GEOTECHNICAL AND GEO-ENVIRONMENTAL ASSESSMENT

Client: Hightown Housing Association Limited

Broadwater Road, Welwyn Garden City

Report No. 13896 October 2023 Version 2

SOUTH WEST GEOTECHNICAL LTD

Unit 3 Brooklands, Howden Road, Tiverton, Devon, EX16 5HW T: 01884 252444 F: 01884 253974 E: mail@swgeotech.co.uk

CONTENTS

1	INTR	INTRODUCTION				
	1.1	General	1			
	1.2	Site Description	1			
2	DES	K STUDY	3			
	2.1	General	3			
	2.2	Geology	3			
	2.3	Natural Hazards- Natural Cavities	4			
	2.4	Mining	4			
	2.5	Geoenvironmental Considerations	5			
	2.6	Desk Study Conclusions	5			
	2.7	Walkover Survey	6			
3	GRO	UND INVESTIGATION	7			
	3.1	Fieldwork	7			
	3.2	Window Sampling	7			
	3.3	Dynamic Probes	8			
	3.4	Cable Percussive Boreholes	8			
	3.5	Falling Head Permeability Tests	9			
	3.6	Groundwater Monitoring Wells	10			
4	LAB	ORATORY TESTING	11			
	4.1	Geotechnical Laboratory Testing	11			
	4.2	Geo-environmental testing	11			
5	GROUND CONDITIONS 1					
	5.1	General	13			
	5.2	Made Ground	14			
	5.3	Lowestoft Formation (Glacial Till Deposits)	15			
	5.4	Kesgrave Catchment Subgroup ('Glaciofluvial Deposits')	16			
	5.5	Seaford Chalk Formation	18			
	5.6	Groundwater	18			
	5.7	Geo-environmental considerations	19			
6	GEO	-ENVIRONMENTAL RISK ASSESSMENT	20			

	6.1	General	20
	6.2	Environmental Soil Test Results	20
	6.3	Human Health (Soils) Risk Assessment	23
	6.4	Controlled Waters Risk Assessment	24
	6.5	Gas Risk Assessment	24
	6.6	Water Pipe Selection	26
	6.7	Waste Assessment	27
	6.8	Remediation Requirements	28
7	GEOTI	ECHNICAL CONSIDERATIONS	29
	7.1	General	29
	7.2	Solution Features	29
	7.3	Geotechnical Properties	31
	7.4	Foundations	32
	7.5	Basement Floor	33
	7.6	Groundwater and Excavations	33
	7.7	Sulphate Classification	34
	7.8	Drainage Design	34
8	REFEF	RENCES AND BIBLIOGRAPHY	36
9	LIMITA	TIONS	39
		FIGURES	
Figure	1: SPT	N Vs Depth Plot	14
Figure	2: SPT	N Vs N100 Derived SPT N - Chalk	30

TABLES

Table 1:	Cavities Database Information	
Table 2:	Potential contaminants in the geological materials on the site	5
Table 3:	Geotechnical Testing	
Table 4:	Stratum summary	13
Table 5:	Groundwater Monitoring Summary	
Table 6:	Environmental Testing Summary	22
Table 7:	Statistical T Test US95%'ile Summary - Arsenic	
13896 Broa	dwater Road GIR - V2	Page ii of vi

Table 8: Gas Screening Values Per Borehole	25
Table 9: Poly Ethylene Water Pipe Guideline Values	27
Table 10: Characteristic Geotechnical Properties	31
Table 11: Preliminary End Bearing Capacities for Piles	32
Table 12: Preliminary Pile Shaft Resistance	33
Table 13: Falling Head Test Results	34

APPENDICES

- A. Site Location Plan
- B. Exploratory Hole Location Plan
- C. Exploratory Hole Logs and Photos
- D. Geotechnical Laboratory Test Results
- E. Geo-environmental Test, Statistical Assessment and HazWaste Online Results
- F. Geological Cross Section
- G. Falling Head Test Results
- H. Gas and Groundwater Monitoring Results
- I. Proposed Development Plans

Document issue details:

SWG project no.

13896

Client's reference no.

Version no.	Issue date	Issue status	Distribution
1	August 2023	Initial (awaiting monitoring results)	Hightown Housing Association Limited
2	October 2023	Final	Hightown Housing Association Limited

Executive Summary

South West Geotechnical Ltd (SWG) was instructed by Hightown Housing Association Ltd (the Client) to undertake a geotechnical and geo-environmental assessment to assist with the proposed development of the a site at 29 Broadwater Road, Welwyn Garden City, AL7 3BQ.

At the time of the investigation, development proposals comprised the construction of a horse-shoe shaped block of flats comprising of four above-ground floors, basement and communal gardens, including garden areas on top of the basement.

The geotechnical assessment was carried out to determine the ground conditions for foundation design. In addition, an assessment was required from a geo-environmental perspective to include recommendations for any contamination remediation that may be required. Falling head permeability testing was undertaken to assist with surface water drainage design.

The investigation works were also carried out to address a significant risk posed by natural cavities which are mapped to be present on the site, identified by desk studies conducted by ListersGeo and Peter Brett Associates. The reports recommend intrusive investigation to be conducted to quantify the extent to which these features might pose risks to proposed developments and inform engineering solutions to reduce those risks.

Ground Conditions

The investigation encountered significant thicknesses of made ground overlying cohesive Glacial Till Deposits soils which in turn overlay dense coarse granular materials attributed to the Kesgrave Catchment Subgroup ('Glaciofluvial Deposits'). These superficial Materials had their base above chalk belonging to the Seaford Chalk Formation.

Perched groundwater was encountered during the investigation across the site at depths of 3.58 to 4.70mbgl, typically concordant with the base of the higher permeability made ground, and sat on top of the low permeability clay soils beneath.

Geo-environmental

Locally, elevated concentrations of arsenic were recorded in the near surface made ground materials. These are not are not considered to be statistically significant (i.e. are not considered to pose a risk to human health), and no further works are considered necessary in this regard.

No radon protection measures are required.

No other gas protection measures are required.

Any hydrocarbon impacted soils should be removed from site to appropriate landfill facilities during the excavation of the basement. Similarly, any obviously hydrocarbon impacted groundwater (if present) should be removed as well. Any such water is expected to be very localised (i.e. in the vicinity of WS07 and DPSH39).

Standard potable, water pipes are expected to be suitable although, this should be confirmed by the service provider.

Should any obviously contaminated soils be encountered during the construction phase of the works, advice should be sought from a suitably experienced Geo-environmental Engineer.

Geotechnical

It is not considered that there are any significant solution features on the site, rather the chalk bedrock is low density and more prone to solution features as a result of its low density, than higher density chalk materials.

The proposed basement is not a full storey below ground level and there will be up to approximately 3.0m of made ground materials below the underside of the basement floor level. Whilst the cohesive soils beneath the made ground have some appreciable strength, the depth to the soils will make forming pad foundations difficult. Furthermore, the building previously on the site was piled and it is understood that current proposals involve reusing the existing piles to support the new building. Therefore, to ensure consistency of foundation, all of the building should be constructed off piled foundations.

There are significant thicknesses of un-engineered made ground present beneath the proposed basement level. These materials will need to be excavated and re-engineered if they are to be utilised to provide support to the basement floor.

Consideration could be given to the use of Vibro Stone Columns (VSC) to provide support to the basement floor. This would save excavating/ re-engineering the made ground materials.

It is envisaged that a large open excavation will be required to enable construction of the building. Consideration will need to be given to providing support to the site boundaries during construction, particularly along the Broadwater Road and Broad Court elevations.

Concrete should be designed to a Design Sulphate Class of DS-1, and ACEC Class AC-1.

Soakaways should not be formed in made ground as the inundation of un-engineered materials by water can lead to excessive settlement. Furthermore, the underlying cohesive Glacial Till materials would have lower permeability still and so any water soaking into the made ground would simply pond on the surface of the Glacial Till, as is the case with surface water currently. Therefore, conventional shallow soakaway drainage is not considered suitable for use on the site, and an alternative drainage strategy should be sought.

1 INTRODUCTION

1.1 General

South West Geotechnical Ltd (SWG) was instructed by Hightown Housing Association Ltd (the Client) to undertake a geotechnical and geo-environmental assessment to assist with the proposed development of the a site at 29 Broadwater Road, Welwyn Garden City, AL7 3BQ. The initial report was issued in August 2023. This V2 report, provides the results of the gas and groundwater monitoring, and the subsequently updated geo-environmental risk assessment.

At the time of the investigation, development proposals comprised the construction of a horse-shoe shaped block of flats comprising of four above-ground floors, basement and communal gardens, including garden areas on top of the basement. The current proposed development plan is included in Appendix I.

The geotechnical assessment was carried out to determine the ground conditions for foundation design. In addition, an assessment was required from a geo-environmental perspective to include recommendations for any contamination remediation that may be required. Falling head permeability testing was undertaken to assist with surface water drainage design.

The investigation works were also carried out to address a significant risk posed by natural cavities which are mapped to be present on the site, identified by desk studies conducted by ListersGeo and Peter Brett Associates. The reports recommend intrusive investigation to be conducted to quantify the extent to which these features might pose risks to proposed developments and inform engineering solutions to reduce those risks.

The investigation comprised a review of the existing desk study information, intrusive investigation, geotechnical and geo-environmental laboratory testing and reporting.

1.2 Site Description

The site is situated on Broadwater road, in the centre of Welwyn Garden City, Hertfordshire, AL7 3BQ. It is centred on National Grid Reference 524256, 212633, as shown in the Site Location Plan, Appendix A. The site is set within a predominantly commercial and industrial

area near the centre of Welwyn Garden City, and is bound to its west by Broadwater Road. Presently, the land on the other side of the road is a construction site for more residential flats. It is bound the north by Broad Court road separating it from an industrial estate with the nearest premises on the estate being those of Supertyres Motorists Centre and Hertz Car Rental. It is bound to the southeast by an active car park and to the south by an overgrown/ disused car park.

Access to the site is gained from Broadwater Road, entering the site's southwest corner.

At the time of the investigation the buildings on the site had been demolished and the surface of the car park removed.

There was no vegetation on the site apart from weeds around the site edges and mature trees just outside of the eastern and western boundaries.

The site occupies an area around 5800 square meters with maximum dimensions in a broadly square plot with maximum dimensions 80 by 90m.

The site's elevation ranges from 83.6 to 88.9 mAOD and its slopes generally towards the south. There is a significant depression around 3m deep near the site's centre (centred on British National Grid Reference 524251, 212655), in a space previously occupied by a basement.

2 DESK STUDY

2.1 General

A Phase 1 (Desk Study) Investigation was undertaken for the site by ListersGeo in December 2018. The report (no.18.11.010) provides a detailed site history based on Historic Ordnance Survey maps and an analysis of the contemporary sources of contamination using geologic maps and memoirs and a Groundsure Enviro Insight Environmental Report. This Phase 1 (Desk study) Investigation (report no. 18.11.010) is referred to in this report and should be consulted for full details of the geoenvironmental assessment of the site. The salient points from the previous desk studies and SWG's own research are summarised below.

2.2 Geology

The British Geological Survey (BGS) map for the area indicates the bedrock geology beneath the site comprises the Lewes Nodular Chalk Formation and Seaford Chalk Formation (undifferentiated). Typically this comprises chalk with secondary calcareous mudstone and flint. Near to the site there are also mapped outcrops of the London Clay Formation and Lambeth Group, both generally comprising of clay, silt and sand.

Superficial (Recent) soils are shown to overlie the bedrock on the site. On the southern edge of the site, there are mapped deposits of the Lowestoft Formation ('Glacial Till Deposits') which generally comprises of Diamicton. Extending across the north of the site and covering most of the site area is the Kesgrave Catchment Subgroup (which are nominally 'Glaciofluvial Deposits'), generally comprising of sand and gravel. Although not within the site boundaries, there are also deposits of Alluvium in the vicinity, which generally comprises of clay, silt, sand and gravel.

No Made Ground is mapped on the site. However, given the history of Welwyn Garden City and simply the fact that the site is heavily built up, Made Ground is expected on the site.

Borehole records available on the British Geological Survey Geolndex website give an indication of the geology in the local area. A borehole on the construction site on the opposite side of Broadwater Road encountered granular Made Ground to a depth of 1mbgl

followed by granular natural materials to 13mbgl where the head of the Chalk Bedrock was found. The chalk Bedrock was flinty to 15.2mbgl and extended beyond 30mbgl.

2.3 Natural Hazards- Natural Cavities

This investigation by SWG addresses a significant risk posed by natural cavities identified in the 2018 Phase 1 Desk Study (report no. 18.11.010).

It is common for the bedrock chalk in the region of the UK in which the site is situated to have experienced extensive chemical weathering through the action of percolating rainwater and groundwater. In many cases, this has led to the development of dissolution features including sinkholes. Sinkholes are a depression or hole on the ground created when the surface layer collapses because there is some weakening or erosion of materials beneath it.

As part of the ListersGeo Phase 1 Desk Study, the historical records of 'natural cavities' held by Peter Brett Associates' Cavities Database were consulted. The consultation identified several recorded cavities on the site area and considered the risk posed by natural cavities on the site to be HIGH. Three features were identified within 100m of the site's centre with the potential to impact ground conditions on the site- summarised Table 1.

Approximate National Grid Reference	Approximate distance and bearing from site centre	Natural cavity type.
TL 52424, 21266	20m NW (on the site)	Sinkhole
TL 52428, 21260	60m SE (on the site boundary)	Sinkhole
TL 52421, 21259.	70m S	Sinkhole

Table 1: Cavities Database Information

It was proposed that an intrusive investigation should be undertaken on the site to investigate the exact nature and location of these features and elucidate the risk they pose to proposed developments on the site and inform the design of engineering solutions to mitigate those risks.

2.4 Mining

The site is not in an area that is generally known for mining.

However, historical records show that an area in the northeast of the site was used for clay extraction in the nineteenth century. These shallow workings have since been backfilled.

2.5 Geoenvironmental Considerations

The Desk Study by ListersGeo highlights that there are/ have been potential sources of contamination on the site and potential pathways to transfer contamination to the site from nearby sources.

Table 2, taken from the ListersGeo Phase 1 Desk Study (report no. 18.11.010) summarises those potential contaminants.

Potential Source	Potential Contaminants			
Factories, works and depots, on-site	Variable: may include heavy metals, metalloids, non-metals, polycyclic aromatic hydrocarbons, petroleum hydrocarbons, poly-chlorinated bi-phenyls and asbestos			
Made Ground, on-site	Variable: may include heavy metals, metalloids, non-metals, polycyclic aromatic hydrocarbons, hydrocarbons and asbestos			
Urban/industrial setting	Various air-borne; including lead and polycyclic aromatic hydrocarbons			
Former factories and works (plastics, chemical, mechanical, and motor engineering)	Variable: may include heavy metals, metalloids, non-metals, petroleum hydrocarbons, organic solvents (including halogenated varieties), polycyclic aromatic hydrocarbons, acids, organic acids, alkalis, alcohols, esters, phenols, cyanide, poly-chlorinated bi-phenyls, sodium salts, asbestos and a variety of active pharmaceutical ingredients			
Car servicing and repairs, adjacent to the north	Leakage, spills and dumping of petroleum hydrocarbons, oils and lubricants, Lead and battery acid, paints (volatile organic hydrocarbons)			

Table 2:	Potential	contaminants	in the	geological	materials or	the site
				3		

The ListersGeo Phase 1 Desk Study (report no. 18.11.010) recommends that the risk posed by these potential contaminants on the site should be investigated by chemical testing of soil samples collected from the site during an intrusive investigation.

2.6 Desk Study Conclusions

The site is situated in a generally industrial area and has an industrial legacy. Human activities on or near the site may have introduced potentially harmful contaminants to the soils on the site. The potential risk posed by these contaminants should be investigated during a Phase 2 intrusive investigation.

The site has historically been subject to clay extraction. Geotechnical hazards resulting from these activities should be investigated.

The site is in an area where dissolution features in the chalk bedrock are prone to producing natural cavities. Two such cavities have been noted on the site area which may pose a risk to proposed developments. Intrusive investigation works should be conducted to determine the extent of this risk and inform potential engineering works to mitigate it.

The works described in this report aim to address these recommendations.

2.7 Walkover Survey

The site walkover survey was conducted on 19th June 2023 to identify any surface features of geoenvironmental interest or expressions of subsurface deformation which could be caused by dissolution features at depth. A full description, obtained from the walkover, is given in Section 1.2.

The materials comprising the surface of the site were noted to contain anthropogenic debris including metal, plastic and glass, indicating at least some degree of ground contamination. Photographs of the site are presented as Appendix C.

3 GROUND INVESTIGATION

3.1 Fieldwork

An intrusive investigation was carried out from the 19th to the 28th June 2023. The exploratory hole location plan, exploratory hole logs, in-situ test data / results and associated photographs are contained in Appendices B and C respectively.

The fieldwork was carried out following the guidelines of BS 5930 (2015): Code of Practice for Ground Investigation; British Standard BS10175 (2011): Investigation of Potentially Contaminated Sites – Code of Practice and BS EN 1997-2:2007 (Eurocode 7) – Geotechnical Design – Part 2: Ground investigation and testing).

The fieldwork consisted of:

- Nine (9 no) Window Sample boreholes.
- Eight (8 no) Cable Percussive Boreholes.
- Three (3 no) Gas and Water monitoring standpipes.
- Three (3 no) Falling Head Permeability Tests.
- Sixty Six (66 no) Dynamic Probes (Super Heavy).

The boreholes and probes were positioned to give good representative coverage of the site from both a geotechnical and geo-environmental perspective including attempting to capture the ground conditions beneath the locations of sinkhole features identified by Peter Brett Associates. The position of some exploratory holes was dictated by the position of a large hole left where the basement of the structure which used to stand on the site had been removed. This area was not accessible by the drilling rigs.

The works are essentially the works proposed by Peter Brett Associates.

3.2 Window Sampling

Window sampling was carried out using a Premier Compact 110 rig and a Messersi Tracked Dumper mounted rig, which use a 63.5kg weight dropping a vertical distance of

750mm (BS 5930 Section 4, Clause 22.9). The boring produces a continuous sample in diameters ranging from 100mm down to 36mm, in clear rigid plastic liners.

Window sample holes included in-situ Standard Penetration Tests (SPTs), generally at metre centres. Where SPT blow counts exceed 50 without reaching the full 300mm penetration, the actual penetration was recorded and the extrapolated N-value for the full penetration was calculated.

3.3 Dynamic Probes

Dynamic probes were conducted using the same window sampling rigs, utilising a 63.5kg weight falling 750mm, as were used for the window sampling.

The dynamic probes used 32mm rods attached to a 50mm 90 degree cone (BS 5930 Section 4, Clause 26.2 – DPSH method). The cone diameter, driving weight and fall distance are all identical to that used in the Standard Penetration Test (BS 5930 Section 4, Clause 25.2), which enables an approximate correlation between the two. The test records the number of blows required to drive the test cone 100mm, and is referred to as the N100 value. The effective refusal point for DPSH is taken as when the blow count exceeds 50 blows for 300mm.

It was originally planned to undertake all the dynamic probes to effective refusal in the chalk bedrock. However, the very high density of the Glaciofluvial gravel materials overlying the chalk meant the majority of the probes reached refusal in these materials rather than being able to penetrate the Glacifluvial materials. In order to assist with assessing the density of the chalk at depth, five dynamic probes (DPSH04, 37, 39, 45 and 53) were conducted from the surface until refusal in the Glaciofluvial materials. The positions were then drilled using Cable Percussive Drilling to the upper surface of the chalk. The dynamic probes were then continued to refusal in the chalk.

3.4 Cable Percussive Boreholes

Eight (8 no) cable percussive borehole was drilled using a Dando 150 rig. Five of these (BH01, 02 and 03, DPSH39 and 45) were logged and/or subject to geotechnical and

geochemical testing. The other three were solely used to assist continuing the Super Heavy Dynamic Probes (DPSH04, 37 and 53).

For each borehole, a 1.2m inspection pit was dug by hand before drilling commenced. In BH01-03 and DPSH39 and 45, the boreholes were logged from the surface by a qualified SWG Engineering Geologist. Materials recovered from the borehole were bagged at 0.5m intervals or where the nature of materials changed noticeably as work progressed. Environmental samples were collected by subsampling materials from the chiselling tool or drilling shell.

BH01-BH03 included in-situ Standard Penetration Tests (SPTs) in the Superficial Deposits, generally at metre centres. Once the chalk was encountered, standard penetration tests (SPTs) and UT100 sampling was conducted at alternating 1.0m intervals until SPT refusal. BH01-03 were terminated and backfilled once SPT refusal had been met within the chalk materials. DPSH 39 and 45 were terminated once the upper surface of the chalk was penetrated. After hole completion, DPSH39 and 45 were left open to allow dynamic probing to continue from their base.

Cable Percussive drilling was also used at DPSH04, 37, and 53 to construct an open hole to the upper surface of the chalk to allow access for Super Heavy Dynamic Probing. These boreholes did not include SPTs and were not logged as their primary purpose was to remove the dense granular materials which were causing effective refusal before the chalk was reached and preventing exploration of dissolution features there.

The log for the boreholes (BH01-03 and DPSH39 and 45) are presented in appendix C.

3.5 Falling Head Permeability Tests

Falling head permeability testing was undertaken following recommendations in BSI 22282 (2012). The testing undertaken does not strictly comply with standards, but gives a guide to likely permeability of the materials.

The results of the permeability testing are included as Appendix G.

13896 Broadwater Road GIR - V2

3.6 Groundwater Monitoring Wells

Groundwater monitoring wells were installed in WS01, 02 and 09 positioned in the east, southeast and north of the site area respectively. The wells comprise a 50mm diameter slotted pipe with gravel cell from the base of the window sample borehole made ground to between 0.3 and 1.0m below ground level where a plain pile with bentonite seal is present. Wells were finished at surface with concrete and a cover.

The details of the monitoring installation and pipework in each borehole can be found in the exploratory hole logs.

Groundwater and gas monitoring has been undertaken on three occasions to confirm the groundwater levels on the site and to allow the gas risk assessment to be undertaken.

The gas and groundwater monitoring results are included in Appendix H.

4 LABORATORY TESTING

4.1 Geotechnical Laboratory Testing

All geotechnical testing was carried out in the SWG UKAS accredited laboratory in accordance with BS 1377; 1990, Methods of tests for soils for civil engineering purposes. Table 3 summarises geotechnical testing undertaken. The geotechnical laboratory test results are enclosed as Appendix D.

Table 3: Geotechnical Testing

Test	No. Tests
Moisture Content	6
Atterberg Limits	6
Particle Size Distribution by sieve and Pipette Method	7
Saturation Moisture Content of Chalk	2
pH & Soluble Sulphate	9

4.2 Geo-environmental testing

Twelve soil samples were tested for the following suite of determinands:

- pH, organic matter, sulphate (water soluble).
- Metals: Arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, zinc and cyanide
- Speciated Polyaromatic Hydrocarbons (PAH): Acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h) anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, pyrene.
- Total Petroleum Hydrocarbons (TPH)
- Speciated Total Petroleum Hydrocarbons (TPH), aliphatic >C5-C6, aliphatic >C6-C8, aliphatic >C8-C10, aliphatic >C10-C12, aliphatic >C12-C16, aliphatic >C16-C21, aliphatic >C21-C35, aromatic >C5-C7, aromatic >C7-C8, aromatic >C8-C10, aromatic >C10-C12, aromatic >C12-C16, aromatic >C16-C21, aromatic >C21-C35.
- Benzene, toluene, ethylbenzene, p & m-xylene and o-xylene

Ten soil samples were screened for asbestos.

