088		4328	
				Summe		.934		5104	
	1			Summe		.821		5856	
					er 133			19	
					er 86			33	
					er 52			64	
					er 31			122	
					er 22			180	
		240	min	Winte	er 18 er 12	400.		240	
		JOU	шти	wTUT6	=1 12	. 930		356	

©1982-2011 Micro Drainage Ltd

Brookbanks Consulting	Page 2	
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin B	
Birmingham B37 7WY	1 in 100 Year +30% Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN B R	Checked by	
Micro Drainage	Source Control W.12.6	

Summary of Results for 100 year Return Period (+30%)

	Storm Event]	Max Level (m)			Max Volume (m³)	Status	;
600 720 960 1440 2160 2880 4320 5760 7200 8640	min min min min min min min min	Wint Wint Wint Wint Wint Wint Wint Wint	der inter in	1.180 1.186 1.183 1.154 1.112 1.062 0.959 0.863 0.777 0.701	1.168 1.180 1.186 1.183 1.154 1.112 1.062 0.959 0.863 0.777 0.701	5.4 5.4 5.3 5.2 5.1 4.8 4.6 4.3	747.8 746.0 723.7 692.0 655.2 580.9 513.6 455.2 405.0	O F O F O F O F O F O F O F	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
10080	mın		Stor Even	m			362.1 e-Peak ins)	OK	ĺ
		600 720 960 1440 2160 2880 4320 5760 7200 8640	min min min min min min min min		er 8 7 er 5 er 4 er 2 er 2 er 1 er 1 er 0		472 584 698 916 1184 1624 2076 2980 3808 4616 5440 6160		

Brookbanks Consulting	Page 3	
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin B	There ~
Birmingham B37 7WY	1 in 100 Year +30% Event	
Date 30.09.14	Designed by Brookbanks	D) REMIRE (CE)
File DETENTION BASIN B R	Checked by	
Micro Drainage	Source Control W.12.6	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.450 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time / Area Diagram

Total Area (ha) 1.210

Time Area (mins) (ha)

0-4 1.210

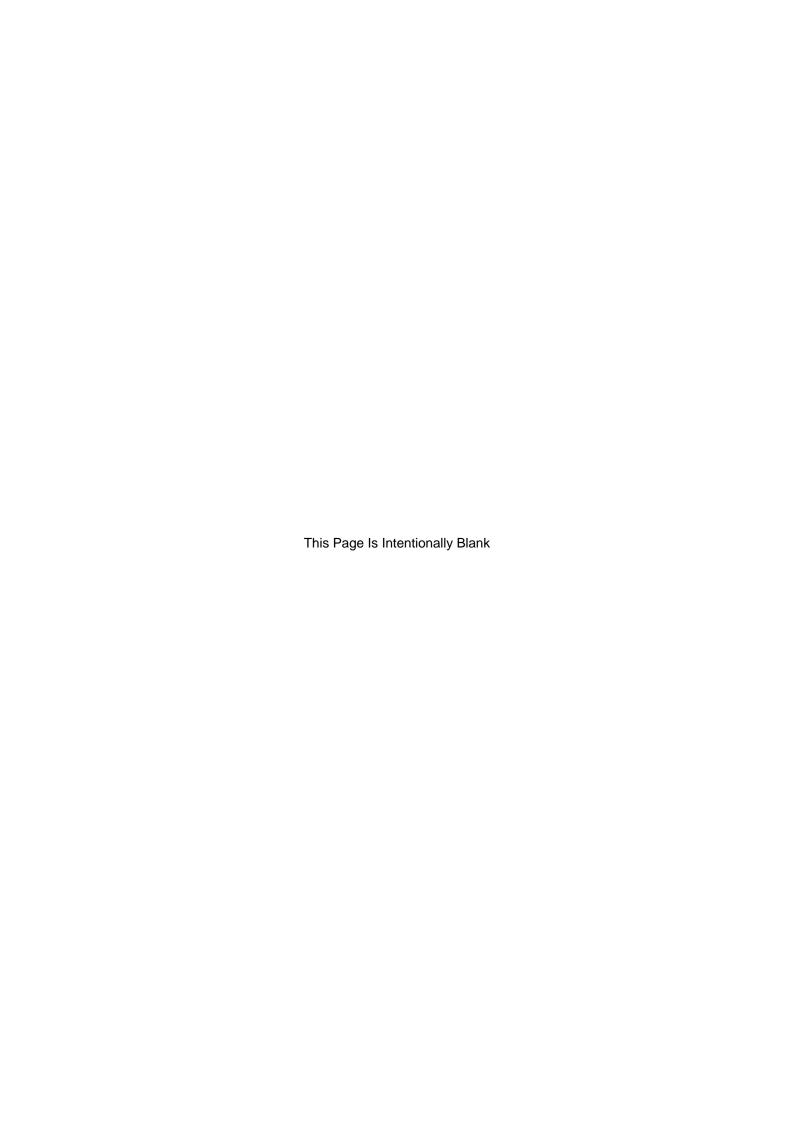
Brookbanks Consulting	Page 4	
6150 Knights Court	Land at Cuffley	
Solihull Parkway	Detention Basin B	Micro ~
Birmingham B37 7WY	1 in 100 Year +30% Event	
Date 30.09.14	Designed by Brookbanks	
File DETENTION BASIN B R	Checked by	
Micro Drainage	Source Control W.12.6	