Waste Acceptance Criteria (WAC) testing was undertaken on three samples of made ground materials.

During subsequent groundwater monitoring, samples of groundwater were recovered from WS02 and WS09 on 5/9/23, and tested for the following suite of contaminants;

- Speciated Total Petroleum Hydrocarbons (TPH), aliphatic >C5-C6, aliphatic >C6-C8, aliphatic >C8-C10, aliphatic >C10-C12, aliphatic >C12-C16, aliphatic >C16-C21, aliphatic >C21-C35, aromatic >C5-C7, aromatic >C7-C8, aromatic >C8-C10, aromatic >C10-C12, aromatic >C12-C16, aromatic >C16-C21, aromatic >C21-C35.
- Benzene, toluene, ethylbenzene, p & m-xylene and o-xylene, MTBE

The test results and certificates are presented in Appendix E.

5 GROUND CONDITIONS

5.1 General

The investigation encountered significant thicknesses of made ground overlying cohesive Glacial Till Deposits soils which in turn overlay dense coarse granular materials attributed to the Kesgrave Catchment Subgroup ('Glaciofluvial Deposits'). These superficial Materials had their base above chalk belonging to the Seaford Chalk Formation (undifferentiated).

The ground conditions have been summarised in Table 4.

Christians	Depth to base of stratum (m BGL)							
Stratum	BH01	BH02	BH03	WS01	WS02	WS03	WS04	
Made Ground	4.50	3.60	4.20	4.50	4.40	4.30	4.30	
Glacial Till Deposits	6.15	6.20	6.15	>5.45	>5.45	>5.45	>5.45	
Glaciofluvial Deposits	14.20	8.60	12.20	-	-	-	-	
Seaford Chalk Formation (undifferentiated)	>22.36	>18.40	>20.34	-	-	-	-	
Groundwater	-	-	-	4.70	3.87	-	-	
Stratum	Depth to base of stratum (m BGL)							
Stratum	WS05	WS06	WS07	WS08	WS09	DPSH39	DPSH45	
Made Ground	>2.08	4.10	4.00	4.20	4.20	4.00	4.50	
Glacial Till Deposits	-	>5.45	>5.45	>5.45	>5.45	6.60	6.40	
Glaciofluvial Deposits	-	-	-	-	-	13.00	10.40	
Seaford Chalk Formation		_	-	-	-	>14.00	>11.00	
(undifferentiated)	-							

Table 4: Stratum summary

Standard Penetration Tests (SPTs) were undertaken at frequent intervals in the boreholes and window sample holes to allow the relative strength / density of near surface soils to be assessed. The SPT N values have been plotted against depth in Figure 1.

Figure 1: SPT N Vs Depth Plot

The N values show significant scatter near surface which is reflective of the highly variable nature of the made ground. With depth the N values increase through the Glacial Till Deposits and Glaciofluvial Deposits before decreasing again once the chalk is encountered. The boreholes were undertaken in areas where the chalk was understood to be "unaltered" (i.e. sinkholes not present) so that the SPT N values can be compared to the DPSH N₁₀₀ derived SPT N values.

5.2 Made Ground

Made Ground was encountered from the surface in every exploratory hole and continued to depths of between 4.00 and 4.60mbgl.

The Made Ground Materials were highly variable in composition.

13896 Broadwater Road GIR - V2

The largest proportion of the made ground seemed to comprise of loose to medium dense slightly clayey slightly silty very gravelly fine to coarse angular to subrounded SAND with a medium cobble content in which the gravel is fine to coarse angular to subangular flint, brick, chert, concrete, chalk, and metalwork, cables and plastic. Often this material had a much higher gravel content and is better classified as loose to medium dense brown to orange-brown slightly silty very sandy very clayey GRAVEL with a low cobble content. These granular materials are likely to dominate the bulk geotechnical properties of the Made Ground.

Thinner horizons (generally not exceeding 1.0m thickness) and generally near the surface comprised of stiff brown to orange-brown silty very gravelly very sandy CLAY in which the gravel is fine to coarse angular to subrounded chert, flint, sandstone and ceramic.

In DPSH39 and WS07 a notable horizon of Made Ground comprised generally of loose grey-brown to green-brown silty very clayey very sandy GRAVEL with a hydrocarbon odour.

SPT N values recorded in the made ground range from 4 to 79.

5.3 Lowestoft Formation (Glacial Till Deposits)

Materials identified as Glacial Till Deposits were encountered beneath the Made Ground in all exploratory holes (excluding WS05) and extended to depths up to 6.60mbgl.

Generally, the Glacial Till Deposits comprised of stiff becoming very stiff grey-brown to brown (although there was a wide range of colour variation)(locally slightly sandy) slightly gravelly CLAY with a low cobble content. The gravel component comprised of fine to medium angular to sub-rounded chalk and sandstone.

Three Liquid and Plastic (Atterberg) Limit tests undertaken on the materials indicates the soils have intermediate to high plasticity and medium volume change potential in accordance with NHBC (2023).

SPT N values recorded in the Lowestoft Formation range from 3 to 96. Based on measurements of shear strength in these materials taken using a hand shear vane, a factor

of 5 is considered appropriate for calculating undrained shear strength from the SPT N values in these materials. A characteristic undrained shear strength of 62kPa is appropriate for these materials considering the 10th percentile values of the hand shear vane measurements.

Using correlations between Plasticity Index and friction angle, a friction angle of 24° is considered appropriate for the materials.

Locally (WS03), more granular lenses of Glacial Till materials were encountered.

5.4 Kesgrave Catchment Subgroup ('Glaciofluvial Deposits')

Materials assigned to the named 'Kesgrave Catchment Subgroup' (Glaciofluvial Deposits) were encountered in all of the Cable percussive boreholes (BH01-03 and DPSH39 and 45). These materials were encountered directly beneath the Glacial Till Deposits at depths between 6.15 and 6.60mbgl and rested directly atop the chalk bedrock at depths between 8.60 and 14.20mbgl.

Both cohesive and more granular materials were encountered.

5.4.1 Cohesive Glaciofluvial Deposits

Cohesive materials interpreted as Glaciofluvial deposits were encountered in BH01 at 6.15 to 9.00mbgl, comprising firm consistency, light brown (locally slightly gravelly) very sandy very silty CLAY. (Locally very clayey SILT) in which the gravel was of fine to medium rounded quartz was encountered.

In DPSH 39, between 6.0 and 7.20mbgl, firm to stiff locally organic orange-brown, brown and grey mottled (locally slightly gravelly) sandy to very sandy silty to very silty CLAY in which the gravel was of fine to coarse subrounded flint and quartz was encountered. The two materials may represent a single continuous but variable sedimentary body of finer materials extending from the southwest towards the centre of the site.

Particle size distribution sieves and pipettes undertaken on the materials indicate the soils are predominantly silt.

Liquid and Plastic (Atterberg) Limit testing undertaken on the cohesive Glaciofluvial materials, between 6.15 and 9.0mbgl in BH01 indicate the soils are of low plasticity (CL) and low volume change potential.

Three SPT N values were recorded in the cohesive Glaciofluvial materials. These range from 9 to 13. An undrained shear strength of 130 kPa was recorded using a hand shear vane in the materials. A characteristic undrained shear strength of 60 kPa is considered appropriate for the soils.

Using correlations between Plasticity Index and friction angle, a friction angle of 29° is considered appropriate for the materials.

5.4.2 Granular Glaciofluvial Deposits

The more granular Glaciofluvial Deposits generally comprise medium dense to very dense light brown to grey-brown slightly silty/clayey very sandy Gravel with a low to medium cobble content. The gravel component comprises of fine to coarse angular to rounded chert, flint and sandstone.

Particle size distribution testing undertaken on the more granular materials, confirm the field observations of the material comprising of slightly clayey and silty very sandy GRAVEL.

SPT N values recorded in the granular materials range from 19 to 208 (extrapolated), confirming the density range.

A friction angle of 35° is considered appropriate for the soils.

Many of the dynamic probes encountered effective refusal at depths within the granular materials. Only DPSH10 was able to penetrate the granular materials without additional drilling. DPSH37, 39, 45, 53 and 04 only reached depths beyond the base of the granular materials because an open hole had been constructed past the base of the unit by other methods (Cable Percussive Drilling).

5.5 Seaford Chalk Formation

Materials identified as the Seaford Chalk Formation were encountered in all of the cable percussive boreholes. In the upper levels, the chalk was encountered as structureless CHALK comprising of stiff compact cream gravelly sandy SILT in which the gravel comprised of fine to medium angular to subrounded very weak, low density white to light grey very weak chalk and occasional flint. The near surface materials are classed Dm chalk in accordance with Ciria 574 (2002).

With depth the materials comprise extremely weak to very weak chalk, and is considered to be class C4/5 chalk.

SPT N values recorded in the chalk range from 12 to 81 (extrapolated).

Laboratory testing to derive the saturation moisture content, bulk density and dry density of chalk samples from BH01 indicate they are classified as low density chalk.

5.6 Groundwater

Perched groundwater was encountered during the investigation across the site at depths of 3.58 to 4.70mbgl, typically concordant with the base of the higher permeability made ground, and sat on top of the low permeability clay soils beneath.

During the subsequent monitoring, the groundwater levels were recorded as summarised in Table 5.

Date	BH ID and Water Depth (m BGL)			
	WS01	WS02	WS09	
5/9/23	Dry	3.75	3.56	
22/9/23	Dry	Dry	0.69	
6/10/23	4.61	3.55	3.42	

Table 5: Groundwater Monitoring Summary

It is expected that the shallow value recorded in WS09 on 22 September is due to the standpipe being flooded from the surface rather than indicative of very elevated groundwater levels, considering the other two standpipes were dry on the same date.

5.7 Geo-environmental considerations

Made ground was encountered across the site largely comprising reworked local soils although, fill materials including: brick, glass, porcelain, concrete, organic matter (generally wood) and metal (including rebar and other construction materials), were present in the made ground.

In WS07 and DPSH39, some of the Made Ground materials bore a strong odour of hydrocarbons. These positions were located in the centre of the former building on the site. The origin of the hydrocarbon odour is not known.

6 GEO-ENVIRONMENTAL RISK ASSESSMENT

6.1 General

In order for land affected by contamination to cause harm, there must be a source of contamination, a receptor that can be harmed and a pathway by which the receptor can be exposed to the contamination. Based on the initial conceptual model an assessment of the risk posed by ground / groundwater contamination to potential receptors has been undertaken.

The desk study highlighted many potential sources of contamination on site and in the surrounding area. During the investigation works, significant thicknesses of made ground were encountered near surface. These materials were predominantly demolition rubble associated with the former building on the site. These materials were subsequently considered the main source of contaminants. In WS07 and DPSH39, some of the Made Ground materials bore a strong odour of hydrocarbons. Chemical testing was undertaken to further assess the initial conceptual model with samples from around proposed development area tested, including materials from depth where a hydrocarbon odour was noted.

6.2 Environmental Soil Test Results

The results of the environmental laboratory testing, presented as Appendix E, have been summarised in Table 6 and compared to Suitable for Use Level (S4UL) values for residential developments without home grown produce. For organic substances a 1% Soil Organic Matter (SOM) has been used, unless otherwise indicated, which represent the most stringent threshold limit.

LQM/ CIEH S4ULs have been developed by Land Quality Management Ltd jointly with the Chartered Institute of Environmental Health, and provide values for the assessment of potential risks to human health posed by contaminants in soil, and are compliant with UK legislative policy and guidelines. In particular, these include components of TPH and PAH.

The S4ULS have been derived in accordance with UK legislation, national as well as Environment Agency (EA) policy, and using a modified version of the EA CLEA software.

The Department for the Environment, Food & Rural Affairs (DEFRA) has published Category 4 Screening Levels (C4SLs) for six substances including lead. The C4SLs represent the most stringent guidance available for the assessment of lead contamination in soils, and have been used in this report.

Where other guidelines are not available, local guidance, Dutch standards or an in-house screening value is used to provide an initial comparison figure.

Determinants	S4UL/C4SL mg/kg	Source of GAC	Recorded Range mg/kg	Location of Exceedances
Arsenic	40	LQM/ CIEH	5 - 44	WS02 – 0.9m WS07 – 3.3m
Cadmium	85	LQM/ CIEH	<0.2 - 9.5	
Chromium (III)	910	LQM/ CIEH	5 - 32	
Copper	7100	LQM/ CIEH	4 - 32	
Lead	310	Defra	4 - 49	
Mercury (inorganic)	56	LQM/ CIEH	<1	
Nickel	180	LQM/ CIEH	6 - 36	
Selenium	430	LQM/ CIEH	<2	
Zinc	40000	LQM/ CIEH	27 - 370	
Cyanide (total)	50	DUTCH	<1 - 3	
TPH aliphatic C5-C6	42	LQM/ CIEH	<0.01	
TPH aliphatic C6-C8	100	LQM/ CIEH	<0.05	
TPH aliphatic C8-C10	27	LQM/ CIEH	<2 - 3	
TPH aliphatic C10-C12	130	LQM/ CIEH	<2 - 30	
TPH aliphatic C12-C16	1100	LQM/ CIEH	<2 – 142	
TPH aliphatic C16-C35	65000	LQM/ CIEH	<3 – 41	
TPH aromatic C5-C7	370	LQM/ CIEH	<0.01	
TPH aromatic C7-C8	860	LQM/ CIEH	<0.05	
TPH aromatic C8-C10	47	LQM/ CIEH	<2	
TPH aromatic C10-C12	250	LQM/ CIEH	<2	
TPH aromatic C12-C16	1800	LQM/ CIEH	<2	
TPH aromatic C16-C21	1900	LQM/ CIEH	<3 – 22	
TPH aromatic C21-C35	1900	LQM/ CIEH	<10	
Napthalene	2.3	LQM/ CIEH	<0.1	
Acenapthylene	2900	LQM/ CIEH	<0.1	
Acenapthene	31000	LQM/ CIEH	<0.1	
Flourene	2800	LQM/ CIEH	<0.1	
Phenanthrene	1300	LQM/ CIEH	<0.1	
Anthracene	31000	LQM/ CIEH	<0.1	
Flouranthene	1500	LQM/ CIEH	<0.1	
Pyrene	3700	LQM/ CIEH	<0.1	
Benzo(a)anthracene	11	LQM/ CIEH	<0.1	
Chrysene	30	LQM/ CIEH	<0.1	
Benzo(b)flouranthene	3.9	LQM/ CIEH	<0.1	
Benzo(k)flouranthene	110	LQM/ CIEH	<0.1	
Benzo(a)pyrene	3.2	LQM/ CIEH	<0.1	
Indeno(1,2,3-cd)pyrene	45	LQM/ CIEH	<0.1	
Dibenzo(a,h)anthracene	0.31	LQM/ CIEH	<0.1	
Benzo(g,h,i)perylene	360	LQM/ CIEH	<0.1	
Benzene	0.38	LQM/ CIEH	<2	
Toluene	880	LQM/ CIEH	<5	
Ethylbenzene	83	LQM/ CIEH	<2	
p & m xylene	82	LQM/ CIEH	<2	
O xylene	88	LQM/ CIEH	<2	

Table 6: Environmental Testing Summary

No asbestos fibres were identified in any of the samples tested.

On the basis of the above, the only contaminant concentrations elevated above the S4UL/C4SL values for residential land use without plant uptake is arsenic in two samples.

6.3 Human Health (Soils) Risk Assessment

In order for land affected by contamination to cause harm, there must be a source of contamination, a receptor that can be harmed and a pathway by which the receptor can be exposed to the contamination. From the results of the investigation, it is noted the site is not significantly contaminated. However, elevated levels of arsenic in the made ground materials represent a source of contamination, future residents of the properties represent the receptor, and exposure to the soils containing the elevated lead levels represent the potential pathway. The results are further discussed below.

6.3.1 Arsenic

The arsenic concentrations recorded near surface in WS02 and at depth in WS07 are elevated above the residential land use without plant uptake S4UL values. Neither of the "elevated" concentrations are considered statistical outliers (i.e. all concentrations are part of the same numerical population).

A Statistical "T" test has been undertaken on the eight shallowest (i.e. the soils most likely to pose a risk to residents) of the made ground materials for the arsenic concentrations. The tests have been undertaken comparing to the S4UL values for residential land use out plant uptake threshold value. The US95%'ile values have been compared to the S4UL value in Table 7. The statistical assessment results are included in Appendix E.

Determinants	S4UL mg/kg (POS Residential)	Source of GAC	US95%'tile mg/kg
Arsenic	40	LQM/ CIEH	37.3

Table 7: Statistical T Test US95%'ile Summary - Arsenic

From Table 6, it can be seen that US95% tile value for is below the S4UL value. On this basis, the "elevated" concentrations of arsenic are not considered to be statistically significant (i.e. are not considered to pose a risk to human health), and no further works are considered necessary in this regard.

It is noted that proposals involve the construction of a basement carpark across the majority of the site, as such much of the made ground material will be removed from site as part of the construction process. The main soft landscaping areas are on top of the basement

carpark and along the eastern and southern elevations to the site. There is no topsoil/ subsoil on the site, and such materials will need to be imported for the soft landscaped areas.

6.4 Controlled Waters Risk Assessment

Perched groundwater was encountered at the base of the made ground, lying on top of the low permeability Glacial Till materials.

Two samples of groundwater were recovered from WS02 and WS09 on 5/9/23 and tested for speciated total petroleum hydrocarbons and BTEX, due to a strong odour of hydrocarbons being noted in made ground soils in nearby WS07 and DPSH39. The resulting testing recorded all hydrocarbon and BTEX concentrations below detectable limits. On this basis, the hydrocarbon odour / hydrocarbon impacted soils is very localised. It is noted that a basement is proposed, and the made ground materials will be removed to accommodate this. This will remove the source of hydrocarbons and subsequently, there will not be any risk to controlled waters.

Any hydrocarbon impacted soils should be removed from site to appropriate landfill facilities. Similarly, any obviously hydrocarbon impacted groundwater (if present) should be removed as well. Any such water is expected to be very localised (i.e. in the vicinity of WS07 and DPSH39).

6.5 Gas Risk Assessment

6.5.1 Gas Monitoring

The monitoring has been undertaken in general accordance with BS8485 (2015) which is largely based on CIRIA C665 (2007). The risk assessment has been undertaken following these documents and guidance provided by Card et al (2012) and Wilson and Nathanial (2019).

Three (3 no) rounds of gas monitoring visits have been over the space of one month. The monitoring undertaken on 22 September 2023 is considered "worst case" conditions of falling barometric pressure over the previous days, a barometric pressure of 990 mb recorded during the monitoring.

The monitoring was undertaken using a calibrated GA5000 gas analyser measuring concentrations of methane (CH4), carbon dioxide (CO2) and oxygen (O2) as percentage in air, along with barometric pressure and gas flow.

As recommended by CIRIA C665 (2007) measurements of both peak and steady state CH4, CO2 and O2 have been recorded in all of the monitoring wells.

During the monitoring, groundwater levels were measured at between dry (i.e. beyond the base of the boreholes) and 0.69m, typically 3.0+ m BGL.

6.5.2 Monitoring Results

No methane was recorded during the monitoring.

Maximum carbon dioxide concentrations of 4.8% were recorded in WS01 on 5/9/23.

No significant gas flow was ever recorded during any of the monitoring visits (i.e. maximum gas flow of 0.0l/hr recorded, which is the limit of detection).

6.5.3 Risk Assessment

The risk assessment has been undertaken using the approach detailed in BS8485 (2015). The Gas Screening Value (GSV) has been based on the maximum peak readings recorded at each borehole. The GSV determined for each borehole is summarised in Table 8.

BHID	GSV CH₄	GSV CO ₂	Highest Characteristic Situation	Comments
WS01	0.00	0.0048	CS1	
WS02	0.00	0.0033	CS1	
WS09	0.00	0.0037	CS1	

Table 8:	Gas Screening	Values	Per	Borehole
----------	---------------	--------	-----	----------

The Characteristic Situation all of the gas monitoring wells installed across the site, is CS1. – Very low hazard potential, indicating that no gas protection measures are required. No methane was recorded and no carbon dioxide concentrations in excess of 5% were recorded. Therefore, there is no need to consider increasing the Characteristic Situation to

CS2. It is noted that the structure will have a basement, which will be an accessible carpark which will have a good degree of ventilation and will required waterproofing, subsequently a good degree of gas protection will be incorporated into the structure in any case.

No radon protection measures are required.

6.6 Water Pipe Selection

In January 2011, UK Water Industry Research (UKWIR) published "Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites" (Ref 10/WM/03/21; the 'UKWIR Guidance'). Its aim was to ensure that the correct materials are selected for water pipes and components to be used below ground in brownfield sites to protect the quality of drinking water whilst taking into account the service life of the water distribution system. It superseded the Water Regulations Advisory Scheme (WRAS) Information and Guidance Note 9-04-03 "Laying Pipes in Contaminated Land", which has been withdrawn.

The UKWIR Guidance was supplemented in January 2014 by "Contaminative Land Assessment Guidance" published by Water UK, which includes a risk assessment procedure for water pipes. The guidance is to be applied to greenfield and brownfield sites, but "where greenfield sites are not affected by contamination a preliminary risk assessment will suffice".

The 2014 guidance gives some direction about when testing is needed, stating: "*There are normally only three pathways by which contamination may come into contact with water pipes.* These are direct contact with the soil or backfill, an excessive vapour phase or a contaminated groundwater regime. If none of these conditions exist onsite (adopting the source, pathway, receptor concept) then it is likely that extended and/or targeted soil testing will not be required and a simple risk assessment will suffice. For those sites where land may be affected by contamination appropriate testing shall be undertaken on the materials within which the pipes are to be laid, whether that be existing ground materials, remediated materials or imported capping materials."

The desk study did not identify any sources of Volatile Organic Compounds (VOC), Semi-Volatile Organic Compounds (SVOC), Phenols, Ethers, Nitrobenzene, ketones, aldehydes, amines and therefore, these test groups were not tested for as part of the investigation.

The relevant contaminant concentrations for standard PE water pipe, for the determinands tested as part of this investigation are summarised in Table 9.

Determinand	PE Threshold (mg/kg)	Recorded Range (mg/kg)
Total BTEX and MTBE	0.1	<0.05
EC5-EC10 aliphatic and	2.0	<2.0 - 3.0
aromatic hydrocarbons		
EC10-EC16 aliphatic and	10	<3.0 – 181
aromatic hydrocarbons		
EC16-EC40 aliphatic and	500	<10 - 155
aromatic hydrocarbons		

Table 9: Poly Ethylene Water Pipe Guideline Values

The concentrations of EC10-EC16 aliphatic and aromatic hydrocarbons recorded in WS07 at 3.3m are elevated above the standard PE water pipe values however, water pipes are typically installed at a depth of between 0.7 and 1.3m below ground level. Furthermore, WS07 is located towards the centre of the proposed building rather than towards the edge where pipework is expected to enter. On this basis, the elevated concentrations at depth are not expected to pose a risk to PE pipes and therefore, PE pipes are considered suitable for the development. The local supplier should confirm this.

6.7 Waste Assessment

Three samples of the near surface made ground material, was submitted for Waste Acceptance Criteria (leachate) testing. Solids parameter tests were undertaken on twelve samples of the made ground materials. The full laboratory reports are enclosed. The solid parameter test results were assessed for hazardous – non-hazardous classification using HazWasteOnline[™]. Results of the HazWasteOnline[™] assessment are included in Appendix E.

The results of the HazWastOnline[™] assessment indicate that the materials can be considered as non-hazardous waste, classified as 17 05 04 in the European Waste Catalogue (EWC) List of Waste.

The results of the WAC test indicate that the made ground material would be considered as Inert Waste Landfill.

Any facility that is chosen to take the material should be supplied with the above mentioned results / assessment to ensure compliance with their own permit. This assessment alone does not allow for a receiving facility to make judgement on acceptance.

6.8 Remediation Requirements

The "elevated" concentrations of arsenic are not considered to be statistically significant (i.e. are not considered to pose a risk to human health), and no further works are considered necessary in this regard.

No radon protection measures are required.

No other gas protection measures are required.

Any hydrocarbon impacted soils should be removed from site to appropriate landfill facilities during the excavation of the basement. Similarly, any obviously hydrocarbon impacted groundwater (if present) should be removed as well. Any such water is expected to be very localised (i.e. in the vicinity of WS07 and DPSH39).

Standard potable, water pipes are expected to be suitable although, this should be confirmed by the service provider.

Should any obviously contaminated soils be encountered during the construction phase of the works, advice should be sought from a suitably experienced Geo-environmental Engineer.

7 GEOTECHNICAL CONSIDERATIONS

7.1 General

At the time of the investigation, development proposals included the demolition of existing structures on site and the construction of a horse-shoe shaped block of flats comprising of four above-ground floors and basement parking.

It is understood that the piles from the previous structures on the site are still present beneath the site, and it is proposed to reuse the piles to support some elements of the new building.

As discussed in Section 5.1, the investigation generally encountered significant thicknesses of made ground overlying cohesive Glacial Till Deposits soils which in turn overlay dense coarse granular Glaciofluvial Deposits. These superficial Materials had their base above chalk belonging to the Seaford Chalk Formation.

Perched groundwater was encountered during the investigation across the site at depths of 3.58 to 4.70mbgl.

A Geological Cross Section through the site is included in Appendix F. This is based on cross section AA provided by the Architect.

7.2 Solution Features

The intrusive investigation works conducted by SWG follow on from desk studies which highlight the potential for solution features in the chalk materials at depth beneath the site, to pose a risk to proposed developments. The locations of exploratory holes and in situtesting were chosen to capture the ground conditions at the locations of historically recorded sinkhole features identified in those desk studies. Ideally, all dynamic probes would have fully penetrated the Glaciofluvial Deposits however, the density of the materials at the base of the unit meant this was not possible.

The SPT N values recorded in the chalk encountered in the cable percussive boreholes (i.e. ground outside the potential solution features) have been plotted in Figure 2, along

with SPT N values derived from the DPSH N_{100} values recorded in the chalk in the ground that may have been affected by solution weathering.

Figure 2: SPT N Vs N₁₀₀ Derived SPT N - Chalk

The N₁₀₀ derived SPT N values recorded in the Seaford Chalk Formation do not indicate that there is significant variation in the strength/ density of the chalk materials across the site. Similar blow count results are achieved wherever depth to the chalk were achieved by the probes. It is considered that DPSH37 did not penetrate the chalk bedrock, and instead refused in very dense Glaciofluvial soils which are at a greater depth than typically encountered. This may be indicative of a shallow infilled solution feature in the upper levels of the chalk.

The apparent relatively density of the chalk indicated by the SPT N values, could indicate that the sinkhole features identified in the desk studies are not the result of discrete solution

features lowering the strength and density of materials at depth in the chalk, but instead may be the manifestation of more generally widespread low strength/density materials.

The dynamic probes reveal that the dense to very dense Glaciofluvial Materials are continuous across the site and the data suggests they are of a generally consistent density. These materials do not appear to show any indication of lower density materials which could be indicative of post depositional movement (i.e. collapse of solution feature).

On the basis of the above, it is not considered that there are any significant solution features on the site, rather the chalk bedrock is low density and more prone to solution features as a result of its low density, than higher density chalk materials.

WS02 was undertaken in the area of an historic clay pit. In this area, the made ground extended to a depth of 4.5m which is not dissimilar to the remainder of the site. The made ground materials were similar in composition to those seen across the remainder of the site. Therefore, there is not considered to be any significant variation in the ground associated with the former clay pit.

7.3 Geotechnical Properties

The geotechnical properties detailed in Table 10 can be used for design of structures.

Stratum	SPT N Range	Undrained Shear Strength (kPa)	Drained Cohesion (kPa)	Friction (°)	Unit Weight (kN/m³)
Made Ground	4-79	N/A	0	24	18
Glacial Till	3-96	62	0	24	19
Glaciofluvial Deposits (Cohesive)	9-13	60	0	29	19
Glaciofluvial Deposits (Granular)	15-208	N/A	0	35	19
Seaford Chalk Formation	12-71	N/A	0	31	21

 Table 10:
 Characteristic Geotechnical Properties

7.4 Foundations

Proposals involve the construction of a horseshoe shaped four storey apartment block with basement parking. It is anticipated that loads from the above ground element will be transferred through the basement via columns.

The proposed basement is not a full storey below ground level and there will be up to approximately 3.0m of made ground materials below the underside of the basement floor level. Whilst the cohesive soils beneath the made ground have some appreciable strength to support pad foundations, the depth to the soils will make forming pad foundations difficult. Furthermore, the building previously on the site was piled and it is understood that current proposals involve reusing the existing piles to support the new building. Therefore, to ensure consistency of foundation, all of the building should be constructed off piled foundations.

Preliminary pile design has been undertaken using methods described in CIRIA 143 (1995). SPT N values have been derived from SPT N values and plotted against depth in Figure 1/2. Taking an SPT N value of 50, present below 18.0m, end bearing capacities shown in Table 11 have been determined.

Pile Diameter (m)	Area (m²)	Ultimate Resistance (kN)	Factor of Safety	Working End Resistance (kN)
0.45	0.16	800	3	266
0.6	0.28	1400	3	466
0.9	0.64	3200	3	1066

Table 11: Preliminary End Bearing Capacities for Piles

Depending on the length of socket, additional resistance will be gained from the pile shaft resistance. Taking an average SPT N value of 15 in the chalk along a 1.0m length of socket, the resistances given in Table 12 have been determined using $2 \times N$ (CIRIA 143, 1995).

Pile Diameter (m)	Area per m (m²)	Ultimate Shaft Resistance (kN)	Factor of Safety	Shaft Adhesion (kN)
0.45	1.41	42	1.5	28
0.6	1.88	56	1.5	38
0.9	2.83	85	1.5	57

 Table 12: Preliminary Pile Shaft Resistance

Shaft resistance gained will be dependent on the length of the socket.

Final pile design should take into account factors such as the soil effective stress parameters, pile settlement and structural limits on settlement acceptability, lateral pressures, the effects interaction between neighbouring piles and pile group effects.

It is recommended that specialist piling contractors familiar with the ground conditions are contacted to design and warrant the piles.

7.5 Basement Floor

There are significant thicknesses of un-engineered made ground present beneath the proposed basement level. These materials will need to be excavated and re-engineered if they are to be utilised to provide support to the basement floor.

Consideration could be given to the use of Vibro Stone Columns (VSC) to provide support to the basement floor. This would save excavating/ re-engineering the made ground materials.

7.6 Groundwater and Excavations

Perched groundwater was encountered during the investigation across the site at depths of 3.58 to 4.70mbgl, typically concordant with the base of the higher permeability made ground, and sat on top of the low permeability clay soils beneath. It is expected that the water levels will be higher over the winter months.

Any dewatering requirements will be based on proposals to improve/ re-engineer the made ground materials to provide support to the basement floor.

13896 Broadwater Road GIR - V2

It is envisaged that a large open excavation will be required to enable construction of the building. Consideration will need to be given to providing support to the site boundaries during construction, particularly along the Broadwater Road and Broad Court elevations.

7.7 Sulphate Classification

The twenty soluble sulphate test results recorded concentrations of between <10 and 1140 mg/l, with a characteristic value of 433 mg/l.

pH values of between 5.4 and 11.3 were recorded, with a characteristic value of 6.6.

Groundwater is expected to be mobile.

On this basis, concrete should be designed to a Design Sulphate Class of DS-1, and ACEC Class AC-1 (BRE Digest SD1, 2005).

7.8 Drainage Design

Large scale soakaway testing was not completed on the site. Falling head permeability testing was undertaken in purposely drilled boreholes adjacent to WS01, 03 and 05. Permeability rates were variable, and it was only possible to complete one of the falling head tests (FHT03 Test 1) to British Standard. For the remaining tests, the permeability of the soils has been determined based on the total reduction in the induced water level in each test. Table 13 summarises the testing.

WS ID	Permeability (m/s
01	2.05 x 10 ⁻⁸
03 Test 1	1.19 x 10 ⁻⁶
03 Test 2	2.27 x 10 ⁻⁸
05	1.07 x 10 ⁻⁷

Table 13: Falling Head Test Results

The testing indicates that the made ground materials have very low permeability. CIRIA 156 (1996) recommends an infiltration rate of 3×10^{-06} m/s as the lower limit of acceptability for soakaway feasibility. The permeability's calculated are lower than this.

Soakaways should not be formed in made ground as the inundation of un-engineered materials by water can lead to excessive settlement. Furthermore, the underlying cohesive 13896 Broadwater Road GIR - V2 Page 34 of 39

Glacial Till materials would have lower permeability still and so any water soaking into the made ground would simply pond on the surface of the Glacial Till, as is the case with surface water currently. Therefore, conventional shallow soakaway drainage is not considered suitable for use on the site, and an alternative drainage strategy should be sought.

Tom Snaith MGeol Geologist Engineering Author Ben Ogden CGeol MSc BSc FGS Principal Checker

Neil Forrow CGeol PGDip BSc FGS Director Approver

8 REFERENCES AND BIBLIOGRAPHY

Barnes, G. E. (2000). Soil Mechanics, Principles and Practice, 2nd edition. Basingstoke: Palgrave Macmillan.

British Standard BS10175: Investigation of Potentially Contaminated Sites – Code of Practice.

BRE Digest 211 (2007), Radon: Guidance on Protective Measures for New Buildings.

BS 5930 (2015) Code of Practice for site investigations

BS 1377 (1990) Methods of test for soils for civil engineering purposes

British Standards Institute (2015) BS8485:2015 Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings

BRE Special Digest 1 (2005) - Concrete in Aggressive Ground

Card G, Wilson S, Mortimer S. (2012). A Pragmatic Approach to Ground Gas Risk Assessment. CL:AIRE Research Bulletin RB17. CL:AIRE, London, UK. ISSN 2047-6450 (Online)

CIRIA Report 156, (1996). Bettess, R. Infiltration drainage – Manual of good practice. London: CIRIA

CIRIA C665. (2007) Wilson, S., Oliver, S., Mallett, H., Hutchings, H. & Card, G. Assessing risks posed by hazardous ground gasses to buildings. London: CIRIA.

CIRIA C735. (2014). Mallett, H., Cox, L., Wilson, S. and Corban, M. Good practice on the testing and verification of protection systems for buildings against hazardous ground gasses.

Chartered Institute of Environmental Health (CIEH) & Contaminated Land: Applications in Real Environments (CL:AIRE): Guidance on Comparing Soil Contamination Data with a Critical Concentration, May 2008

DEFRA: Development of Category 4 Screening Levels (C4SLs) for assessment of land affected by contamination – SP1010 Environment Agency (2021): Land Contamination Risk Management. https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm

Environment Agency January 2009: Human health toxicological assessment of contaminants in soil, Science Report – Final SC050021/SR2

Environment Agency January 2009: Updated technical background to the CLEA model, Science Report – SC050021/SR3

Environment Agency 2015: CLEA Software Version 1.071

Environment Agency September 2009: CLEA Software (Version 1.05) Handbook, Science report: SC050021/SR4

Environment Agency November 2008: Compilation of data for priority organic pollutants for derivation of Soil Guideline Values, Science report: SC050021/SR7

Highways Agency Specification for Highway Works (2016) Series 600 Earthworks

Highways Agency HD 26/01 (2001), Pavement Design

Highways Agency Interim Advice Note 73/06 (2009), Design Guidance for Road Pavement Foundations

ListersGeo, (2018) Phase 1 (Desk Study) Investigation Report, 29 Broadwater Road Welwyn Garden City Hertfordshire AL7 3BQ, Report No: 18.11.010, December 2018.

Lord, Clayton and Mortimore, (2002) Engineering in Chalk, Ciria C574, Westminster, London SW1P 3AU.

NHBC Standards (2023)

Peter Brett Associates (2018) PBA Natural and Mining Cavities Databases Search and Review for the Site at 29 Broadwater Road, Welwyn Garden City, AL7 3BQ. Report Ref. 45453/CBH/CE/SC/HG.

Simons and Menzies (2000) A Short Course in Foundation Engineering

Stroud, M. A. & Butler, F. G. (1975). The standard penetration test and the engineering properties of glacial materials. The engineering behaviour of glacial materials: proceedings of the symposium held at the University of Birmingham, 21-23 April, 1975. 2nd Ed. Norwich: Geo Abstracts Ltd

The LQM/CIEH S4ULs for Human Health Risk Assessment (2015)

The Standard Penetration Test (SPT): Methods and Use (1995) CIRIA Report 143

Wilson, S. & Nathanail P., (2019). Correct application of BS8485 to characterise gas risk. Land Quality Management, Technical Briefing Webinar

9 LIMITATIONS

This report has been prepared by SWG solely for the benefit of Hightown Housing Association Limited. It shall not be relied upon or transferred to any third party without the prior written authorisation of SWG.

All information given in this report is based on the ground conditions encountered during the site work, and on the results of laboratory and field tests performed during the investigation. However, there may be conditions at the site which have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes.

It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those measured during the investigation.

British Standards Institute (BSI, 2015) ordinarily recommends that laboratory measurements of strength in cohesive soils be undertaken only on high-quality (Category 'A') undisturbed samples, necessitating the use of wire-line drilling or thin-wall samples tubes. However, given the relatively low geotechnical risk presented and the low probability of being able to recover Category 'A' samples from the anticipated strata, it is considered that the use of such techniques is neither appropriate nor cost-effective.

Appendix A

Site Location Plan

Appendix B

Exploratory Hole Location Plan

524225E

524250E

524275E

524300E

Appendix C

Exploratory Hole Logs and Photos

						Boi	reho	ole Loa	Borenole IN
SOUTH W	EST GEOTEC	HNICAL							Sheet 1 of
Projec	t Name	Broadwate	er Roa	, P	roject No.		Co-ords:	524216 77 - 212628 80	Hole Type
Tojoc				- 1	3896				CP
_ocati	on:	AL7 3BQ	vater R	oad, weiwyn Gard	en City, He	rtiorsnire,	Level:	84.32	1:50
Client		Hightown	Housir	a Association Itd.			Dates:	-	Logged By
									TS
Well	Water Strikes	Sample:	s and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptior	ı
		0.00 - 0.30	В	Results	(,	(,		MADE GROUND: Medium dense (?) dark brown
		$\begin{array}{c} 0.20\\ 0.20\\ 0.20\\ 0.50 - 1.00\\ 0.75\\ 0.75\\ 1.20\\ 1.20\\ 1.50 - 2.00\\ 1.75\\ 1.75\\ 2.00\\ 2.00\\ 2.00\\ 2.50 - 3.00\\ 2.75\\ 2.75\\ 2.75\\ 2.75\\ 3.00\\ 3.00\\ 3.50 - 4.00\\ \end{array}$	D ES V B D ES SPT B D ES SPT B SPT B	N=17 (3,3/4,4,4,5) N=19 (3,4/5,6,4,4) N=14 (4,4/4,4,3,3)	0.30	84.02		slightly silty very gravelly fine to coa subangular SAND. Medium cobble Gravel is fine to coarse angular to s chert, flint, brick, concrete, plastic, g metal. Locally organic. MADE GROUND: Medium dense b orange-brown slightly silty clayey ve SAND. (Locally very sandy GRAVE cobble content. Gravel is fine to coa to subrounded flint, chert and brick. MADE GROUND: Medium dense b orange-brown slightly silty very san clayey GRAVEL. Low cobble conten fine to coarse angular to subrounde and brick.	arse content. subrounded glass and rown to ery gravelly L). Low arse angular rown to dy very nt. Gravel is ad flint, chert
		4.00 4.00 4.50 - 5.00	D	N=13 (2,2/3,3,3,4)	4.50	79.82		Stiff becoming very stiff grey-brown	to brown
		5.00 5.00 5.00 5.00 5.50 - 6.00	D ES SPT B	HVP=84 N=12 (2,2/2,3,3,4) HVP=106			in mottled areas comprise of claye in mottled areas comprise of claye in mottled areas comprise of claye in mottled areas comprise of claye	slightly s fine to alk, nt brown spots v SILT.	
		6.00 6.00 6.50 - 7.00	B	N=13 (2,2/3,3,3,4) HVP=130	6.15	78.17		Firm light brown (locally slightly gra sandy very silty CLAY. (Locally very Gravel is fine to medium rounded q	velly) very v clayey SILT). uartz.
		6.75 6.75 7.00 7.00	D ES D	N=12 (2,2/3,3,3,3)				GLACIOFLOUVIÁL DEPOSITS).	
		7.50 - 8.00 ° 00	В						
	5	8.00 8.50 - 9.00	В	N=9 (1,1/2,2,2,3)					
		9.00	SPT		9.00	75.32	× × ×	Medium dense light brown slightly o	aravelly very
		9.00 9.50 - 10.00	в	N=25 (2,3/5,5,9,6)				clayey very silty fine to coarse suba rounded SAND. Gravel is fine to co to rounded flint and sandstone. (GLACIOFLUVIAL DEPOSITS).	angular to arse angular
	10.00 SPT								

HNICAL Broadwate								
Broadwate				ROI	reho	ole Log	BH01	
Broadwate					T		Sheet 2 of	f3
	ater Road	d 1	Project No.		Co-ords:	524216.77 - 212628.80	CP	е
29 Broadw	dwater R	oad, Welwyn Garo	len City, He	rtforshire,	Level: 84.32		Scale	
AL7 3BQ	2						1:50 Logged B	sv.
Hightown	n Housin	g Association Itd.	-	[Dates:	-	TS	
Samples	les and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
Depth (m)) Type	Results	(m)	(m)				
10.00		10 (2,2/0,0,0,0)						
10.50 - 11.00	00 B		10.50	73.82		Medium dense dark brown (locally l	ight brown)	1
11.00 11.00	SPT	N=26 (6,6/8,6,6,6)				clayey (locally very clayey) silty very GRAVEL. High cobble content. Grav coarse subangular flint. (GLACIOFL DEPOSITS).	/ sandy vel is fine to .UVIAL	11 -
11.50 - 12.00	0 В		11.50	72.82		Danas ta yany danas linkt kusum ali		
11.75	D					very sandy GRAVEL. Low cobble co	ontent.	
12.50 - 13.00 B		50 (7,15/50 for 255mm)				sandstone and chalk. (GLACIOFLU DEPOSITS).	VIAL	12 -
12.50 - 13.00	00 B							
13.00 N=38 (7,10/8,8,10,12 13.50 - 14.00 B		N=38 (7,10/8,8,10,12)						13 -
14.00 14.00	SPT	N=15 (3,3/3,4,4,4)	14.20	70.12		Structureless CHALK comprising of	stiff compact	14 -
14.50 - 15.00	00 B					cream slightly sandy clayey SILT. Tr brown CLAY. (SEAFORD CHALK F Grade Dm).	aces of light ORMATION,	
15.00 - 15.30	30 U							15 -
15.50 - 16.00	00 B							
16.00 16.00	SPT	N=20 (3,1/9,3,4,4)						16 -
16.50 - 17.00	00 B		16.60	67.72		Extremely weak to very weak, white	and cream,	-
17.00	D				┝┸╼┸┲Ӵ ┍┲┸┲┸┲╢	CHALK FORMATION, Grade C4/5).		17 -
17.00 17.00 - 17.25	25 U							
17.50 - 18.00	00 B							
18.00 18.00	SPT	N=13 (2,1/2,5,3,3)						18 -
18.50 - 19.00	00 В							
19.00 19.00 - 19.25	25 U							19 -
19.50 - 20.00	00 в							
20.00	SPT				╞┯└┯└┯	Continued on next shoot		20 -
17 18 19 19 0y I	18.00 18.00 18.00 .50 - 19.0 .90 - 19.2 .50 - 20.0 20.00 nand to at 22.36	.50 - 18.00 B 18.00 SPT 18.00 B .50 - 19.00 B 19.00 D .00 - 19.25 U .50 - 20.00 B 20.00 SPT nand to 1.20mbg at 22.36mbgl. 5. I	18.00 SPT 18.00 SPT 18.00 B .50 - 19.00 B .19.00 D .00 - 19.25 U .50 - 20.00 B 20.00 SPT nand to 1.20mbgl. 2. Drilled with Data 22.36mbgl. 5. Backfilled with gray	18.00 SPT 18.00 SPT 18.00 B .50 - 19.00 B .9.00 D .00 - 19.25 U .50 - 20.00 B 20.00 SPT star 22.36mbgl. 5. Backfilled with gravel and arisis	18.00 SPT 18.00 SPT 18.00 SPT 19.00 B 19.00 D .50 - 19.25 U .50 - 20.00 B 20.00 SPT nand to 1.20mbgl. 2. Drilled with Dando 150 Cable percusat 22.36mbgl. 5. Backfilled with gravel and arisings.	.50 - 18.00 B 18.00 SPT 18.00 SPT 18.00 B .50 - 19.00 B 19.00 D .00 - 19.25 U .50 - 20.00 B 20.00 SPT .50 - 20.00 B .50 - 20.00 SPT .50 - 20.00 SPT <t< td=""><td>18.00 SPT 18.00 SPT 18.00 SPT 19.00 B 19.00 D .00 - 19.25 U .50 - 20.00 B 20.00 SPT 20.00 SPT 20.00 SPT 20.00 SPT 20.00 SPT 20.00 SPT Continued on next sheet The sheet <t< td=""><td>.50 - 18.00 B 18.00 SPT 18.00 SPT .50 - 19.00 B 19.00 D .00 - 19.25 U .50 - 20.00 B 20.00 SPT .50 - 19.00 B .50 - 19.00 Continued on next sheet .50 - 19.00 Continued on next sheet .50 - 20.00 B .50 - 20.01 B .50 - 20.02 B .50 - 20.03 B .50 - 20.04 B .50 - 20.05 B .50 - 20.06 B</td></t<></td></t<>	18.00 SPT 18.00 SPT 18.00 SPT 19.00 B 19.00 D .00 - 19.25 U .50 - 20.00 B 20.00 SPT 20.00 SPT 20.00 SPT 20.00 SPT 20.00 SPT 20.00 SPT Continued on next sheet The sheet <t< td=""><td>.50 - 18.00 B 18.00 SPT 18.00 SPT .50 - 19.00 B 19.00 D .00 - 19.25 U .50 - 20.00 B 20.00 SPT .50 - 19.00 B .50 - 19.00 Continued on next sheet .50 - 19.00 Continued on next sheet .50 - 20.00 B .50 - 20.01 B .50 - 20.02 B .50 - 20.03 B .50 - 20.04 B .50 - 20.05 B .50 - 20.06 B</td></t<>	.50 - 18.00 B 18.00 SPT 18.00 SPT .50 - 19.00 B 19.00 D .00 - 19.25 U .50 - 20.00 B 20.00 SPT .50 - 19.00 B .50 - 19.00 Continued on next sheet .50 - 19.00 Continued on next sheet .50 - 20.00 B .50 - 20.01 B .50 - 20.02 B .50 - 20.03 B .50 - 20.04 B .50 - 20.05 B .50 - 20.06 B