Model Details

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000


Depth (m)	Area (m²)								
0.000	506.7	1.200	766.4	2.400	0.0	3.600	0.0	4.800	0.0
0.200	546.3	1.400	815.6	2.600	0.0	3.800	0.0	5.000	0.0
0.400	587.5	1.600	0.0	2.800	0.0	4.000	0.0		
0.600	629.9	1.800	0.0	3.000	0.0	4.200	0.0		
0.800	674.0	2.000	0.0	3.200	0.0	4.400	0.0		
1.000	719.8	2.200	0.0	3.400	0.0	4.600	0.0		

Orifice Outflow Control

Diameter (m) 0.049 Discharge Coefficient 0.600 Invert Level (m) 0.000

Appendix F

F.A.O: Miss G Ogden

Brookbanks Consulting Ltd, 6150 Knights Court, Solihull Parkway, Birmingham Business Park, Birmingham, B37 7WY Developer Services Waste Clearwater Court 3rd West Vastern Road, Reading, RG1 8DB

Your ref

Our ref 1012049666/50024655

Name Phone Shaun Picart 0845 850 2777 0118 373 8973

Fax E-Mail

E-Mai

Date: 02/09/2014

Dear Mrs Ogden,

Re: Pre-Development Enquiry For Proposed Development At L/a Northaw Road East, Cuffley, EN6 4LY

I refer to your application for the above site requesting that a pre-development capacity check is undertaken.

Thankyou for providing the correct fee and information regarding the site. I can now respond as follows;

With regard to clean water supplies, this comes within the area covered by the Affinity Water Company. For your information the address to write to is - Veolia Water Company The Hub, Tamblin Way, Hatfield, Herts, AL10 9EZ - Tel - 0845 782 3333.

Foul Drainage

From the information you have provided, I can confirm that the existing foul water sewer does have sufficient capacity to accommodate the proposed foul water discharge from the proposal as specified in your application.

Please note: There are public sewers crossing the development site. In order to protect public sewers and to ensure that Thames Water can gain access to those sewers for future repair and maintenance, approval should be sought from Thames Water where the erection of a building would come within 3 metres of, a public sewer.

Surface Water Drainage

Please note that discharging surface water to the public sewer network should only be considered after all other methods of disposal have been investigated and proven to be not viable. In accordance with the Building Act 2000 Clause H3.3, positive connection to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. The disposal hierarchy being: 1st Soakaways; 2nd Watercourses; 3rd Sewers.

In respect of surface water it is recommended that you should ensure that storm flows are attenuated or regulated into the receiving drainage system through on

Thames Water Utilities Ltd Developer Services Clearwater Court 3rd West Vastern Road Reading RG1 8DB

T 0845 850 2777 F 0207.713.3888 I www.thames-water.com

Registered in England and Wales No. 2366661, Registered office Clearwater Court, Vastern Road Reading, Berks. RG1 8DB

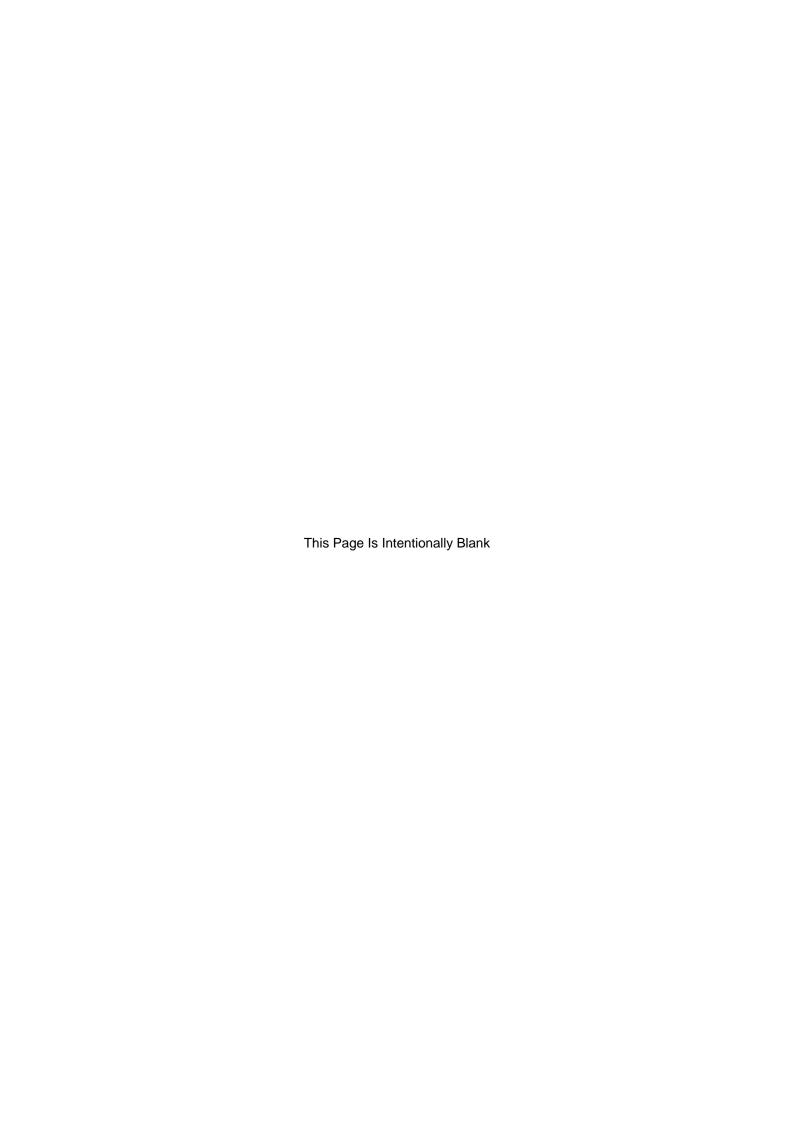
Page 2

or off site storage. Connections to public sewers are not permitted for the removal of groundwater.

All connection requests are subject to a full Section 106 (Water Industry Act 1991) application before the Company can confirm approval to the connection itself. Please also note that capacity in the public sewerage system cannot be reserved.

Please note that the views expressed by Thames Water in this letter are in response to this pre development enquiry at this time and do not represent our final views on any future planning applications made in relation to this site.

We reserve the right to change our position in relation to any such planning applications.


Yours faithfully

Shaun Picart

Development Engineer

Appendix G

creating a better place

Mr Richard Moorcroft Brookbanks Consulting Knights Court (6150) Solihull Parkway Birmingham Business Park Birmingham B37 7WY Our ref: NE/2014/121698/01-L01

Your ref: 10316/FRA/01

Date: 1 December 2014

Dear Richard

Charged enquiry: Flood Risk Assessment review for Land At Northaw Road, Cuffley.