									Borehole No.
COUTH W						Boi	reho	ole Log	BH01
SOUTH W	EST GEOTEC	HNICAL					1	_	Sheet 3 of 3
Projec	t Name	: Broadwate	er Roa	d	Project No. 13896		Co-ords:	524216.77 - 212628.80	Hole Type
Loooti	<u></u>	29 Broadw	/ater F	Road, Welwyn Ga	rden City, He	rtforshire,		04.22	Scale
Locat	on.	AL7 3BQ					Level: 64.32		1:50
Client		Hightown	Housir	ng Association Itd			Dates: -		Logged By TS
Well	Water	Samples	s and	In Situ Testing	Depth	Level	legend	Stratum Description	1
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona		•
		20.00		N=19 (5,4/5,5,6,3	5)				
		20.50 - 21.00	в						
		21.00 - 21.15	υ						21 -
		21.50 - 22.00	В		21.50	62.82		Very weak, white and cream, very o	losely
								fractured CHALK. (SEAFORD CHA FORMATION, Grade C4/5).	LK
		22.00 22.00	SPT	50 (8.12/50 for					22 -
				210mm)	22.36	61.96		End of borehole at 22.36 m	
									22 -
									23
									24 -
									25 -
									-
									26 -
									27 -
									21
									-
									28 -
									-
									29 -
Remo	rks								30 -
1. Exc Hole t	avated l erminate	by hand to 1.2 ed at 22.36mb	20mbg ogl. 5.	l. 2. Drilled with D Backfilled with gra	ando 150 Ca avel and aris	able percus ings.	ssive rig. 3	. No groundwater strike identified	AGS

l

									Borehole No.
						Boi	reho	ble Log	BH02
SOUTH W	EST GEOTECI	INICAL						.	Sheet 1 of 2
Projec	ct Name:	Broadwate	er Roa	d	Project No.		Co-ords:	524291.58 - 212670.27	Hole Type
Locat	ion:	29 Broadw AL7 3BQ	ater F	Road, Welwyn Garo	den City, He	ertforshire,	Level:	84.35	Scale 1:50
Client	:	Hightown I	Housir	ng Association Itd.			Dates:	-	Logged By TS
14/-11	Water	Samples	and	In Situ Testing	Depth	Level		Otestus Description	
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legena	Stratum Description	
		0.50 0.50 0.50 - 1.00 0.90 1.00 1.00 1.20 1.20 1.50 - 2.00 1.75 1.75	D ES D D S PT B D S PT B D S V S PT	N=18 (3,3/3,4,4,7)	1.10	83.24		MADE GROUND: Loose to medium slightly clayey slightly silty very grax coarse angular to subrounded SAN cobble content. Gravel is fine to coa to subangular flint, chert, concrete, metalwork, cables and plastic. MADE GROUND: Medium dense bi orange-brown (locally red-brown) gr clayey fine to medium SAND. Low of content. Gravel is fine to coarse and subrounded flint, chert and chalk.	relly fine to D. Medium arse angular chalk, and 1 rown to ravelly very cobble gular to 2
		2.00 2.00 2.50 - 3.00 3.00 3.00 3.00 3.00 3.50 - 4.00	SPT B D ES SPT B	N=29 (5,6/9,6,6,8) N=16 (2,2/4,4,4,4)	3.50	80.84		MADE GROUND: Firm brown to lig sandy (locally very sandy) silty very CLAY. Gravel is fine to coarse angu	at brown gravelly lar to
	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Stiff grey-brown slightly gravelly slig	4 htly sandy vel is fine to				
			Wery stiff brown to grey brown grave	Ik, mudstone 5 POSITS).					
		6.00 6.00	SPT	50 (4,11/50 for 184mm)	6.20	78.14		coarse angular to subrounded flint, chalk. (GLACIAL TILL DEPOSITS). Very dense light brown to grey-brow	chert and 6
		6.00 6.50 - 7.00 6.75 6.75 7.00	B D ES	50 (6,15/50 for 100mm)				SIITY Very sandy GRAVEL. (Locally V SAND). Low cobble content. Gravel coarse angular to rounded flint, che (GLACIOFLUVIAL DEPOSITS).	is fine to rt and chalk.
		7.50 - 8.00 8.00	В	50 (25 for 120mm/5 for 72mm)	0				8
		8.30 - 8.60 8.60 - 9.00 8.75 8.75 9.00 9.00	B D ES SPT	N=12 (2,2/3,3,3,3)	8.60	75.74		Structureless CHALK comprising of cream gravelly sandy SILT. The gra medium angular to subrounded very density white to light grey very weal occasional flint. Traces of white clay CHALK FORMATION, Grade Dm).	stiff compact vel is fine to y weak, low c chalk and y. (SEAFORD
		10.00 - 10.45	U					Continued on next sheet	10

									Borehole N	٧o.
						Boi	reho	ole Log	BH02	2
SOUTH W	EST GEOTEC	HNICAL					1	U	Sheet 2 of	f 2
Projec	t Name	: Broadwate	er Roa	d I	Project No. 13896		Co-ords:	524291.58 - 212670.27	Hole Typ CP	е
Locati	on:	29 Broadv AL7 3BQ	vater F	Road, Welwyn Gar	den City, He	ertforshire,	Level:	84.35	Scale 1:50	
Client	:	Hightown	Housir	ng Association Itd.			Dates:	-	Logged E	Зу
Wall	Water	Samples	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	10	
vven	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legenu	Stratum Description		
		$10.50 \\ 10.50 - 11.00 \\ 11.00 \\ 11.00 \\ 11.50 - 12.00 \\ 12.00 \\ 12.00 \\ 12.50 - 13.00 \\ 13.00 \\ 13.00 \\ 13.50 - 14.00 \\ 14.00 \\ 14.00 \\ 14.00 \\ 10.50 - 11.00 \\ 10.5$	D B SPT B C SPT B C	N=14 (3,3/3,3,4,4) N=14 (3,3/3,3,4,4)	10.50	73.84		Extremely weak to very weak, white very closely fractured CHALK. (SE/ CHALK FORMATION, Grade C4/5) Extremely weak to very weak, white very closely fractured CHALK. (SE/ CHALK FORMATION, Grade C4/5)	and cream, FORD	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		N=14 (3,3/3,3,4,4) N=28 (3,5/5,6,7,10 50 (6,7/50 for 250mm)) 14.50	69.84		Very weak, white and cream, very of fractured CHALK. (SEAFORD CHA FORMATION, Grade C4/5).	losely LK	
Rema	rks								AG	<u> </u> 20 – S

									Borehole N	۷o.
COUTH M						Bo	reho	ole Log	BH03	3
SOUTHW	GEOTEC	HNICAL					1		Sheet 1 of	f3
Projec	ct Name	: Broadwate	er Roa	d I	Project No.		Co-ords:	524266.69 - 212621.01	Hole Type	е
Locati	ion [.]	29 Broadv	vater F	Road, Welwyn Garo	den City, He	ertforshire,		8/ 31	Scale	
		AL7 3BQ						04.01	1:50	
Client	:	Hightown	Housir	ng Association Itd.			Dates:	-	TS	, y
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	ı	
	Strikes	Depth (m)	Туре	Results	(m)	(m)			<u></u>	
		0.00 - 0.50 0.40 0.40 0.50 - 1.20 1.20 1.20 1.50 - 2.00	D ES V B SPT B	N=16 (4,5/3,4,4,5)	0.50	83.81 83.01		slightly clayey silty very gravelly fin subangular SAND. Medium dense (Gravel is fine to medium angular to chert, fint and concrete. Locally or Nodules of slightly organic sandy s MADE GROUND: Medium dense b brown slightly silty slightly clayey ve fine to coarse angular to subrounde cobble content. Gravel is fine to co-	to coarse content. subrounded janic. ilty CLAY. rown to red- ery gravelly ed SAND. Low arse angular	1 -
	1.20 SP1 1.20 N=16 (4,5/3,4,4, 1.50 - 2.00 B 1.60 D 1.60 ES 1.60 V 2.00 SPT 2.00 SPT				2.20	82.11		MADE GROUND: Medium dense b very clayey very gravelly fine to coa subangular SAND. (locally very sar Gravel is fine to medium angular to chert, flint and sandstone. Locally o Nodules of slightly organic sandy s MADE GROUND: Medium dense b clayey (locally very clayey) very sar	and brick. rown silty arse udy CLAY). subrounded yrganic. ity CLAY. rown silty ndy GRAVEL.	2 -
	2.75 D 2.75 ES 3.00 SPT 3.00 A.00 B 3.50 - 4.00 B			N=18 (2,4/6,4,4,4)				Low cobble content. Gravel is fine t angular to subrounded flint and che content increases with depth with ir frequency of around 10cm wide by nodules of firm light brown to orang	o coarse ert. Clay icrease in 5cm thick ge-brown and	3 -
		3.80 3.80 4.00 4.00 4.50 - 5.00	D ES SPT B	N=16 (4,3/4,3,5,4)	4.20	80.11		Stiff becoming very stiff grey-brown (becomes dark grey-brown by 5.2m	to brown	4 -
		4.60 4.60 4.60 5.00 5.00 5.50 - 6.00	D ES V SPT B	HVP=120 N=13 (2,3/3,3,3,4) HVP=120				Gravel is fine to medium angular to chalk and sandstone. (GLACIAL TI DEPOSITS).	subrounded LL	5 -
		6.00 6.00	SPT	N=38 (2,5/10,9,9,10) 6.15	78.16		Madium dance to dance light brown	alightly	6 -
		6.50 - 7.00 6.75 6.75 6.75 7.00 7.00 7.50 - 8.00 8.00 8.50 - 9.00 8.75 8.75 9.00	B ES V SPT B B D ES	50 (3,8/50 for 230mm) N=37 (10,13/10,12,6,9) N=25 (5,6/8,8,9,0)				Medium dense to dense light brown clayey very sandy GRAVEL) Low c Gravel is fine to coarse angular to r sandstone and chalk. (GLACIOFLL DEPOSITS).	i slightiy obble content. ounded flint, IVIAL	7 - 8 - 9 -
		9.50 - 10.00	в					Anata in the second		-10 -
Rema	arks							Continued on next sheet		
									AGS	S

									Borehole N	۷o.	
						Boi	reho	ble Log	BH03	3	
SOUTH W	EST GEOTEC	HNICAL					T	•	Sheet 2 of	f 3	
Projec	ct Name	: Broadwate	er Roa	H F	Project No. 13896		Co-ords:	524266.69 - 212621.01	Hole Typ CP	e	
Locati	ion:	29 Broadw	/ater R	oad, Welwyn Garo	den City, He	rtforshire,	Level:	84.31	Scale		
<u>.</u>									1:50 Logged B	Зу	
Client	:	Hightown	Housir	ig Association ltd.			Dates:	-	TS	- 	
Well	Water Strikes	Sample:	s and	n Situ Testing	Depth Leve (m) (m)	Level (m)	Legend	Stratum Description			
		10.00	туре	N=34 (25 for			0.00.0			-	
		10.50 11.00		120mm/12,8,7,7)							
		10.50 - 11.00	В								
		11.00	SPT							11	
		11.00		50 (13,8/50 for 225mm)							
I		11.50 - 12.00	D								
		11.75 11.75	D ES			72.11					
		12.00 12.00	D SPT		12.20		72.11		Structureless CHALK comprising of	stiff compact	12 ·
		12.00 12.50 - 13.00	в	N=15 (5,6/3,4,4,4)					cream slightly gravelly SILT. The gra	avel is fine to	
									weak, low density, cream chalk. (SE	AFORD	
		13.00 - 13.45	U							13	
	13.9	12 50									
		13.50	ES B								
		14.00 14.00 14.00 N=16 (2,3/3,4,4,5)						14			
		14.00		N=16 (2,3/3,4,4,5)							
		14.50 - 15.00	0 - 15.00 B								
		15.00 - 15.45	U							15	
		15.50 15.50 - 16.00	DB								
		10.00			10.00					10	
		16.00	571	N=20 (3,3/4,5,4,7)	16.00	08.31		Extremely weak to very weak, white very closely fractured CHALK. (SEA	and cream, FORD	- 16	
		16.50 - 17.00	в					CHALK FORMATION, Grade C4/5)			
		17.00 - 17.15 U	17.00 - 17.15 U								
		17.50	D								
		17.50 - 18.00	В								
		18.00 18.00	SPT	N=13 (1 2/2 2 3 6)	18.00	66.31		Extremely weak to very weak, white	and cream,	- 18	
		10.00		11-10(1,2/2,2,0,0)				very closely fractured CHALK. (SEA CHALK FORMATION, Grade C4/5).	FORD		
	1	18.50 - 19.00	В								
		19.00 - 19.20	D		19.00	65.31		Very weak white and cream very c	loselv	19	
		19.10 19.10	D ES					fractured CHALK. (SEAFORD CHA FORMATION. Grade C4/5).	LK		
	1	19.50 - 20.00	В					, ,			
		20.00	SPT							20 -	
Rema	urks							Continued on next sheet			

									Borehole N	۱o.
						Boi	reho	ole Log	BH03	3
SOUTH W	EST GEOTECH	INICAL						0	Sheet 3 of	f 3
Projec	t Name:	Broadwate	er Road	b	Project No. 13896		Co-ords:	524266.69 - 212621.01	Hole Typ CP	е
Locati	on:	29 Broadv AL7 3BQ	vater R	oad, Welwyn Ga	rden City, He	ertforshire,	Level:	84.31	Scale	
Client	:	Hightown	Housin	ng Association Itd			Dates:		Logged B	3y
		Sample	e and l	n Situ Testing					15	1
Well	Strikes	Depth (m)	Type	Results	(m)	(m)	Legend	Stratum Descriptio	n	
		20.00		50 (7,8/50 for 185mm)	20.34	63.97		End of borehole at 20.34		
										-
										21 -
										-
										22 -
										-
										-
										23 -
										-
										-
										-
										24 -
										-
										-
										25 -
										25
										-
										26 -
										-
										27 -
										20
										29 -
										-
										-
										30 -
rema	1KS								AGS	S

									Borehole No.	
						Boi	reho	ble Log	DPSH39)
SOUTH W	EST GEOTEC	HNICAL							Sheet 1 of 2	
Projec	t Name	: Broadwate	er Road		Project No.		Co-ords:	524248.17 - 212664.63	Hole Type	
		29 Broadw	ater Ro	ad, Welwyn Ga	rden City, He	rtforshire,		04.00	Scale	
Locati	on:	AL7 3BQ		, , , -	- ,,	,	Level:	84.08	1:50	
Client	:	Hightown	Housing	Association Itd			Dates:	-	Logged By TS	
14/-11	Water	Samples	and Ir	situ Testing	Depth	Level		Otersteine Deservicitier		
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		0.75 3.80 3.80 3.80 4.20 4.20 4.20 4.20 4.20 4.20 4.20 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6	D D S V D S S V D S S V D S S V D S S V D S S V D S S S S V D S S S S V D S S S S V D S S S S V D S S S S S S S S S S S S S		0.60 3.50 4.00 5.70 6.60 7.20 7.50	83.48 80.58 80.08 78.38 77.47 76.88 76.58		MADE GROUND: Stiff to very stiff to brown silty very gravelly very sar (locally very clayey GRAVEL). Grav coarse angular to subrounded flint, concrete. MADE GROUND: Medium dense (? brown becoming dark brown slightly clayey silty fine to medium SAND. O to coarse subangular flint. MADE GROUND: Loose (?) grey-b green-brown silty very clayey very s GRAVEL. Hydrocarbon odour. Firm dark grey-brown slightly grave slightly sandy) silty CLAY. Gravel is medium angular to subrounded cha sandstone. (GLACIAL TILL DEPOS Very stiff dark grey-brown slightly gr sandy silty CLAY. Gravel is fine to n angular to subangular chalk and sa (GLACIAL TILL DEPOSITS). Firm to stiff orange-brown brown ar mottled (locally slightly gravelly) sar sandy silty to very silty CLAY. Local Gravel is fine to coarse subrounded quartz. (GLACIOFLUVIAL DEPOSI Dense (?) dark brown slightly grave clayey fine to medium SAND. Grave medium subrounded flint and quartz (GLACIOFLUVIAL DEPOSITS).	range-brown idy CLAY el is fine to and ?) orange- / gravelly Gravel is fine Gravel is fine fine fine to lk and ITS). fine to li s fine to z. y slightly silty very el is fine to z. y slightly silty silty fine to z. statements fine to fine to f	
	10.00 - 10.50 B		B					very sandy GRAVEL. Gravel is fine subangular to rounded flint, chert, s chalk and quartz. Low to medium co (GLACIOFLUVIAL DEPOSITS).	to coarse andstone, obble content.	9 -
Der	rko	10.00 - 10.50	В				**	Continued on next sheet	10	0 —
Kema	emarks								AGS	

									Borehole N	۱o.
CONTUNI						Boi	reho	ole Log	DPSH3	39
SOUTHW	GEOTEC	HNICAL						_	Sheet 2 of	f 2
Projec	ct Name:	: Broadwate	er Road	d	Project No. 13896		Co-ords:	524248.17 - 212664.63	Hole Type	е
Locati	ion [.]	29 Broadv	vater R	oad, Welwyn Ga	rden City, He	rtforshire,	l evel:	84 08	Scale	
Loout		AL7 3BQ					20101.	01.00	1:50	87
Client	:	Hightown	Housin	ng Association Itd			Dates:	-	TS	у
Wall	Water	Samples	s and I	n Situ Testing	Depth	Level	Logond	Stratum Description		
vven	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
										-
										-
										-
										11 -
							0.000			-
										-
										12 -
										-
										-
							0.000			-
		13.00 - 14.00	D		13.00	71.08		Structureless CHALK comprising of	firm cream	13 -
								to light yellow gravelly sandy clayey is of fine to coarse angular to subro	SILT. Gravel	-
								weak chalk and medium strong flint CHALK FORMATION, Grade Dm).	. (SEAFORD	-
					14.00	70.08		·		-
					14.00	10.00		End of borehole at 14.00 m		-
										-
										-
										15 -
										-
										-
										16 -
										-
										-
										-
										17 -
										18 -
										-
										-
										-
										19 -
										-
										-
										20 -
Rema	irks									
									AGS	5

	0					Po	coho			0. E
SOUTH W	EST GEOTEC	HNICAL				DUI	enc	Jie Lug		ວ
_		_			Proiect No.				Hole Type	2
Projec	ct Name:	Broadwate	er Road		13896		Co-ords:	524241.12 - 212661.79	CP	
Locati	ion:	29 Broadv	vater Ro	oad, Welwyn Gar	den City, He	rtforshire,	Level:	83.94	Scale	
		AL7 3BQ							1:50 Logged By	/
Client	:	Hightown	Housin	g Association Itd.			Dates:	-	TS	
Well	Water	Samples	s and Ir	n Situ Testing	Depth	Level	Legend	Stratum Description	,	
TTO:	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona			
		0.50 0.50 1.00	D ES D		0.80	83.14		MADE GROUND: Stiff to very stiff to brown gravelly sandy (becoming ve silty CLAY (locally very clayey GRA cobble content. Gravel is fine to coa to subrounded flint, chert, brick and MADE GROUND: Medium dense (7 orange-brown gravelly silty very cla medium SAND. Gravel is fine to coa subangular flint, chert, sandstone a	rown to light ry sandy) VEL). Low arse angular concrete. ?) brown to yey fine to arse nd brick.	1
	2.00 - 2.50 B				1.50	82.44		MADE GROUND: Medium dense (very clayey very gravelly GRAVEL. t coarse angular to subangular flint, mudstone, limestone and concrete.	?) brown silty Gravel is fine chert,	2 3 4
	4.7	4.70 D 5.50 D	D		4.50	79.44		Very stiff dark grey-brown (locally g gravelly (locally slightly sandy) silty is fine to medium angular to subrou sandstone, mudstone and flint. (GL DEPOSITS).	rey) slightly CLAY. Gravel nded chalk, ACIAL TILL	5
8		7.00 - 7.50 8.00 - 8.50 9.50 - 10.00	В		6.40 6.60	77.54 77.34		Medium dense (?) brown clayey (lo clayey) silty gravelly fine to medium cobble content. Gravel is fine to coa subangular to rounded flint, chert ar (GLACIOFLUVIAL DEPOSITS). Dense (?) light brown slightly clayey very sandy GRAVEL. Gravel is fine subangular to rounded flint, chert, s chalk and quartz. Low to medium co (GLACIOFLUVIAL DEPOSITS).	cally very SAND. Low arse nd sandstone. y slightly silty to coarse andstone, obble content.	6 7 8 9
										40
<u></u>							*	Continued on next sheet	1	10

							Borehole N	No.		
						Bo	reho	ole Log	DPSH4	45
SOUTH W	EST GEOTEC	HNICAL						•	Sheet 2 of	f 2
Projec	t Name	: Broadwate	er Road	b	Project No.		Co-ords:	524241.12 - 212661.79	Hole Typ	e
		29 Broadw	/ater R	oad. Welwyn Ga	rden City. He	ertforshire			Scale	
Locati	on:	AL7 3BQ				, and the second s	Level:	83.94	1:50	
Client	:	Hightown	Housin	g Association Itd			Dates:	-	Logged E TS	Зу
Wall	Water	Samples	s and I	n Situ Testing	Depth	Level	Logond	Stratum Description		
vven	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legena	Stratum Description		
		10.40 - 11.00	D		10.40	73.54 72.94		Structureless CHALK comprising of gravelly clayey SILT. Gravel is of mu angular very weak chalk and mediu (SEAFORD CHALK FORMATION, End of borehole at 11.00 m	firm cream edium m strong flint. Grade Dm).	- 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 -
Roma	rke									20 -
Tenid	ii NG								AG	S

SOUTH W	EST GEOTEC	INICAL				Boi	reho	ole Log	Borehole N WS01	lo.
Proied	ct Name:	Broadwate	er Roa	d	Project No.		Co-ords:	524272.96 - 212610.57	Sheet 1 of Hole Type	: 1 e
Locati	ion:	29 Broadv AL7 3BQ	vater R	oad, Welwyn Gar	13896 den City, He	rtforshire,	Level:	84.24	WS Scale 1:50 Logged B	v
Client	:	Hightown	Housir	ig Association ltd.			Dates:	-	TS	, T
Well	Water Strikes	Samples	s and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	ı	
Rema	rks	0.50 0.50 0.75 1.00 1.10 - 2.00 2.00 2.50 2.50 3.00 3.00 - 4.00 3.50 4.00 4.80 5.00	D ES D D ES D ES	N=9 (3,2/3,2,2,2) N=18 (3,3/3,5,5,5) N=20 (5,5/5,6,5,4) N=11 (4,3/2,3,3,3) HVP=130 N=12 (2,3/3,3,3,3)	0.55 1.10) 2.80) 4.50) 5.45	83.69 83.14 81.44 79.74 78.79		MADE GROUND: Loose (?) orange slightly silty gravelly fine to medium Gravel is fine to coarse angular to s flint, concrete and glass. MADE GROUND: Stiff brown to ora gravelly sandy silty CLAY. Gravel is coarse subangular to subrounded fi sandstone. MADE GROUND : Loose becoming dense orange-brown clayey silty (lo gravelly) fine to medium subrounde GRAVEL. Gravel is fine to medium subrounded flint. Stiff becoming very stiff grey-brown gravelly (locally slightly sandy) CLA fine to medium angular to rounded sandstone. (GLACIAL TILL DEPOS End of borehole at 5.45 m	e-brown SAND. subangular inge-brown fine to lint and g medium cally slightly d SAND. rown to sandy angular to slightly Y. Gravel is chalk and ITS).	
									AGS	5

						Bo	reho	ole Log	Borehole No.
SOUTH W	EST GEOTECI	HNICAL			Desis et Nie			0	Sheet 1 of 1
Projec	ct Name:	Broadwate	er Roa	d	13896		Co-ords:	524288.58 - 212654.18	WS
Locat	ion:	29 Broadv AL7 3BQ	vater F	Road, Welwyn Ga	rden City, He	ertforshire,	Level:	84.39	Scale
Client	:	Hightown	Housii	ng Association Itd.			Dates:	-	Logged By TS
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	1
	Vater Samples and in Situ Testing Depth (m) Type Results 0.50 D Strikes N=32 (4,4/5,6,6) 0.50 V 0.50 V 0.90 D N=32 (4,4/5,6,6) N=43 (9,9/7,10,13,7) 1.50 2.50 D N=32 (4,4/5,6,6) 2.00 N=43 (9,9/7,10,13,7) N=30 (6,6/7,7,7) 3.00 V N=30 (6,6/7,7,7) 3.00 N=30 (6,6/7,7,7) N=30 (6,6/7,7,7) 3.00 V N=30 (6,6/7,7,7) 3.00 V N=30 (6,6/7,7,7) 3.00 N=14 (3,3/4,4,7) V 4.00 N=14 (3,3/4,4,7) V N=14 (3,3/4,4,7) N=8 (2,2/2,2,2) N=8 (2,2/2,2,2)			Results N=32 (4,4/5,6,8,1) N=43 (9,9/7,10,13,13) N=30 (6,6/7,7,7,5) N=14 (3,3/4,4,3,3) HVP=99 HVP=112 HVP=110 N=8 (2,2/2,2,2,2)	((11) 0.30 1.10 3) 1.45 () 4.40) 5.45	(11) 84.09 83.29 82.94 79.99 78.94		MADE GROUND: Loose (?) light br silty very sandy GRAVEL. Low cobb Gravel is fine to coarse angular to s chert and concrete. MADE GROUND: Very stiff dark gr becoming orange-brown (locally ligh mottled) sandy very gravelly CLAY. to coarse angular to subrounded flin MADE GROUND: Dense light brow sandy GRAVEL. Low cobble conter fine to coarse angular to subrounde chert. MADE GROUND: Dense becoming dense brown to light brown clayey (clayey) silty gravelly (locally very gr medium SAND. Gravel is fine to coar to subrounded flint and chert. Stiff becoming very stiff grey-brown gravelly (locally slightly sandy) CLA fine to medium angular to subround sandstone. (GLACIAL TILL DEPOS End of borehole at 5.45 m	rown slightly be content. subrounded ay-brown ht brown Gravel is fine n clayey ht. Gravel is d flint and i medium locally very avelly) fine to arse angular 3 - 3 - 3 - 3 - 4 - 5 - 5 - 8 - 8 - 8 - 9 - 10 -
I Vellia	ΠNƏ								AGS

									Borehole No.
SOUTH W		HNICAL				Bo	reho	ole Log	WS03
					Project No.				Hole Type
Projec	t Name:	Broadwate	er Roa	d	13896		Co-ords:	524234.64 - 212644.69	WS
Locati	on:	29 Broadv AL7 3BQ	vater F	load, Welwyn Gar	rden City, He	ertforshire,	Level:	83.72	Scale 1:50
Client	:	Hightown	Housir	ng Association Itd.			Dates:	-	Logged By TS
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Descriptior	1
	0.60 D 0.60 ES 0.60 V 1.00 D 1.75 D 1.75 ES 1.75 V 2.00 N=14 (3,2/2,4				(m) 0.70	(m) 83.02	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MADE GROUND: Stiff brown to ora silty very gravelly very sandy CLAY, fine to coarse angular to subrounde sandstone and ceramic. MADE GROUND: Medium dense o slightly clayey slightly silty very grav coarse angular to subangular SANI fine to coarse angular flint and cher	range-brown Gravel is ed chert, flint, range-brown velly fine to D. Gravel is t.
		1.75 1.75 1.75 2.00 2.00 - 3.00	D ES V D	N=14 (3,2/2,4,3,5	2.00	81.72		MADE GROUND: Medium dense b brown silty very clayey very sandy Gravel is fine to coarse angular to s flint and chert.	rown to light GRAVEL. subrounded
		3.00		N=14 (3,3/2,4,4,4	3.20	80.52		MADE GROUND Stiff brown to ligh sandy silty very gravelly CLAY.	t brown
Rema	3.00 N=14 (3,3/2,4,4) 3.75 D 4.00 N=15 (3,2/3,4,4) HVP=130 4.80 D 4.80 D 5.00 ES HVP=150 S.00 N=28 (5,4/6,6,6,6)		N=15 (3,2/3,4,4,4 HVP=130 HVP=150 N=28 (5,4/6,6,6,10) 4.30 5.10 5.45	79.42 78.62 78.27		Stiff becoming very stiff grey-brown gravelly (locally slightly sandy) CLA fine to medium angular to rounded and sandstone. (GLACIAL TILL DE Medium dense brown to grey-brown sandy GRAVEL. Low cobble conter is fine to coarse angular to subangu (GLACIOFLUVIAL DEPOSITS). End of borehole at 5.45 m	slightly Y. Gravel is chalk, flint POSITS). 5 - n silty very nt (?). Gravel lar flint. 7 - 8 - 8 - 9 - 10 -	
, conta									AGS

									Borehole N	No.
SOUTH W		HNICAL				Bo	reho	ole Log	WS04	1
					Proiect No.				Sheet 1 of Hole Type	t 1 e
Projec	t Name:	Broadwate	er Roa	d	13896		Co-ords:	524255.58 - 212644.23	WS	
Locati	on:	29 Broadv AL 7 3BQ	vater R	load, Welwyn Gar	den City, He	rtforshire,	Level:	83.63	Scale	
Client		Hightown	Housin	Acception Itd			Deteci		Logged B	By
Client	•	nightown					Dates.	-	TS	1
Well	Water Strikes	Sample:	s and I	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	I	
		Depth (m)	Туре	Results	()	(,		MADE GROUND: Very stiff brown s	ilty very	÷.
					0.40	83.23		sandy very gravelly CLAY. Gravel is coarse angular to subrounded flint,	fine to brick and	
		0.50 - 3.00	D					Concrete. MADE GROUND: Loose brown to c	/ prange-brown	
		1.00		N=10 (2,2/2,3,3,2)			silty very clayey very gravelly SANE fine to coarse angular to subangula). Gravel is r flint and	1 -
					,			concrete.		
		1.50	D							-
		1.50	ES							
		2.00		N=7 (3,2/2,1,2,2)						2 -
		3.00		N=4 (1,1/1,1,1,1)	3.10	80.53				3 -
								MADE GROUND: Firm brown to light slightly gravelly silty CLAY. Gravel is	nt grey-brown s fine to	
								medium angular to subrounded cha (Reworked GLACIAL TILL DEPOSI	lk and flint. TS).	
		4.00		HVP=62						
		4.00 4.00		N=16 (2,3/3,3,5,5) 4 30	79 33				-
					4.50	13.55		Stiff becoming very stiff grey-brown gravelly (locally slightly sandy) CLA	slightly Y. Gravel is	-
		4.75	D	HVP=140				fine to medium angular to subround sandstone. (GLACIAL TILL DEPOS	ed chalk and ITS).	
		4.80	DES	1111 - 140						5 -
		5.00		N=15 (1,2/3,4,4,4) 5.45	78.18	· · · · · · · · · · · · · · · · · · ·	End of boroholo at 5.45 m		
										6 -
										-
										7 -
										1
										-
										8 -
										9 -
										-
										10 -
Rema	rks									
										2
									AUD	2

										Borehole N	ю.
							Boi	reho	ole Log	WS05	1
SOUTH W	EST GEOTEC	HNICAL							•	Sheet 1 of	1
Projec	t Name:	Broadwate	er Roa	d	Projec 13896	t No.		Co-ords:	524231.95 - 212655.17	Hole Type WS	;
Locati	on:	29 Broadv AL7 3BQ	vater F	Road, Welwyn Ga	rden Ci	ity, He	rtforshire,	Level:	84.12	Scale 1:50	
Client	:	Hightown	Housir	ng Association Itd				Dates:	-	Logged By TS	у
	Water	Samples	s and	In Situ Testing	D	epth	Level	Levend	Stratum Department		
vveii	Strikes	Depth (m)	Туре	Results	((m)	(m)	Legena	Stratum Description		
		0.25	D		0).50	83.62		MADE GROUND: Stiff brown to ora silty very gravelly very sandy CLAY. fine to coarse angular to subrounde sandstone and ceramic	nge-brown Gravel is d chert, flint,	
		0.76	D						MADE GROUND: Medium dense or silty very sandy very clavey GRAVE	range-brown	
		1.00		N=21 (2,2/4,5,6,6	5)				fine to coarse angular flint concrete	and chert.	1 -
		1.25	D								-
					1	70	92.42				-
		0.00		N 70		.70	02.42		MADE GROUND: Very dense orang slightly silty slightly clayey very grav	ge-brown /elly fine to	-
		2.00		N=79 (18,18/16,19,21,2	3) 2	2.08	82.04		coarse SAND. Medium cobble conte	ent. Gravel is d flint. chert	2 -
									L and concrete. End of borehole at 2.08 m	· · · · · · · · · · · · · · · · · · ·	-
											-
											3 -
											-
											-
											-
											4 -
											-
											-
											5 -
											-
											-
											6 -
											-
											-
											7 -
											-
											-
											-
											-
											9 -
											10 -
Rema	rks										
										AGS	

									Borehole N	lo.
SOUTH		HNICAL				Bo	reho	ole Log	WS06	5
3001111	GEOTEC				Project No				Sheet 1 of Hole Type	1
Projec	ct Name:	Broadwate	er Roa	d	13896		Co-ords:	524235.84 - 212670.15	WS	C
Locat	ion:	29 Broady	vater F	Road, Welwyn Gar	den City, He	rtforshire,	Level:	83.94	Scale	
		ALI JOQ							Logged B	sv
Client	:	Hightown	Housir	ng Association Itd.			Dates:	-	TS	,
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	l	
	Strikes	Depth (m)	Туре	Results	(m)	(m)			n cilty yeny	
		0.50 1.00 1.50 - 2.00	D	N=4 (1,1/1,1,1,1)	1.20	82.74		MADE GROUND: Loose becoming dense orange-brown slightly silty si slightly gravelly fine to medium SAN	medium ghtly clayey ID. Gravel is	1-
		2.00		N=23 (8,5/6,5,6,6)			fine to medium angular to subround flint and chert.	ed angular	2
		3.00 3.75 4.00	D	N=13 (4,3/3,3,3,4 N=14 (3,3/3,3,4,4) 3.50	80.44 79.84		MADE GROUND: Medium dense bi sandy very clayey GRAVEL. Gravel coarse angular to subrounded flint.	rown silty is fine to	3
		5.00		72 (3,4/72 for 225mm)	5.45	78.49		gravelly (locally slightly sandy) CLA fine to medium angular to rounded sandstone. (GLACIAL TILL DEPOS	Signay Y. Gravel is chalk and ITS).	5 -
Rema	rks							End of borehole at 5.45 m		6 - 7 - 8 - 9 - 9 - 10 -
									AGS	S

									Borehole No.
SOUTH W		INICAL				Bo	reho	ole Log	WS07
					Project No				Sheet 1 of 1
Projec	t Name:	Broadwate	er Roa	d	13896		Co-ords:	524254.06 - 212664.08	WS
Locati	on:	29 Broadv	vater R	load, Welwyn Gar	den City, He	ertforshire,		84.06	Scale
Locati	011.	AL7 3BQ					Level.	04.00	1:50
Client		Hightown	Housir	ng Association Itd.		1	Dates:	-	Logged By TS
Well	Water Strikes	Sample:	s and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	ı
	Strikes	Depth (m) 0.50 0.50 0.90 0.90 1.00 1.00 2.00 2.00 3.00 3.30 3.30 3.30 5.00	Type D ES V D ES V D ES V	Results N=29 (6,6/7,7,8,7 N=21 (7,6/5,5,6,5 N=7 (3,2/1,2,2,2) N=5 (0,1/1,1,1,2) N=22 (4,4/5,4,6,7	(m) 0.60 1.00) 2.00 2.90 4.00) 5.45	(m) 83.46 83.06 82.06 81.16 80.06 78.61		 MADE GROUND: Stiff brown to ora silty very gravelly very sandy CLAY, fine to coarse angular to subrounded sandstone and ceramic. MADE GROUND: Medium dense o clayey silty fine to medium angular subrounded SAND. MADE GROUND: Medium dense o clayey silty (locally very gravelly) fir angular to subrounded SAND. MADE GROUND: Medium dense b clayey (locally very clayey) very sar Gravel is fine to coarse angular to se flint and chert. MADE GROUND: Loose brown slig silty very clayey GRAVEL. Gravel is coarse angular to subangular flint. I odour. Stiff becoming very stiff grey-brown gravelly (locally slightly sandy) CLA fine to medium angular to subrounc sandstone. (GLACIAL TILL DEPOS) 	inge-brown Gravel is ad chert, flint, range-brown to range-brown he to medium 1 - rown silty ndy GRAVEL. subrounded ihtly sandy s fine to Hydrocarbon slightly Y. Gravel is ted chalk and SITS). 5 - 6 - 8 - 8 -
									9 -
Rema	rks		1	1					AGS

									Borehole N	No.
SOUTHER						Bo	reho	ole Log	WS08	3
SOUTH W	EST GEOTEC	HNICAL			D N				Sheet 1 of	f 1
Projec	ct Name:	Broadwate	er Roa	d	Project No. 13896		Co-ords:	524243.79 - 212661.77	Hole Type	е
Locati	ion [.]	29 Broadv	vater F	Road, Welwyn Gai	rden City, He	ertforshire,		84.08	Scale	
Locat		AL7 3BQ					Level.	04.00	1:50	<u>.</u>
Client	:	Hightown	Housir	ng Association Itd.			Dates:	-	Logged B	ÿ
\A/~!!	Water	Sample	s and	In Situ Testing	Depth	Level				
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legena	Stratum Description	1	
		0.75 0.90 0.90 1.00 1.30 2.00 3.00 3.70 4.00 4.50 5.00	D ES D D	N=21 (4,4/4,5,6,6 N=14 (2,2/3,3,4,4 N=14 (5,3/3,3,4,4 N=3 (2,1/1,1,0,1) HVP=64 HVP=54 HVP=130 N=13 (2,1/2,3,3,5	0.90 1.40 1.40 () 4.20 4.50 () 5.45	83.18 82.68 79.88 79.58 78.62		MADE GROUND: Very stiff brown (and orange-brown) silty very sandy CLAY. Gravel is fine to coarse angu subrounded flint, brick and plastic. MADE GROUND : Medium dense of orange-brown clayey silty slightly gi coarse angular to subrounded SAN fine to coarse subangular flint, brick Medium dense light brown very clay sandy very silty GRAVEL. Gravel is coarse angular to subrounded flint, brick. Firm light brown sandy silty CLAY. (TILL DEPOSITS). Stiff becoming very stiff grey-brown gravelly (locally slightly sandy) CLA fine to medium angular to subrounc sandstone. (GLACIAL TILL DEPOS End of borehole at 5.45 m	locally black very gravelly lar to tark brown to ravelly fine to D. Gravel is and quartz. /ey very fine to chert and GLACIAL slightly Y. Gravel is led chalk and SITS).	1 - 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 5 - 5 - 6 - 7 - 8 - 9 - . .
Rema	Irks								AGS	10 -

					Borehole Log				Borehole N	lo.
									WS09	
SOUTHW					Project No.		-	Sheet 1 of 1		
Project Name:		Broadwate	Broadwater Road				Co-ords:	524247.55 - 212678.06	Hole Type	e
Location:		29 Broadwater Road, Welwyn Ga			rden City, Hertforshire,		Level: 84.07		Scale	
		AL7 3BQ							1:50	
Client:		Hightown Housing Association ltd.					Dates:	-		- J
Well Water Strikes		Samples and In Situ TestingDepth (m)TypeResults			Depth (m)	Level (m)	Legend	Stratum Description	I	
Remain	rks	0.30 0.30 0.30 0.75 0.80 1.00 1.50 - 2.50 2.00 3.00 4.00 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50	D ES V D ES V D D ES V D D	N=30 (4,5/6,6,9,9 N=27 (6,5/8,7,7,5 N=8 (3,2/2,2,2,2,2) N=10 (1,2/2,2,3,3 HVP=94 HVP=74 50 (3,3/50 for 250mm)	0.60 0.60 1.20 3.20 4.20 5.45	83.47 82.87 80.87 79.87 78.62		MADE GROUND: Stiff brown to ora silty very gravelly very sandy CLAY. fine to coarse angular to subrounde sandstone and ceramic. MADE GROUND: Medium dense of clayey silty fine to medium angular subrounded SAND. MADE GROUND: Medium dense b loose brown silty clayey (locally very sandy GRAVEL. Gravel is fine to co to subrounded flint and chert. MADE GROUND: Loose to medium brown slightly sandy silty very clayed Gravel is fine to coarse angular to s flint. Stiff becoming very stiff grey-brown gravelly (locally slightly sandy) CLA fine to medium angular to subround sandstone. (GLACIAL TILL DEPOS End of borehole at 5.45 m	nge-brown Gravel is d chert, flint, range-brown to ecoming y clayey) very arse angular d dense by GRAVEL. ubangular slightly Y. Gravel is ed chalk and ITS).	
										5
DYNAMIC PROBE RECORD (DPSH METHOD)										
------------------------------------	------------	-----------	------------	--------------	--------------------------------	--	--	--	--	
roject Na	me: Bro	adwater R	load	DPSH	No: 01					
ob No: 13	896			DATE:	19th-28th June 2023					
Blows	Depth	Blows	Depth	4						
	0.0	2	5.1	4	NO. BIOWS 100 mm (N_{100})					
0	0.1	3	5.2	4						
0	0.2	3	5.3	4	0 5 10 15 20 25 30 35 40 45 50					
3	0.3	3	5.4	0.0						
3	0.4	4	5.5	-						
3	0.5		5.0	1						
5	0.0	6	5.8	1						
7	0.7	6	5.0	1.0						
3	0.0	7	6.0							
3	1.0	6	6.1	1						
2	1.0	6	6.1	1						
2	12	5	6.3							
2	1.3	5	6.4	2.0						
2	1.4	7	6.5	1						
2	1.5	16	6.6	1						
2	1.6	22	6.7	1						
2	1.7	26	6.8	3.0						
2	1.8	36	6.9	1						
2	1.9	49	7.0]						
2	2.0	51	7.1	1						
4	2.1	50	7.2	4.0						
3	2.2		7.3							
3	2.3		7.4	-						
4	2.4		7.5	Ľ,						
5	2.5		7.6	b 5.0						
3	2.6		7.7	ă						
4	2.7		7.8	1						
5	2.8		7.9							
6	2.9		8.0							
5	3.0		8.1	6.0						
5	3.1		8.2	4						
5	3.2		8.3	4						
4	3.3		8.4	4						
4	3.4 2.5		0.0	7.0						
5	3.0		0.0 8 7	1						
5	37		8.8	1						
5	3.8		8.9	1						
6	3.9		9.0	8.0						
8	4.0		9.1	1						
7	4.1		9.2	1						
6	4.2		9.3	1						
6	4.3		9.4	9.0						
5	4.4		9.5	1						
4	4.5		9.6	1						
4	4.6		9.7	1						
5	4.7		9.8	1						
3	4.8		9.9	10.0	·····					
3	4.9		10.0]						
-	50	-	T	1						

		DYNA	MIC F	PRC	OBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPS	PSH No: 02
Job No: 13	896		•	DAT	ATE: 19th-28th June 2023
Blows	Depth	Blows	Depth		
-	0.0	3	5.1		No. Blows 100 mm (N ₁₀₀)
0	0.1	3	5.2		
0	0.2	3	5.3		0 5 10 15 20 25 30 35 40 45 50
4	0.3	3	5.4		
4	0.4	2	5.5		
5	0.5	2	5.6		
5	0.6	3	5.7		
3 7	0.7	4	5.0		10
7	0.0	5	5.9		
1	1.0	6	6.1		
4 3	1.0	5	62		
2	1.1	6	6.3		
2	1.3	4	6.4	1	2.0
2	1.4	6	6.5	1	
2	1.5	26	6.6	1	
2	1.6	31	6.7		
3	1.7	10	6.8	1	3.0
2	1.8	7	6.9]	
2	1.9	10	7.0		
2	2.0	13	7.1		
3	2.1	16	7.2		4.0
3	2.2	26	7.3		
4	2.3	27	7.4	<u> </u>	
4	2.4	28	7.5	ч Ч	
3	2.5	29	7.6	ept	5.0
4	2.6	30	7.7		
4	2.7	27	7.8		
5	2.8	25	7.9		
0	2.9	20	0.U		6.0
1	3.0	22	0.1 9.2		
7	3.1	28	83		
7	3.3	49	8.4		
5	3.4	61	8.5	1	70
5	3.5	50	8.6	1	
5	3.6		8.7	1	
5	3.7		8.8]	
4	3.8		8.9		
5	3.9		9.0		8.0
7	4.0		9.1		
4	4.1		9.2	1	
5	4.2		9.3	1	
6	4.3		9.4	4	9.0
5	4.4		9.5	4	
3	4.5		9.6	-	
3	4.6		9.7	-	
<u>న</u>	4./		9.8	1	10.0
3	4.ð		9.9	-	
<u> </u>	4.9 5.0		10.0	-	
Notes: She	et 1 of	1	I	<u> </u>	
itoles. one					

		DYNAI	MIC F	PROB	BE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH N	No: 03
Job No: 13	896			DATE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth	-	
0	0.0	1	5.1		NO. BIOWS 100 mm (N_{100})
0	0.1	2	5.2		
3	0.2	2	5.3	(0 5 10 15 20 25 30 35 40 45 50
3	0.4	2	5.5	0.0	↓
4	0.5	2	5.6	-	
5	0.6	2	5.7	-	
5	0.7	2	5.8	-	
5	0.8	3	5.9	1.0	
5	0.9	3	6.0	-	
33	1.0	4	6.1	-	
5	1.1	3	6.2	-	
3	1.2	4	6.3	2.0	
2	1.3	4	0.4 6.5	-	
ა 2	1.4	4 7	6.0 6.6		
3	1.0	20	6.0		
4	1.7	29	6.8	3.0	
5	1.8	29	6.9	1 -	
5	1.9	30	7.0	-	
5	2.0	30	7.1	-	
5	2.1	25	7.2	4.0	
3	2.2	39	7.3	-	
5	2.3	50	7.4	Ê Î	
5	2.4	70	7.5		
5 5	2.5		7.0	de 5.0	
5	2.0		7.8		
6	2.8		7.9	-	
6	2.9		8.0	-	
6	3.0		8.1	6.0	
6	3.1		8.2	-	
5	3.2		8.3	-	
6	3.3		8.4	-	
5	3.4		8.5	7.0	
4	3.5		8.6	-	
5	3.0 3.7		0./ ጸጸ		
4	3.8		8.9	1 -	
3	3.9		9.0	8.0	
3	4.0		9.1	1 -	
3	4.1		9.2		
3	4.2		9.3		
3	4.3		9.4	9.0	
4	4.4		9.5		
2	4.5		9.6	-	
3	4.6		9.7	-	
<u>ა</u>	4./		9.8	10.0	
1	4.0 4 9		10.0	1	
1	5.0		10.0	1	
Notes: She	et 1 of	1.			