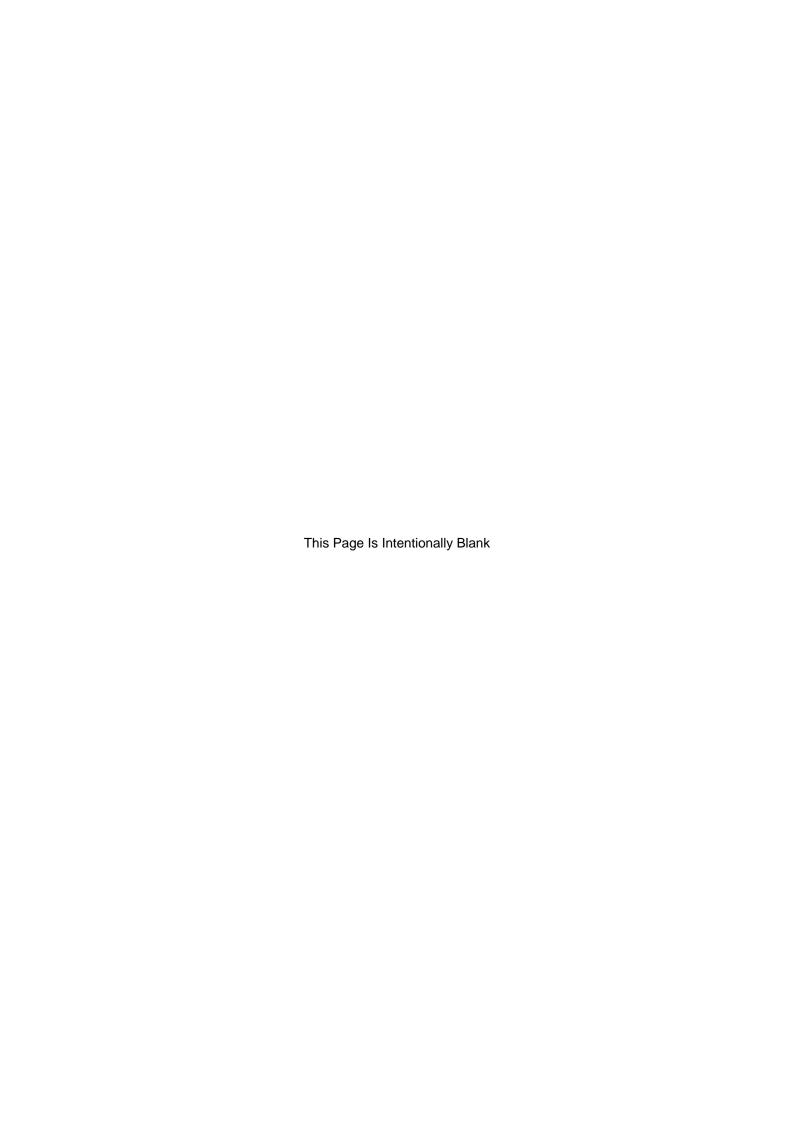
We have reviewed the draft Flood Risk Assessment (FRA) (Lands End Ref 10316/FRA/01 dated 31/10/14) and we are very pleased to see that you are proposing ponds, swales and permeable paving and a better than Greenfield run off rate.

Should this FRA accompany a full planning application we would have no objection on flood risk grounds, and would apply conditions to ensure the surface water drainage system is carried out as proposed.

To discharge the conditions, we would need to see the below points, some of these have been partly covered within the information submitted in the FRA.

- a) A clearly labelled drainage layout plan showing pipe networks and any attenuation areas or storage locations. This plan should show any pipe 'node numbers' that have been referred to in network calculations and it should also show invert and cover levels of manholes.
- b) Confirmation of the critical storm duration.
- c) Where infiltration forms part of the proposed storm water system such as infiltration trenches and soakaways, soakage test results and test locations are to be submitted in accordance with BRE digest 365.
- d) Where on site attenuation is achieved through ponds, swales, geocellular storage or other similar methods, calculations showing the volume of these are also required.
- e) Where an outfall discharge control device is to be used such as a hydrobrake or twin orifice, this should be shown on the plan with the rate of discharge stated.
- f) Calculations should demonstrate how the system operates during a 1 in 100 chance in any year critical duration storm event, including an allowance for climate change in line with the 'Planning Practice Guidance: Flood Risk and Coastal Change'. If overland flooding occurs in this event, a plan should also be submitted detailing the location of overland flow paths and the extent and depth of ponding.

I hope that you have any found this helpful, should you have any queries please feel free to contact me.



Yours sincerely

Mr Kai Mitchell Sustainable Places Planning Advisor

Tel: 01707 632388

E-mail SPHatfield@environment-agency.gov.uk