DYNAMIC PROBE RECORD (DPSH METHOD)														
Project Na	me: Bro	adwater R	oad	DPSH N	DPSH No: 04									
Job No: 1	3896		1	DATE: 1	19th-28th June 2023									
Blows	Depth	Blows	Depth	4										
	0.0	3	5.1	4	NO. BIOWS 100 mm (N ₁₀₀)									
0	0.1	2	5.2	4										
0	0.2	3	5.3		0 5 10 15 20 25 30 35 40 45 50									
6	0.3	3	5.4	0.0										
7	0.4	4	5.5	-										
6	0.5	4	5.0											
7	0.0	4	5.8											
5	0.7	3	5.9	1.0										
3	0.9	4	6.0											
3	1.0	5	6.1											
2	1.1	5	6.2											
2	1.2	5	6.3	20										
2	1.3	6	6.4	2.0										
2	1.4	16	6.5	1										
2	1.5	22	6.6	1										
2	1.6	23	6.7]										
2	1.7	13	6.8	3.0										
3	1.8	13	6.9											
5	1.9	14	7.0											
4	2.0	11	7.1											
5	2.1	9	7.2	4.0										
6	2.2	13	7.3											
6	2.3	12	7.4	- -										
7	2.4	12	7.5	<u>د</u>										
8	2.5	11	7.6	bt 5.0										
8	2.6	11	7.7	Ō										
7	2.7	11	7.8											
8	2.8	10	7.9											
/	2.9	9	8.0	60										
8	3.0	11	8.1	0.0										
0	3.1	9	0.2											
7	3.2	9	0.3 Q /											
6	3.3	20	8.5											
4	35	23	8.6	7.0										
3	3.6	46	87											
4	3.7	56	8.8											
6	3.8	61	8.9											
4	3.9		9.0	8.0										
3	4.0		9.1											
4	4.1		9.2											
4	4.2		9.3											
3	4.3		9.4	9.0										
3	4.4		9.5											
1	4.5		9.6											
1	4.6		9.7	1										
2	4.7		9.8	10.0										
2	4.8		9.9											
2	4.9		10.0	1										
2	5.0													

	DYNAMIC PROBE RECORD (DPSH METHOD)											
Project Na	me: Bro	adwater R	oad	DPSH N	No: 04 continued							
Job No: 13	896		T	DATE: 1	19th-28th June 2023							
Blows	Depth	Blows	Depth									
	10.0	6	15.1		No. Blows 100 mm (N ₁₀₀)							
	10.1	6	15.2	-								
	10.2	54	15.3		0 5 10 15 20 25 30 35 40 45 50							
	10.3	3	15.4	10.0								
	10.4	4	15.5									
	10.5	<u> </u>	15.0									
	10.0	2	15.7									
	10.7	2	15.0	11.0 -								
	10.0	3	16.0									
	11.0	5	16.1									
	11.1	5	16.2									
	11.2	6	16.3	12.0								
	11.3	5	16.4	12.0								
	11.4	4	16.5									
	11.5	4	16.6									
33	11.6	2	16.7									
45	11.7	3	16.8	13.0								
60	11.8	3	16.9									
60	11.9	2	17.0									
49	12.0	4	17.1									
22	12.1	11	17.2	14.0								
12	12.2	5	17.3									
20	12.3	4	17.4									
14	12.4	5	17.5	<u>ч</u>								
30	12.5	4	17.6	ta 15.0								
24	12.6	2	17.7									
8	12.7	3	17.8									
5	12.8	3	17.9									
4	12.9	4	18.0	16.0								
4	13.0	6	10.1	10.0								
	13.1	5	18.2									
13	13.2	5	18.4									
4	13.4	4	18.5									
5	13.5	5	18.6	17.0								
2	13.6	5	18.7									
1	13.7	6	18.8									
3	13.8	5	18.9									
2	13.9	3	19.0	18.0								
4	14.0	3	19.1									
19	14.1	5	19.2									
5	14.2	5	19.3									
6	14.3	5	19.4	19.0								
5	14.4	4	19.5									
4	14.5	4	19.6									
3	14.6	3	19.7									
2	14.7	3	19.8	20.0								
3	14.8	3	19.9									
2	14.9	3	20.0	1								
Z Notco: Cla	15.0	`										
NOTES: 5NG	et 2 01 2	2.										

	DYNAMIC PROBE RECORD (DPSH METHOD)										
Project Na	me: Bro	adwater R	oad	DPSH No	lo: 05						
Job No: 13	896		•	DATE: 1	19th-28th June 2023						
Blows	Depth	Blows	Depth								
	0.0	2	5.1	4	No. Blows 100 mm (N ₁₀₀)						
0	0.1	2	5.2								
0	0.2	3	5.3	0	0 5 10 15 20 25 30 35 40 45 50						
4	0.3	3	5.4	0.0							
6	0.4	5	5.5	. ₹							
6	0.5	4	5.0	1 1							
6	0.6	5 6	5.7	1 1							
3	0.7	6	5.0	1.0							
3	0.0	7	5.9								
4	1.0	7	6.1								
3	1.0	5	6.2								
3	1.1	6	6.3								
4	1.2	7	6.4	2.0							
2	1.4	7	6.5								
2	1.5	16	6.6	1 1							
3	1.6	29	6.7	1 1							
4	1.7	39	6.8	3.0							
4	1.8	50	6.9	1 ‡							
4	1.9	61	7.0								
5	2.0		7.1	1							
8	2.1		7.2	4.0							
8	2.2		7.3								
10	2.3		7.4								
8	2.4		7.5	<u>۽</u> ع							
8	2.5		7.6] b							
6	2.6		7.7	ö 5.0							
6	2.7		7.8								
5	2.8		7.9	1							
5	2.9		8.0								
4	3.0		8.1	6.0							
5	3.1		8.2	Ē							
4	3.2		8.3								
5	3.3		8.4	. 1							
7	3.4		8.5	7.0							
6	3.5		8.6	. 1							
/	3.6		8.7	1							
0	3.7		0.0								
4	3.0 2.0		0.9	8.0							
4	3.9		9.0								
4	4.0		9.1								
3	4.1		9.2	1 1							
5	4.3		9.0	a n 1							
3	4.4		9.5	5.0							
3	4.5		9.6	1 1							
1	4.6		9.7								
1	4.7		9.8	1							
2	4.8		9.9	10.0 ⊥							
3	4.9		10.0	1							
2	5.0			1							
Notes: She	et 1 of	1.									

Project Na ob No: 13 Blows	me: Bro	adwater P		TO DOLLA											
ob No: 1: Blows		auwatern	load	DP5H N	DPSH No: 06										
Blows	3896			DATE: 1	19th-28th June 2023										
Biene	Depth	Blows	Depth	4											
	0.0	4	5.1	4	No. Blows 100 mm (N ₁₀₀)										
0	0.1	3	5.2	4											
0	0.2	4	5.3	4 .	0 5 10 15 20 25 30 35 40 45 50										
3	0.3	3	5.4	0.0 -											
3	0.4	4	5.5	7											
6	0.5	5	5.0	4											
4	0.6	<u>b</u>	5./	4 .											
<u>ు</u>	0.7	0	5.0	10											
2	0.0	0 7	5.9	- ^{1.0} ,											
2	1.9	1	©.U 6 1	- 1											
<u> </u>	1.0	10	6.2	4 .											
<u>ح</u>	1.1	40	6.2	1											
2 2	1.2		6.4	2.0 -											
2	1.0		6.5	1 7											
2	1.7		6.6												
3	1.0		67	1 .											
<u>ु</u> २	17		6.8	3.0											
3	1.1	. <u></u> i	6.9	1 -											
5	1.9	·	7.0												
3	2.0		7.1												
6	2.1		7.2	4.0											
9	2.2		7.3												
15	2.3	. <u> </u>	7.4												
11	2.4		7.5	_ ع											
9	2.5	·	7.6	f g											
7	2.6		7.7	D 5.0 7											
6	2.7	·	7.8	-											
7	2.8		7.9	1 .											
10	2.9		8.0	1 -											
9	3.0		8.1	6.0 -											
7	3.1	<u> </u>	8.2	1 .											
4	3.2	_ 	8.3												
4	3.3	<u> </u>	8.4												
6	3.4		8.5	7.0											
7	3.5		8.6	4 .											
7	3.6		8.7	-											
4	3.7		8.8	4 3											
3	3.8		8.9	8.0											
<u>ు</u>	3.9	. <u></u>	9.0												
4 5	4.0		9.1	4 .											
5	4.1		9.2	1 .											
5	4.2		9.0												
J	4.0		9.5	9.0											
2	4.5		9.6	1 .											
2	4.6		9.7	1 .											
2	4.7		9.8	1 -											
2	4.8		9.9	10.0 -											
3	4.9		10.0												
3	5.0	. <u> </u>	++	1											
Jotes: She	eet 1 of 1	1.													

DYNAMIC PROBE RECORD (DPSH METHOD)												
roject Na	oject Name: Broadwater Road DPSH No: 07											
ob No: 13	3896			DATE: '	19th-28th June 2023							
Blows	Depth	Blows	Depth									
	0.0	1	5.1		No. Blows 100 mm (N ₁₀₀)							
0	0.1	2	5.2	4								
0	0.2	1	5.3		0 5 10 15 20 25 30 35 40 45 50							
4	0.3	1	5.4	0.0								
4	0.4	1	5.5									
6	0.5	1	5.6	4								
	0.6	1	5.7	4								
5	0.7	2	5.8	1.0								
4	0.8	1	5.9	1.0								
4	0.9	2	6.0									
5	1.0	2	6.1									
5	1.1	3	6.2									
3	1.2	3	6.3	2.0								
3	1.3	2	6.4	4								
3 1	1.4	1/	0.5	4								
4	1.5	19	0.0	4								
5	1.0	23	0./	3.0								
6	1.7	25	6.8	4								
6	1.0	23	0.9	-								
6	1.9	20	7.0	-								
6	2.0	20	7.1									
7	2.1	23	7.2	4.0								
6	2.2	20	7.3	1								
4	2.3	20	7.4	Ê								
6	2.4	29	7.5) -								
6	2.5	30	7.0	a 5.0								
6	2.0	 	7.8	1								
8	2.7	60	7.0	1								
8	2.0	50	8.0	1								
6	3.0	00	8.1	6.0								
7	3.1		8.2	1								
8	3.2		8.3	1								
9	3.3		8.4	1								
8	3.4		8.5	7.0								
6	3.5		8.6	7.0								
4	3.6		8.7]								
5	3.7		8.8]								
4	3.8		8.9									
4	3.9		9.0	8.0								
3	4.0		9.1									
3	4.1		9.2	l								
3	4.2		9.3	l								
4	4.3		9.4	9.0								
2	4.4		9.5									
2	4.5		9.6									
2	4.6		9.7	1								
2	4.7		9.8	10.0								
2	4.8		9.9	10.0								
2	4.9		10.0	1								
2	50		1									

DYNAMIC PROBE RECORD (DPSH METHOD)										
roject Na	me: Bro	adwater R	oad	DPSH N	lo: 08					
ob No: 13	3896	-		DATE: 1	19th-28th June 2023					
Blows	Depth	Blows	Depth	-						
	0.0	3	5.1	4	No. Blows 100 mm (N ₁₀₀)					
0	0.1	3	5.2	4						
0	0.2	3	5.3	- ,	0 5 10 15 20 25 30 35 40 45 50					
7	0.3	4	5.4	0.0						
8	0.4	4	5.5							
7	0.5	5	5.6	-						
3	0.6	5	5.7							
2	0.7	5	5.8							
2	0.8	5	5.9	1.0						
2	0.9	6	6.0	-						
2	1.0	8	6.1	-						
2	1.1	8	6.2	4						
2	1.2	8	6.3	2.0						
3	1.3	8	6.4	- :						
4	1.4	21	6.5	. :						
4	1.5	44	6.6	-						
5	1.0	60	6.7	3.0						
6	1.7	50	6.8							
6	1.8		6.9	-						
6	1.9		7.0	-						
0	2.0		7.1	-						
0	2.1		7.2	4.0						
0 Q	2.2		7.3	-						
6	2.3		7.4	Ê.						
6	2.4		7.5	ţ.						
6	2.5		7.0	d 5.0						
6	2.0		7.8	1 :						
6	2.7		7.9							
6	2.9		8.0	-						
6	3.0		8.1	6.0						
4	3.1		8.2							
3	3.2		8.3							
3	3.3		8.4							
3	3.4		8.5	70						
3	3.5		8.6	7.0						
5	3.6		8.7	1 :						
5	3.7		8.8]						
4	3.8		<u>8.</u> 9]						
3	3.9		9.0	8.0						
2	4.0		9.1							
2	4.1		9.2							
2	4.2		9.3							
3	4.3		9.4	9.0						
1	4.4		9.5							
1	4.5		9.6	. :						
2	4.6		9.7	_ :						
2	4.7		9.8	10.0						
2	4.8		9.9	10.0						
3	4.9		10.0	4						
2	50		1	1						

	DYNAMIC PROBE RECORD (DPSH METHOD)										
Project Na	me: Bro	adwater R	oad	DPSH N	lo: 09						
Job No: 13	896		T	DATE: 1	9th-28th June 2023						
Blows	Depth	Blows	Depth	1							
	0.0	1	5.1	4	No. Blows 100 mm (N ₁₀₀)						
0	0.1	1	5.2	-							
0	0.2	1	5.3		0 5 10 15 20 25 30 35 40 45 50						
9	0.3	1	5.4 5.5	0.0							
88	0.4	2	5.5	-							
10	0.5	2	5.0	-							
10	0.0	3	5.8	-							
5	0.8	3	5.9	1.0 -							
9	0.9	3	6.0								
13	1.0	5	6.1	-							
10	1.1	3	6.2	-							
11	1.2	4	6.3	2.0							
6	1.3	4	6.4								
3	1.4	19	6.5	-							
2	1.5	41	6.6								
1	1.6	51	6.7	20							
1	1.7	50	6.8	3.0							
1	1.8		6.9								
1	1.9		7.0								
1	2.0		7.1	-							
1	2.1		7.2	4.0 -							
1	2.2		7.3	-							
1	2.3		7.4	Ê							
1	2.4		7.5	ţ,							
1	2.0		7.0	de 5.0							
2	2.7		7.8								
1	2.8		7.9								
1	2.9		8.0	-							
1	3.0		8.1	6.0							
1	3.1		8.2	-							
1	3.2		8.3	-							
0	3.3		8.4	-							
1	3.4		8.5	7.0							
1	3.5		8.6	-							
1	3.6		8.7								
0	3.7	-	8.8	-							
1	3.8		8.9	8.0							
2	3.9		9.0								
1	4.0		92	-							
2	4.2		9.3	-							
2	4.3		9.4	9.0							
1	4.4		9.5	-							
1	4.5		9.6	1							
1	4.6		9.7]]							
1	4.7		9.8	100							
2	4.8		9.9	10.0 -							
1	4.9		10.0	1							
2	5.0										
Notes: She	et 1 of	1.									

		DYNAI	MIC F	PROB	ER	ECO	R) (DP	SF	I N	1E ⁻	ГΗ	0[D)			
Project Na	me: Bro	adwater R	oad	DPSH N	lo: 10													
Job No: 13	896		•	DATE: '	9th-28	8th Jun	ne 20)23										
Blows	Depth	Blows	Depth															
-	0.0	1	5.1						No. Bl	ows	100	mm (N ₁₀₀)					
0	0.1	1	5.2															
0	0.2	1	5.3		0 5	5 10		15	20		25	30	3	5	4	0	45	50
12	0.3	0	5.4	0.0				+++		++++	++++	+++++	+++					 1
10	0.4	0	5.5															-
1	0.5	0	5.6			*												-
10	0.6	0	5.7															-
9	0.7	1	5.8	1.0														-
11	0.8	1	5.9	1.0														-
11	0.9	2	6.1				-*											-
12	1.0	2	0.1															-
14	1.1	2	6.2		*													-
14	1.2	2	6.0	2.0														-
10	1.5	2	6.5															-
9	1.4	2	6.6															-
9	1.0	2	67	1												++-		-
7	1.7	3	6.8	3.0														-
1	1.8	2	6.9	1.														-
1	1.9	9	7.0															-
1	2.0	13	7.1															-
1	2.1	21	7.2	4.0														-
1	2.2	28	7.3															-
1	2.3	29	7.4		*													-
1	2.4	26	7.5	E c														-
1	2.5	25	7.6	b 5.0														-
1	2.6	28	7.7	ă	\$													-
1	2.7	29	7.8															-
1	2.8	26	7.9	-														-
1	2.9	28	8.0	6.0														-
1	3.0	28	8.1	0.0														-
1	3.1 3.2	24	0.Z															-
0	3.2	20	8.4															-
0	3.4	20	85															-
1	3.5	23	8.6	7.0														-
1	3.6	21	8.7	1														-
1	3.7	8	8.8	1						<u> </u> -								-
0	3.8	8	8.9									*						-
0	3.9	10	9.0	8.0						Ħ								1
0	4.0	13	9.1								•							-
1	4.1	15	9.2															-
2	4.2	16	9.3			• •												-
2	4.3	16	9.4	9.0														-
2	4.4	13	9.5	-														-
1	4.5	13	9.6	-				-										-
1	4.6	14	9.7	-														-
1	4./	14	9.8	10.0														t
1	4.8	16	9.9	-														
1	4.9 5.0	10	10.0	-														
Notes: She	et 1 of '	1	I															

		DYNA	MIC F	PROBE RECORD (DPSH METHOD)								
Project Na	me: Bro	adwater R	oad	DPSH No: 10								
Job No: 13	896			DATE: 19th-28th June 2023								
Blows	Depth	Blows	Depth	1								
	10.0	5	15.1	No. Blows 100 mm (N ₁₀₀)								
16	10.1	5	15.2									
16	10.2	5	15.3	0 5 10 15 20 25 30 35 40 45 50								
17	10.3	3	15.4									
17	10.4	4	15.5									
20	10.5	4	15.6	-								
21	10.6	5	15.7									
13	10.7	5	15.8									
5 5	10.8	5 7	15.9									
0 16	10.9	7	16.0									
10	11.0	7	16.2									
10	11.1	7	16.2									
10	11.2	5	16.4									
16	11.0	8	16.5									
20	11.5	10	16.6									
21	11.6	10	16.7									
21	11.7	9	16.8	13.0								
22	11.8	9	16.9									
9	11.9	9	17.0									
9	12.0	6	17.1									
6	12.1	6	17.2	14.0								
4	12.2	5	17.3									
6	12.3	5	17.4									
7	12.4	4	17.5									
5	12.5	6	17.6									
5	12.6	10	17.7									
5	12.7	11	17.8									
4	12.8	11	17.9									
5	12.9	11	18.0									
5	13.0	11	18.1	16.0								
5	13.1	9	18.2									
5	13.2	11	18.3									
5	13.3	11	18.4	_								
4	13.4	16	18.5	17.0								
4	13.5	12	18.6									
4	13.0	10	10./									
6	13.7	19	10.0									
6	13.0	11	10.9									
6	14.0	11	10.0									
5	14 1	16	19.1									
5	14.1	32	19.3									
4	14.3	44	19.4									
3	14.4	49	19.5									
4	14.5	50	19.6									
5	14.6		19.7									
4	14.7		19.8									
4	14.8		19.9	20.0								
4	14.9		20.0]								
5	15.0			<u> </u>								
Notes: She	et 1 of '	1.										

DYNAMIC PROBE RECORD (DPSH METHOD)										
Project Na	me: Bro	adwater R	load	DPSH N	No: 11					
Job No: 13	3896		1	DATE: 1	19th-28th June 2023					
Blows	Depth	Blows	Depth	4						
	0.0	2	5.1		NO. BIOWS 100 mm (N ₁₀₀)					
0	0.1	2	5.2	4						
0	0.2	2	5.3		0 5 10 15 20 25 30 35 40 45 50					
7	0.3	3	5.4	0.0						
7	0.4	2	5.5	-						
6	0.5	3	5.0	-						
1	0.0	3	5.8							
4	0.7	3	5.0	1.0						
3	0.0	<u> </u>	6.0							
3	1.0	4	6.1							
3	1.0	5	6.2							
2	1.1	19	6.3							
2	1.2	39	6.4	2.0						
6	1.4	49	6.5							
5	1.5	52	6.6	1						
3	1.6		6.7	1						
4	1.7		6.8	3.0						
4	1.8		6.9	1						
5	1.9		7.0							
7	2.0		7.1	1						
7	2.1		7.2	4.0						
7	2.2		7.3							
7	2.3		7.4	-						
11	2.4		7.5	<u> </u>						
11	2.5		7.6	50 bt						
7	2.6		7.7	ă ^{3.0}						
6	2.7		7.8							
8	2.8		7.9							
8	2.9		8.0							
8	3.0		8.1	6.0						
3	3.1		8.2							
4	3.2		8.3							
4	3.3		8.4							
3	3.4		8.5	7.0						
4	3.5		0.0	4 3						
<u>ح</u> ۸	3.0 2.7		0.1 Q 0	1						
ч Л	3.1 3.2		0.0 8 Q	1						
4	39		9.0	8.0						
4	4.0		9.0	1						
4	4.1		9.2	1						
3	4.2		9.3	1						
2	4.3		9.4	9.0						
2	4.4		9.5	5.0						
3	4.5		9.6	1						
4	4.6		9.7	1						
4	4.7		9.8	1						
3	4.8		9.9	10.0	<u>.</u>					
1	4.9		10.0	1						
	F 0			1						

		DYNA	MIC F	PROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No	0: 12
Job No: 13	896			DATE: 1	9th-28th June 2023
Blows	Depth	Blows	Depth		
-	0.0	2	5.1		No. Blows 100 mm (N ₁₀₀)
0	0.1	2	5.2		
0	0.2	2	5.3	0) 5 10 15 20 25 30 35 40 45 50
9	0.3	2	5.4	0.0 +	
10	0.4	2	5.5	. *	
10	0.5	2	5.6		
11	0.6	3	5.7		
/	0.7	3	5.8	1.0	
3	0.8	4	5.9	1.0	
2	0.9	3	6.0		
2	1.0	4	6.1		
2	1.1	4	6.2		
2	1.2	4	6.3	2.0	
4	1.3	5	6.4		
3	1.4	5	6.5		
4	1.5	12	6.6		
4	1.0	39	6.7	3.0	
F	1./	49	6.8		
5	1.8	50	6.9	-	
4	1.9		7.0		
4	2.0		7.1		
5 6	2.1		7.2	4.0	
0 5	2.2		7.3		
5	2.3		7.4	Ê Î	
5	2.4		7.5	ے ب	
7	2.5		7.0	a 5.0	
7	2.0		7.7	1 1	
7	2.7		7.0	1	
7	2.0		8.0		
8	3.0		8.1	6.0	
6	3.1		82	1 1	
4	3.2		8.3	1 1	
6	3.3		8.4	1 1	
6	3.4		8.5	7.0	
6	3.5		8.6	/.0	
5	3.6		8.7	1 ‡	
4	3.7		8.8	1 ‡	
4	3.8		8.9	1	
3	3.9		9.0	8.0	
3	4.0		9.1		
2	4.1		9.2		
2	4.2		9.3	. 1	
3	4.3		9.4	9.0	
4	4.4		9.5	Į Į	
5	4.5		9.6	1	
3	4.6		9.7	1	
2	4.7		9.8	10.0	
2	4.8		9.9	10.0	
2	4.9		10.0	ļ	
2	5.0				
lotes: She	et 1 of '	1.			

DYNAMIC PROBE RECORD (DPSH METHOD)										
roject Na	me: Bro	adwater R	load	DPSH N	No: 13					
ob No: 13	3896 Densthe	Diama	Denth	DATE: 1	19th-28th June 2023					
BIOWS	Depth	BIOWS	Deptn 5 1		No. Blows 100 mm (N)					
0	0.0	<u>3</u>	5.1		NO. BIOWS 100 IIIII (N ₁₀₀)					
0	0.1	2	5.2							
7	0.2	2	5.3		0 5 10 15 20 25 30 35 40 45 50					
8	0.3	2	5.5	0.0						
8	0.4	4	5.6	-						
6	0.6	3	5.7							
7	0.7	3	5.8							
4	0.8	4	5.9	1.0						
3	0.9	5	6.0							
3	1.0	4	6.1							
3	1.1	5	6.2							
3	1.2	4	6.3	2.0						
3	1.3	5	6.4							
3	1.4	4	6.5							
3	1.5	5	6.6							
5	1.6	4	6.7	2.0						
6	1.7	13	6.8	3.0						
8	1.8	21	6.9							
7	1.9	23	7.0							
8	2.0	25	7.1							
8	2.1	30	7.2	4.0						
9	2.2	40	7.3							
10	2.3	50	7.4	Ê						
9	2.4	50	7.5) ب						
7	2.5		7.0	d 5.0						
7	2.0		7.8	-						
8	2.8		7.9	-						
7	2.9		8.0							
8	3.0		8.1	6.0						
6	3.1		8.2							
8	3.2		8.3							
8	3.3		8.4							
6	3.4		8.5	7.0						
5	3.5		8.6	1						
4	3.6		8.7							
4	3.7		8.8	1						
4	3.8		8.9	80						
5	3.9		9.0	0.0						
<u>ა</u>	4.0		9.1	-						
<u>১</u> ೯	4.1		9.2	-						
5	4.Z		9.3							
6	4.3 4.4		9.4	9.0						
2	45		9.5	1						
2	4.5		9.7	1 1						
2	4.7		9.8	1						
1	4.8		9.9	10.0	<u>_</u>					
1	4.9		10.0	1						
3	5.0			1						
-										

		DYNAI	MIC F	PROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 14
lob No: 13	896			DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	
0	0.0	3	5.1	NO. BIOWS 100 MM (N ₁₀₀)
0	0.1	3	5.2	4
0	0.2	3	5.3	0 5 10 15 20 25 30 35 40 45 50
5	0.3	3	5.4	- 0.0
3	0.4		5.5	
3	0.5	5	5.7	
4	0.0	5	5.8	
3	0.7	6	5.0	1.0
3	0.0	6	6.0	
4	1.0	7	6.0	
4	1.0	7	6.1	
3	12	8	6.3	
2	1.3	8	6.4	
6	1.4	8	6.5	
7	1.5	10	6.6	
8	1.6	10	6.7	
8	1.7	10	6.8	3.0
5	1.8	7	6.9	
5	1.9	2	7.0	
9	2.0	15	7.1	
11	2.1	19	7.2	4.0
11	2.2	40	7.3	
11	2.3	44	7.4	
13	2.4	50	7.5	
11	2.5		7.6	
10	2.6		7.7	
10	2.7		7.8	
8	2.8		7.9	
7	2.9		8.0	
6	3.0		8.1	- 6.0
7	3.1		8.2	
8	3.2		8.3	
6	3.3		8.4	
6	3.4		8.5	7.0
6	3.5 2.6		0.0 0.7	
5	3.0		0.1 Q Q	
6	<u>3.1</u>		80	
4	3.0		9.0	8.0
4	4.0		9.0	
4	4,1		9.2	
4	4.2		9.3	
4	4.3		9.4	9.0
3	4.4		9.5	
2	4.5		9.6	
3	4.6		9.7	
2	4.7		9.8	
2	4.8		9.9] 10.0
2	4.9		10.0]
2	5.0			
otes: She	eet 1 of	1.		

		DINAI		'RUD	
roject Na	me: Bro	adwater R	oad	DPSH N	lo: 15
ob No: 13	896		1	DATE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth	4	
0	0.0	5	5.1		No. Blows 100 mm (N ₁₀₀)
0	0.1	4	5.2	-	
0	0.2	5	5.3		0 5 10 15 20 25 30 35 40 45 50
0	0.3	<u> </u>	5.4	0.0	
4	0.4	6	5.5	-	
3	0.5	6	5.0		
+ 2	0.0	7	5.8		
2	0.8	7	5.9	1.0	
2	0.0	8	6.0	-	
2	1.0	18	6.1	-	
3	1.1	26	6.2	-	
6	1.2	40	6.3		
7	1.3	50	6.4	2.0	
6	1.4	50	6.5	1 1	
6	1.5	-	6.6	1 1	
6	1.6		6.7	1	
7	1.7		6.8	3.0	
9	1.8		6.9] -	
8	1.9		7.0		
8	2.0		7.1	-	
8	2.1		7.2	4.0	
7	2.2		7.3	-	
8	2.3		7.4	-	
7	2.4		7.5	<u>u</u>)	
7	2.5		7.6	bt 50	
7	2.6		7.7	ă	
9	2.7		7.8	-	
11	2.8		7.9	-	
11	2.9		8.0		
10	3.0		8.1	6.0 -	
9	3.1		8.2	-	
9	3.2		8.3	-	
6	3.3		8.4	-	
5	3.4		8.5	7.0	
5	3.5		8.6	4 1	
<u>р</u>	3.0		<u> 8.7</u>		
ວ 5	<u> ৩./</u> ২০		0.0 0.0		
ິ <u>ບ</u> 2	3.0 2.0		0.9	8.0	
5	J.9 ⊿ ∩		9.0		
5	+.∪ ⊿ 1		9.1		
3	4.1		9.2		
2	4.3		9.0	۹ ۵	
2	4.4		95	9.0	
2	4.5		9.6		
2	4.6		9.7		
2	4.7		9.8	1	
2	4.8		9.9	10.0	
3	4.9		10.0	1	
-	5.0			1	

	ļ	DYNA	MIC F	OBE RECORD	(DPSH METHOD)
Project Na	me: Bro	adwater R	oad	PSH No: 16	
Job No: 13	896		1	ATE: 19th-28th June 2023	\$
Blows	Depth	Blows	Depth		N. Diana 400 and (N
6	0.0	3	5.1		NO. BIOWS 100 mm (N_{100})
6	0.1	<u> </u>	5.2		
9	0.2	1	5.3	0 5 10 15	20 25 30 35 40 45 50
2	0.3	2	5.4	0.0	
2	0.4	<u> </u>	5.5		
2	0.5	3	5.7		
2	0.0	5	5.8		
3	0.7	5	5.0	1.0	
3	0.0	5	6.0		
3	1.0	7	6.0		
5	1.1	6	6.2		
4	1.2	6	6.3		
8	1.3	4	6.4	2.0	
8	1.4	5	6.5		
6	1.5	4	6.6		
7	1.6	5	6.7		
12	1.7	5	6.8	3.0	
10	1.8	25	6.9		
10	1.9	11	7.0		
10	2.0	30	7.1		
10	2.1	25	7.2	4.0	
12	2.2	23	7.3		
11	2.3	28	7.4		
11	2.4	21	7.5	·	
14	2.5	16	7.6	5.0	
13	2.6	30	7.7	5.0	
12	2.7	70	7.8		
11	2.8	75	7.9		
10	2.9		8.0		
10	3.0		8.1	6.0	
10	3.1		8.2		
8	3.2		8.3		
6	3.3		8.4		
6	3.4		8.5	7.0	
5	3.5		8.6		
6	3.0		8.7		
2	3.7		0.0		
2	3.0 3.0		0.9	8.0	
2	3.9 4.0		9.0		
2	4.0		9.1		
2	4.1		9.3		
3	4.3		9.4	9.0	
3	4.4		9.5	5.0	
2	4.5		9.6		
2	4.6		9.7		
1	4.7		9.8		
3	4.8		9.9	10.0	
2	4.9		10.0		
3	5.0		-		
Notes: She	et 1 of 1	l .			

DYNAMIC PROBE RECORD (DPSH METHOD)									
roject Na	me: Bro	adwater R	oad	DPSH No: 17					
ob No: 13	896			DATE: 19th-28th June 2023					
Blows	Depth	Blows	Depth						
	0.0	2	5.1	No. Blows 100 mm (N ₁₀₀)					
0	0.1	2	5.2						
0	0.2	3	5.3	0 5 10 15 20 25 30 35 40 45 50					
3	0.3	3	5.4	0.0					
5	0.4	2	5.5						
3	0.5	3	5.0						
2	0.0	5	5.8						
2	0.8	5	5.9	1.0					
2	0.9	6	6.0						
2	1.0	7	6.1						
2	1.1	7	6.2						
2	1.2	6	6.3	20					
3	1.3	6	6.4						
3	1.4	6	6.5						
5	1.5	6	6.6						
5	1.6	6	6.7						
4	1.7	8	6.8	3.0					
4	1.8	13	6.9						
5	1.9	14	7.0						
6	2.0	19	7.1						
8	2.1	22	7.2	4.0					
6	2.2	29	7.3						
8	2.3	30	7.4						
8	2.4	39	7.5						
14	2.5	49	7.0	b 5.0					
10	2.0	54	7.8						
9	2.7		7.0						
9	2.0		8.0						
11	3.0		8.1	6.0					
12	3.1		8.2						
10	3.2		8.3						
9	3.3		8.4						
9	3.4		8.5	7.0					
6	3.5		8.6						
5	3.6		8.7						
5	3.7		8.8						
4	3.8		8.9	80					
2	3.9		9.0						
2	4.0		9.1						
3	4.1		9.2						
4	4.Z		9.3						
<u>ن</u>	4.3		9.4	9.0					
+ 2	4.4 4.5		9.0						
2	4.5		9.0						
2	47		9.8						
3	4.8		9.9	10.0					
2	4.9		10.0						
2	5.0								
otes: She	et 1 of	1.	-						

		DYNAI	MIC F	YOB				
roject Na	me: Bro	adwater R	oad	DPSH No: 18				
ob No: 13	896			DATE: 1	9th-28th June 2023			
Blows	Depth	Blows	Depth					
0	0.0	4	5.1		NO. BIOWS 100 mm (N ₁₀₀)			
0	0.1	4	5.2					
0	0.2	3	5.3		0 5 10 15 20 25 30 35 40 45 50			
4	0.3	3	5.4	0.0				
4	0.4	4	5.5					
4	0.5	5	5.6					
3	0.6	4	5.7					
3	0.7	4	5.8	1.0				
2	0.8	5	5.9	1.0				
2	0.9	5	6.0					
2	1.0	6	6.1					
3	1.1	6	6.2					
3	1.2	7	6.3	2.0				
4	1.3	7	6.4					
3	1.4	7	6.5	. :				
3	1.5	7	6.6					
3	1.6	7	6.7	2.0				
4	1.7	7	6.8	3.0				
4	1.8	7	6.9					
5	1.9	19	7.0					
6	2.0	26	7.1					
5	2.1	30	7.2	4.0				
5	2.2	32	7.3	-				
5	2.3	41	7.4	-				
7	2.4	50	7.5	<u>ب</u>				
7	2.5	50	7.6	bth				
5	2.6		7.7					
4	2.7		7.8					
6	2.8		7.9					
6	2.9		8.0					
6	3.0		8.1	6.0				
7	3.1		8.2					
6	3.2		8.3					
6	3.3		8.4					
7	3.4		8.5	7.0				
6	3.5		8.6					
3	3.6		8.7					
5	3.7		8.8					
6	3.8		8.9					
4	3.9		9.0	8.0				
4	4.0		9.1					
4	4.1		9.2					
2	4.2		9.3] :				
3	4.3		9.4	9.0				
2	4.4		9.5					
2	4.5		9.6]				
2	4.6		9.7]				
2	4.7		9.8	1				
2	4.8		9.9	10.0 -				
2	4.9		10.0	1				
			-	1				

		DYNAI	MIC F	'ROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 19
Job No: 13	896		1	DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	
	0.0	3	5.1	No. Blows 100 mm (N ₁₀₀)
0	0.1	4	5.2	
0	0.2	4	5.3	0 5 10 15 20 25 30 35 40 45 50
3	0.3	4	5.4	0.0
2	0.4	4	5.5	
2	0.6	5	5.7	
1	0.7	5	5.8	
2	0.8	4	5.9	1.0
2	0.9	4	6.0	
2	1.0	5	6.1	
2	1.1	6	6.2	
2	1.2	6	6.3	2.0
3	1.3	7	6.4	
3	1.4	6	6.5	
4	1.5	7	6.6	
5	1.6	6	6.7	3.0
5	1./	14	6.8	
5	1.8	14	6.9	
9	1.9	10	7.0	
11	2.0	12	7.1	
17	22	11	7.3	4.0
8	2.3	12	7.4	
9	2.4	13	7.5	
10	2.5	11	7.6	
9	2.6	9	7.7	
10	2.7	11	7.8	
9	2.8	16	7.9	
6	2.9	13	8.0	
5	3.0	13	8.1	6.0
6	3.1	18	8.2	
3	3.2	20	8.3	
4	3.3	21	0.4 9.5	
3	3.4	23	8.6	
4	3.6	39	8.7	
3	3.7	46	8.8	
2	3.8	51	<u>8.</u> 9	
3	3.9		9.0	8.0
4	4.0		9.1	
4	4.1		9.2	
3	4.2		9.3	
3	4.3		9.4	9.0
2	4.4		9.5	
2	4.5		9.6	
2	4.0 ∕/7		9.1 Q.2	
2	4.1		9.0 Q Q	10.0
2	4.9		10.0	
2	5.0		10.0	
Notes: She	eet 1 of	1.	-	

		DYNAI		ROBE RECORD (DP3n METNOD)	
Project Na	me: Bro	adwater R	oad	DPSH No: 20	
lob No: 13	896			DATE: 19th-28th June 2023	
Blows	Depth	Blows	Depth		
0	0.0	5	5.1	NO. BIOWS 100 mm (N ₁₀₀)	
0	0.1	5	5.2		
0	0.2	8	5.3	0 5 10 15 20 25 30 35 40 45 5	50
2	0.3	6	5.4	0.0	1
<u> </u>	0.4	6	5.5		1
2	0.5	6	5.0		1
2	0.0	6	5.8		-
2	0.7	7	5.0	1.0	1
2	0.0	8	6.0		-
3	1.0	8	6.0		-
4	1.1	8	6.2		1
4	1.2	10	6.3		-
4	1.3	9	6.4	2.0	-
6	1.4	7	6.5		1
5	1.5	8	6.6		1
5	1.6	24	6.7		
6	1.7	30	6.8	3.0	1
13	1.8	31	6.9		1
11	1.9	31	7.0		1
11	2.0	44	7.1		1
16	2.1	50	7.2	4.0	-
11	2.2	50	7.3		1
14	2.3		7.4	~ · · · · · · · · · · · · · · · · · · ·	-
14	2.4		7.5		-
13	2.5		7.6	5 .0	-
13	2.6		7.7		-
12	2.7		7.8		-
10	2.8		7.9		1
9	2.9		8.0	6.0	-
9	3.0		0.1		1
6	3.1 3.2		0.2		-
5	3.2		0.3 8.4		-
5	3.3		8.5		-
4	3.5		8.6		-
5	3.6		8.7		Ý
5	3.7		8.8		-
3	3.8		8.9		-
4	3.9		9.0		1
4	4.0		9.1		1
5	4.1		9.2		1
4	4.2		9.3		1
3	4.3		9.4	9.0	1
3	4.4		9.5		1
3	4.5		9.6		-
3	4.6		9.7		1
2	4.7		9.8	10.0	-
3	4.8		9.9		
4	4.9		10.0		
3	5.0				

	I	DYNA	MIC F	PROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH N	lo: 21
Job No: 13	896			DATE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth	4	No. Discus 100 mm (N
F	0.0	3	5.1	-	NO. BIOWS 100 mm (N_{100})
5	0.1	3	5.2	-	
3	0.2	2	5.3	(0 5 10 15 20 25 30 35 40 45 50
2	0.3	<u> </u>	5.4	0.0	
ა ვ	0.4	4	5.5	- 3	
3	0.5	4	5.7		
4	0.0	8	5.8	-	
4	0.7	50	5.9	1.0	
3	0.9		6.0	- 1	
4	1.0		6.1	-	
6	1.1		6.2		
4	1.2		6.3		
3	1.3		6.4	2.0	
2	1.4		6.5	1 1	
3	1.5		6.6	• 1 1	
2	1.6		6.7]	
2	1.7		6.8	3.0	
2	1.8		6.9	1	
1	1.9		7.0]	
2	2.0		7.1	1	
2	2.1		7.2	4.0	
9	2.2		7.3]	
9	2.3		7.4		
9	2.4		7.5] =	
7	2.5		7.6] t i 5.0]	
9	2.6	<u>. </u>	7.7	ă	
7	2.7	<u> </u>	7.8	-	
7	2.8	, 	7.9	}	
7	2.9		8.0		
5	3.0		8.1	6.0	
6	3.1		8.2	}	
5	3.2		8.3		
5	3.3		8.4		
4	3.4		8.5	7.0	
4	3.5		8.6	- 1	
3	3.0		<u>ð./</u>		
<u>ა</u> ვ	3.1 2 Q		0.0	-	
3 2	3.0		0.9	8.0	
<u> </u>	4.0	. <u></u>	9.0	-]	
2	4.0		9.1	-	
3	4.1		9.2	- 1 -	
4	4.3		9.0	90	
2	4.4		9.5	5.0	
3	4.5		9.6		
3	4.6		9.7	-	
2	4.7		9.8	•	
2	4.8		9.9	10.0	
2	4.9		10.0		
2	5.0				
Notes: She	et 1 of ?	1.			

DYNAMIC PROBE RECORD (DPSH METHOD)								
Project Na	me: Bro	adwater R	oad	DPSH No: 22				
Job No: 13	896			DATE: 19th-28th June 2023				
Blows	Depth	Blows	Depth					
_	0.0	5	5.1	No. Blows 100 mm (N ₁₀₀)				
5	0.1	5	5.2					
18	0.2	5	5.3	0 5 10 15 20 25 30 35 40 45 50				
12	0.3	5	5.4					
4	0.4	5	5.5					
4	0.5	24	5.6					
5	0.6	100	5.7					
5	0.7	162	5.8					
8	0.8		5.9					
9	0.9		6.0					
9	1.0		6.1					
11	1.1		6.2					
10	1.2		6.3	2.0				
12	1.3		6.4					
11	1.4		6.5					
10	1.5		6.6					
11	1.6		6./	3.0				
9	1./		6.8					
12	1.8		6.9					
12	1.9		7.0					
13	2.0		7.1					
6	2.1		7.2	4.0				
/	2.2		7.3					
8	2.3		7.4					
1	2.4		7.5					
5	2.5		7.0	9 5.0 5 .0				
5 1	2.0		7.0					
5	2.7		7.0					
J 1	2.0		8.0					
5	2.9		8.0	6.0				
3	3.0		8.2					
3	3.1		83					
3	3.3		8.4					
3	3.4		8.5					
3	3.5		8.6					
3	3.6		8.7					
2	3.7		8.8					
1	3.8		8.9					
1	3.9		9.0	8.0				
3	4.0		9.1					
1	4.1		9.2					
1	4.2		9.3					
2	4.3		9.4	9.0				
1	4.4		9.5					
2	4.5		9.6					
2	4.6		9.7					
2	4.7		9.8					
2	4.8		9.9	10.0				
3	4.9		10.0					
3	5.0							
lotes: She	eet 1 of	1.						

	l	DYNAI	MIC F	PROB	E RECORD (DPSH METHOD)
roject Na	me: Bro	adwater R	oad	DPSH N	0: 23
ob No: 13	3896		1	DATE: 1	9th-28th June 2023
Blows	Depth	Blows	Depth		
	0.0	6	5.1		No. Blows 100 mm (N ₁₀₀)
18	0.1	5	5.2		
8	0.2	5	5.3		0 5 10 15 20 25 30 35 40 45 50
8	0.3	6	5.4	0.0	
5	0.4	6	5.5	-	
3	0.5	7	5.6	-	
4	0.6	28	5.7	-	
3	0.7	91	5.8	1.0	
3	0.8		5.9	1.0	
5	0.9		6.0	-	
4	1.0		6.1	-	
5	1.1		6.2		
7	1.2		0.3	2.0	
/ 0	1.3		6.5		
9 17	1.4		0.0 6.6		
12	1.0		6.7		
10	1.0		6.9	3.0	
1U Q	1./ 1.Q		6.0		
<u>۵</u>	1.0		70		
<u>0</u>	2.0		7.0	-	
13	2.0		7.1	40	
13	22		7.3		
9	2.3		7.4	-	
9	2.4		7.5	E E	
9	2.5		7.6	bth	
8	2.6		7.7	D 5.0	
7	2.7		7.8	-	
8	2.8		7.9	-	
8	2.9		8.0	-	
6	3.0		8.1	6.0	
5	3.1		8.2	-	
4	3.2		8.3	-	
4	3.3		8.4	-	
4	3.4		8.5	7.0	
4	3.5		8.6	- 1	
4	3.6		8.7		
<u> </u>	3.1 20		0.Ŭ		
4	3.ð 2.0		0.9	8.0	
2	3.9 4.0		9.0		
2	<u> </u>		9.1	-	
2	42		9.2		
1	4.3		9.0	۹ ۵ ۵	
2	4.4		9.5	3.0	
2	4.5		9.6	-	
2	4.6		9.7		
1	4.7		9.8		
2	4.8		9.9	10.0	
3	4.9		10.0	1	
4	5.0				

		DYNAI	MIC F	PROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	load	DPSH N	lo: 24
ob No: 13	3896			DATE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth	1	
	0.0	5	5.1	1	No. Blows 100 mm (N ₁₀₀)
12	0.1	4	5.2	1	
9	0.2	5	5.3		0 5 10 15 20 25 30 35 40 45 50
8	0.3	5	5.4	0.0	
8	0.4	9	5.5		
5	0.5	26	5.6		
5	0.6	47	5.7		
6	0.7		5.8	10	
4	0.8		5.9	1.0	
5	0.9		6.0		
5	1.0		6.1		
4	1.1		0.2		
5 7	1.2		0.3	2.0	
ן ג	1.3		0.4 6.5	4 :	
0	1.4		C.0 6.6	1	
10	1.0		6.7	1	
12	1.0		6.0	3.0	
<u>۵</u>	1.7		0.0 6.0	1	
9 0	1.0		70	1	
9	2.0		7.0		
7	2.0		7.1	10	
7	2.1		7.2	4.0	
7	2.2		7.3		
7	2.0		7.5	Ē	
8	2.5		7.6	f g	
8	2.6		7.7	De 5.0	
5	2.7		7.8		
6	2.8		7.9		
6	2.9		8.0		
4	3.0		8.1	6.0	
4	3.1		8.2		
4	3.2		8.3		
4	3.3		8.4		
4	3.4		8.5	7.0	
5	3.5		8.6		
4	3.6		8.7		
2	3.7		8.8	1 :	
1	3.8		8.9		
1	3.9		9.0	8.0	
2	4.0		9.1	. :	
3	4.1		9.2	1 :	
2	4.2		9.3		
2	4.3		9.4	9.0	
1	4.4		9.5	4 :	
1	4.5		9.6	-	
2	4.6		9.7	4 :	
<u>∠</u>	4./		9.8	10.0	
2	4.ð		9.9	4	
2	4.9		10.0	1	
3	0.0		1	1	

DYNAMIC PROBE RECORD (DPSH METHOD)									
Project Na	me: Bro	adwater R	oad	DPSH No: 25					
ob No: 13	3896			DATE: '	19th-28th June 2023				
Blows	Depth	Blows	Depth	4					
15	0.0	5	5.1	-	No. Blows 100 mm (N_{100})				
10	0.1	4	5.2	4					
0	0.2	6	5.3	4	0 5 10 15 20 25 30 35 40 45 50				
<u> </u>	0.3	5	5.4	0.0					
6	0.4	20	5.5	1					
6	0.5	40	5.7	1					
6	0.0	56	5.8	1					
5	0.7	00	5.9	1.0					
6	0.9		6.0	1					
7	1.0		6.1	1					
6	1.1		6.2	1					
7	1.2		6.3	20					
8	1.3		6.4	2.0					
8	1.4		6.5	1					
8	1.5		6.6	1					
14	1.6		6.7	1					
11	1.7		6.8	3.0					
9	1.8		6.9]					
11	1.9		7.0						
11	2.0		7.1						
10	2.1		7.2	4.0					
7	2.2		7.3						
7	2.3		7.4	2					
9	2.4		7.5	E c					
10	2.5		7.6	bt 5.0					
10	2.6		7.7	ă					
10	2.7		7.8	4					
9	2.8		7.9	4					
8	2.9		8.0	6.0					
<u>/</u>	3.0		8.1	0.0					
5	3.1		8.2	4					
5	3.2		8.3	-					
<u>э</u>	3.3 2.4		0.4 8.5	1					
<u>4</u> 6	3.4 3.5		C.0 8.6	7.0					
2	3.0		0.0 Q 7	1					
∠ २	3.0		0.7 8.8	1					
3	3.8		89	1					
2	3.9		9.0	8.0					
2	4.0		9.1	1					
2	4.1		9.2	1					
1	4.2		9.3	1					
3	4.3		9.4	9.0					
2	4.4		9.5	1					
2	4.5		9.6	1					
3	4.6		9.7	1					
5	4.7		9.8	1					
4	4.8		9.9	10.0					
3	4.9		10.0						
4	50]					

roject Nar ob No: 13 Blows 10	ne: Bro 896 Denth	adwater R	load	DPSH N	o: 26
ob No: 13 Blows 10	896 Depth			-	0.20
Blows 10	Donth			DATE: 1	9th-28th June 2023
10		Blows	Depth		No. Plaus 100 mm (N)
10	0.0	2	5.1		NO. BIOWS 100 mm (N_{100})
5	0.1	3	5.2		
5	0.2	5 5	5.5	0	0 5 10 15 20 25 30 35 40 45 50
5	0.3	<u> </u>	5.4	0.0	
8	0.4	5	5.5	-	
8	0.5	J 	5.7	+	
7	0.0	10	5.8	-	
7	0.8	30	5.9	1.0	
9	0.9	38	6.0	-	
9	1.0	17	6.1	-	
12	1.1	14	6.2	-	
11	1.2	18	6.3	20	
10	1.3	16	6.4	2.0	
5	1.4	23	6.5		
8	1.5	27	6.6		
8	1.6	24	6.7		
13	1.7	<u>1</u> 8	6.8	3.0	
13	1.8	35	6.9	+	
11	1.9	41	7.0	-	
12	2.0	82	7.1	-	
23	2.1		7.2	4.0	
15	2.2		7.3	Ì	
16	2.3		7.4	2	
11	2.4		7.5	5	
11	2.5		7.6	b 5.0	
7	2.6		7.7	ă	
4	2.7		7.8	-	
4	2.8		7.9	-	
5	2.9		8.0		
5	3.0		8.1	0.0	
5	3.1		8.2	-	
4	3.2		8.3	-	
4	3.3		0.4	-	
4	3.4		0.0 8.6	7.0	
2	3.5		8.7	-	
2	3.0		8.8	-	
2	3.8		89		
3	3.9		9.0	8.0	
2	4.0		9.1	1 1	
0	4.1		9.2	1	
2	4.2		9.3		
1	4.3		9.4	9.0	
1	4.4		9.5		
1	4.5		9.6	1 1	
2	4.6		9.7		
4	4.7		9.8		
2	4.8		9.9	10.0 -	
2	4.9		10.0		
2	5.0				
otes: She	et 1 of 1				

		DYNA	MIC F	PROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 27
Job No: 13	896			DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	
	0.0	2	5.1	No. Blows 100 mm (N ₁₀₀)
4	0.1	2	5.2	
4	0.2	1	5.3	0 5 10 15 20 25 30 35 40 45 50
4	0.3	1	5.4	
5	0.4	2	5.5	
4	0.5	3	5.6	
3	0.6	1	5.7	
3	0.7	4	5.8	
5	0.8	/	5.9	
5	0.9	8	6.0	
5	1.0	4	6.1	
8	1.1	4	0.2	
9	1.2	5	0.3	. 2.0
0 10	1.3	6	6.5	
10	1.4	6	6.6	
8	1.0	16	6.7	
13	1.0	20	6.8	3.0
16	1.7	20	6.9	
12	1.9	15	7.0	
14	2.0	40	7.1	
22	2.1	27	7.2	4.0
15	2.2	21	7.3	
11	2.3	21	7.4	
11	2.4	12	7.5	<u>الالالالالالالالالالالالالالالالالالال</u>
9	2.5	10	7.6	
7	2.6	7	7.7	
9	2.7	15	7.8	
8	2.8	14	7.9	
6	2.9	15	8.0	
5	3.0	15	8.1	6.0
5	3.1	11	8.2	
3	3.2		8.3	
4	3.3	9	8.4	
4	3.4	12	8.5	. 7.0
3 3	3.0	6	0.0 9.7	
4	3.0	8	8.8	
4	3.8	10	8.9	
3	3.9	10	9.0	8.0
3	4.0	14	9.1	
3	4.1	14	9.2	
3	4.2	17	9.3	
5	4.3	24	9.4	9.0
2	4.4	19	9.5	
2	4.5	12	9.6	
1	4.6	37	9.7	
3	4.7	92	9.8	
6	4.8		9.9	10.0
5	4.9		10.0	
2	5.0			
Notes: She	et 1 of [·]	1.		

		DYNA	MIC F	PROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 28
Job No: 13	896			DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	
4.4	0.0	2	5.1	No. Blows 100 mm (N ₁₀₀)
14	0.1	2	5.2	-
9	0.2	2	5.3	0 5 10 15 20 25 30 35 40 45 50
<u> </u>	0.3	<u> </u>	5.4	0.0
6	0.4	3	5.5	
5	0.0	4	5.0	
6	0.0	4	5.8	
6	0.8	4	5.9	1.0
8	0.9	4	6.0	
8	1.0	4	6.1	
11	1.1	5	6.2	
9	1.2	4	6.3	2.0
8	1.3	4	6.4	
10	1.4	5	6.5	
9	1.5	11	6.6	
7	1.6	13	6.7	30
6	1.7	13	6.8	
8	1.8	11	6.9	-
10	1.9	10	7.0	
20	2.0	9	7.1	
20	2.1	9	7.2	
10	2.2	9	7.3	
9	2.0	9	7.5	
9	2.5	11	7.6	1 🗧 🍾
6	2.6	11	7.7	
5	2.7	12	7.8	
8	2.8	11	7.9	
6	2.9	12	8.0	
6	3.0	15	8.1	6.0
6	3.1	10	8.2	
5	3.2	12	8.3	-
5	3.3	12	8.4	
6	3.4	11	8.5	7.0
6	3.5 3.6	7	0.0 9.7	
2	3.0	/ 8	8.8	
0	3.8	17	8.9	1
0	3.9	20	9.0	8.0
1	4.0	23	9.1	1
0	4.1	16	9.2]
0	4.2	13	9.3	
1	4.3	24	9.4	9.0
0	4.4	35	9.5	
0	4.5	44	9.6	
1	4.6	47	9.7	
0	4.7		9.8	10.0
0	4.8		9.9	4
1	4.9		10.0	4
Notos: Sh	5.0	1		
10165. 511				

		DYNA	MIC F	PROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 29
Job No: 13	896			DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	No. Plaus 100 mm (N _)
16	0.0	2	5.1	-
10	0.1	<u> </u>	5.2	-
9	0.2	3	5.5	0 5 10 15 20 25 30 35 40 45 50
1/	0.3	4	5.4	0.0
14	0.4	5	5.5	
11	0.0	6	5.0	
10	0.7	6	5.8	
11	0.8	7	5.9	
11	0.9	7	6.0	
11	1.0	7	6.1	
13	1.1	11	6.2	
14	1.2	25	6.3	2.0
14	1.3	30	6.4	
12	1.4	51	6.5	
12	1.5	67	6.6	
12	1.6		6.7	
12	1.7		6.8	
16	1.8		6.9	
12	1.9		7.0	
9	2.0		7.1	
13	2.1		7.2	4.0
14	2.2		7.3	
19	2.3		7.4	
8	2.4		7.5	- £
8	2.5		7.0	5 .0
5	2.0		7.8	
3	2.8		7.9	
3	2.9		8.0	
5	3.0		8.1	6.0
12	3.1		8.2	
3	3.2		8.3	
4	3.3		8.4	
4	3.4		8.5	7.0
3	3.5		8.6	
3	3.6		8.7	
2	3.7		8.8	
2	3.8		8.9	80
1	3.9		9.0	
2	4.0		9.1	
2	4.1 ∕\2		9.Z	
<u> </u>	4.2 4 3		9.3	
1	4.4		95	
1	4.5		9.6	
1	4.6		9.7	
2	4.7		9.8	
3	4.8		9.9	
3	4.9		10.0	1
3	5.0]
lotes: She	et 1 of	1.		

		DYNA	MIC F	OBE RECORD (D	OPSH METHOD)
Project Na	me: Bro	adwater R	oad	SH No: 30	
Job No: 13	896		-	TE: 19th-28th June 2023	
Blows	Depth	Blows	Depth		
40	0.0	3	5.1	N	lo. Blows 100 mm (N ₁₀₀)
18	0.1	5	5.2		
15	0.2	4	5.3	0 5 10 15	20 25 30 35 40 45 50
8	0.3	4	5.4	0.0	
5	0.4	5 7	5.5		
3 4	0.5	24	5.0		
5	0.0	60	5.8		
5	0.8	88	5.9	1.0	
6	0.9		6.0		
7	1.0		6.1		
8	1.1		6.2		
7	1.2		6.3	2.0	
7	1.3		6.4		
14	1.4		6.5		
11	1.5		6.6		
11	1.6		6.7	20	
12	1.7		6.8	3.0	
12	1.8		6.9		
11	1.9		7.0		
11	2.0		7.1		
/	2.1		7.2	4.0	
21	2.2		7.3		
21	2.3		7.4		
14	2.4		7.5		
7	2.6		7.7	5.0	
6	2.7		7.8		
5	2.8		7.9		
7	2.9		8.0		
7	3.0		8.1	6.0	
10	3.1		8.2		
6	3.2		8.3		
3	3.3		8.4		
5	3.4		8.5	7.0	
3	3.5		8.0		
2	3.0		0.7 9.9		
2	3.8		8.0		
1	3.9		9.0	8.0	
2	4.0		9.1		
1	4.1		9.2		
1	4.2		9.3		
2	4.3		9.4	9.0	
2	4.4		9.5		
1	4.5		9.6		
1	4.6		9.7		
1	4.7		9.8	10.0	
2	4.8		9.9	20.0	
2	4.9		10.0		
2	5.0		L		
NOTES: She	et 1 of '	1.			

Project Nan lob No: 138 Blows	ne: Bro 896	adwater R	bad	DPSH No: 31							
ob No: 138	896	Project Name: Broadwater Road DPSH No: 31									
Blowe			-	DATE: 19th-28th June 2023							
DIOWS	Depth	Blows	Depth								
	0.0	2	5.1	No. Blows 100 mm (N ₁₀₀)							
14	0.1	5	5.2	4							
9	0.2	4	5.3	0 5 10 15 20 25 30 35 40 45 50							
6	0.3	4	5.4								
6	0.4	3	5.5								
10	0.5	4	5.6								
10	0.6	5	5.7								
0	0.7	17	5.0								
0 Q	0.0	17	5.9								
0 Q	0.9	30	6.1								
13	1.0	50	6.2								
10	1.1	61	6.3								
7	1.2	01	6.4								
9	1.0		6.5								
10	1.1		6.6								
12	1.6		6.7								
12	1.0		6.8	3.0							
20	1.8		6.9	1 +							
19	1.9		7.0								
16	2.0		7.1								
14	2.1		7.2	4.0							
14	2.2		7.3								
15	2.3		7.4								
15	2.4		7.5] 🔄 🔹 👘 👘							
15	2.5		7.6								
10	2.6		7.7								
9	2.7		7.8								
6	2.8		7.9								
5	2.9		8.0								
5	3.0		8.1	6.0							
5	3.1		8.2								
4	3.2		8.3								
5	3.3		8.4								
4	3.4		8.5	7.0							
4	3.5		8.6								
2	3.0		0.7								
2	3.7		0.0 8.0								
1	3.0		9.0	8.0							
2	4.0		9.0								
2	4 1		92								
1	4.2		9.3								
1	4.3		9.4	9.0							
1	4.4		9.5								
1	4.5		9.6								
1	4.6		9.7								
1	4.7		9.8								
2	4.8		9.9								
1	4.9		10.0	1							
1	5.0			1							
lotes: Shee	et 1 of 1	Ι.									

	DYNAMIC PROBE RECORD (DPSH METHOD)								
Project Na	me: Bro	adwater R	oad	DPSH No: 32					
Job No: 13	896			DATE: 19th-28th June 2023					
Blows	Depth	Blows	Depth						
	0.0	4	5.1	No. Blows 100 mm (N ₁₀₀)					
2	0.1	4	5.2						
10	0.2	4	5.3						
12	0.3	20	5.4						
14	0.4	70	5.5						
10	0.5	97	5.6						
10	0.6		5.7						
10	0.7		5.8						
10	0.8		5.9						
12	0.9		6.0						
11	1.0		6.1						
10	1.1		6.2						
10	1.2		6.3	2.0					
13	1.3		6.4						
12	1.4		6.5						
11	1.5		6.6						
10	1.6		6.7	30					
10	1./		6.8						
12	1.8		6.9						
12	1.9		7.0						
12	2.0		7.1						
10	2.1		7.2						
12	2.2		7.3						
9 10	2.3		7.4						
10	2.4		7.5						
5	2.5		7.0						
5	2.0		7.8						
3	2.8		7.9						
5	2.9		8.0						
4	3.0		8.1	6.0					
2	3.1		8.2						
4	3.2		8.3						
4	3.3		8.4						
3	3.4		8.5	7.0					
3	3.5		8.6						
2	3.6		8.7						
1	3.7		8.8						
1	3.8		8.9						
1	3.9		9.0						
3	4.0		9.1						
3	4.1		9.2						
2	4.2		9.3						
2	4.3		9.4	9.0					
2	4.4		9.5						
1	4.5	7	9.6						
2	4.6	50	9.7						
1	4.7		9.8	10.0					
3	4.8		9.9	4					
4	4.9		10.0	4					
J Notes Cha	0.C	I							
NOTES: SNE	et 1 Of 1								

	DYNAMIC PROBE RECORD (DPSH METHOD)								
Project Na	me: Bro	adwater R	oad	PSH No: 33	•				
Job No: 13	896			TE: 19th-28th June 2023					
Blows	Depth	Blows	Depth						
	0.0	5	5.1	No. Blow	/s 100 mm (N ₁₀₀)				
9	0.1	3	5.2						
8	0.2	16	5.3	0 5 10 15 20	25 30 35 40 45 50				
6	0.3	50	5.4						
4	0.4	142	5.5						
4	0.5		5.6						
3	0.6		5.7						
4	0.7		5.8						
3	0.8		5.9						
3	0.9		6.0						
3	1.0		6.1						
3	1.1		6.2						
3	1.2		6.3	2.0					
5	1.3		6.4						
1	1.4		6.5						
10	1.5		6.6						
14	1.0		0.7	3.0					
12	1.7		0.0						
10	1.0		0.9						
10	1.9		7.0						
0	2.0		7.1						
9	2.1		7.2	4.0					
6	2.2		7.3						
7	2.5		7.4						
6	2.4		7.6						
4	2.6		7.7	5.0					
3	2.7		7.8						
3	2.8		7.9						
3	2.9		8.0						
3	3.0		8.1	6.0					
3	3.1		8.2						
3	3.2		8.3						
1	3.3		8.4						
2	3.4		8.5	7.0					
3	3.5		8.6						
1	3.6		8.7						
2	3.7		8.8						
3	3.8		8.9	•••					
4	3.9		9.0	o.u					
2	4.0		9.1						
1	4.1		9.2						
2	4.2		9.3						
2	4.3		9.4	9.0					
2	4.4		9.5						
1	4.5		9.6						
1	4.6		9.7						
2	4./		9.8	10.0					
3	4.8		9.9						
3	4.9		10.0						
3	0.0								
Notes: She	et 1 of 1	1.							

DYNAMIC PROBE RECORD (DPSH METHOD)								
roject Na	ime: Bro	adwater R	oad	DPSH N	0: 34			
ob No: 1	3896			DATE: 1	9th-28th June 2023			
Blows	Depth	Blows	Depth		No. Plous 100 mm (N)			
2	0.0	<u>6</u>	5.1	4	NO. BIOWS 100 mm (N_{100})			
<u> </u>	0.1	5	5.2	-				
4	0.2	5	5.3	- c) 5 10 15 20 25 30 35 40 45 50			
9 7	0.3	5	5.4	0.0				
11	0.4	7	5.5					
11	0.5	8	5.0					
8	0.7	5	5.8					
5	0.8	5	5.9	1.0 -				
4	0.9	6	6.0					
4	1.0	49	6.1					
6	1.1	53	6.2					
8	1.2	60	6.3	2.0				
6	1.3	62	6.4	-				
6	1.4	65	6.5					
6	1.5	63	6.6	-				
5	1.6	59	6.7					
6	1.7	62	6.8	3.0				
8	1.8	70	6.9	-				
8	1.9		7.0					
7	2.0		7.1					
10	2.1		7.2	4.0				
10	2.2		7.3	-				
14	2.3		7.4	Ê				
10	2.4		7.5	- -				
12	2.5		7.0	b 5.0				
14	2.0		7.8					
10	2.7		7.0					
7	2.0		8.0					
8	3.0		8.1	6.0				
12	3.1		8.2					
8	3.2		8.3					
6	3.3		8.4					
6	3.4		8.5	7.0				
7	3.5		8.6					
5	3.6		8.7					
3	3.7		8.8	. 1				
4	3.8		8.9	۔ ۵۰				
4	3.9		9.0	0.0 -				
4	4.0		9.1	4				
3	4.1		9.2					
2	4.2		9.3					
2	4.3		9.4 0.5	9.0				
<u>ა</u> ე	4.4 15		9.0	1				
2	4.5		9.0					
2	4.0		9.7					
2	4.8		9.0	10.0				
3	4.9		10.0	1				
3	5.0			1				
-								
		DYNAI	MIC F	PROBE RECORD (DPSH METHOD)				
----------------	------------	-----------	-------	--------------------------------------				
Project Na	me: Bro	adwater R	oad	DPSH No: 35				
Job No: 13	896			DATE: 19th-28th June 2023				
Blows	Depth	Blows	Depth					
<u> </u>	0.0	2	5.1	NO. BIOWS 100 mm (N ₁₀₀)				
<u> </u>	0.1	<u> </u>	5.2					
5	0.2	5	5.3	0 5 10 15 20 25 30 35 40 45 50				
3	0.4	10	5.5	0.0				
3	0.5	41	5.6					
2	0.6	58	5.7					
2	0.7		5.8					
3	0.8		5.9	1.0				
3	0.9		6.0					
3	1.0		6.1					
2	1.1		6.2					
4	1.2		6.3	2.0				
3	1.3		6.4					
2	1.4		C.0					
<u>ु</u>	1.0		6.7					
4	1.0		6.8	3.0				
8	1.8		6.9					
10	1.9		7.0					
12	2.0		7.1					
18	2.1		7.2	4.0				
16	2.2		7.3					
15	2.3		7.4					
15	2.4		7.5					
15	2.5		7.6	5 .0				
10	2.6		7.7					
10	2.7		7.8					
<u>10</u>	2.0		8.0					
6	3.0		8.1	6.0				
7	3.1		8.2					
6	3.2		8.3					
5	3.3		8.4					
2	3.4		8.5	7.0				
2	3.5		8.6					
2	3.6		8.7					
2	3.7		8.8					
2	3.0 3.0		0.9	8.0				
3	4.0		9.0					
2	4.1		9.2					
2	4.2		9.3					
2	4.3		9.4	9.0				
2	4.4		9.5					
2	4.5		9.6					
2	4.6		9.7					
1	4.7		9.8	10.0				
2	4.8		9.9	4				
2	4.9		10.0	4				
L Notos: Sh	5.0	1	1					
10163. 011								

		DYNAI	MIC F	PROB	E RECORD (DPSH METHOD)
roject Na	me: Bro	adwater R	oad	DPSH N	0: 36
ob No: 13	896			DATE: 1	9th-28th June 2023
Blows	Depth	Blows	Depth		
	0.0	4	5.1	-	No. Blows 100 mm (N ₁₀₀)
3	0.1	13	5.2	-	
1	0.2	25	5.3	c c) 5 10 15 20 25 30 35 40 45 50
4	0.3	102	5.4	0.0 +	
5	0.4		5.5		
0	0.5		5.0		
4	0.6		5.7	-	
3	0.7		5.0	1.0	
2	0.0		5.9	-	
2	1.0		6.1	-	
2	1.0		6.2		
4	1.1		6.3		
3	1.3		6.0	2.0 -	
4	1.4		6.5		
6	1.5		6.6		
6	1.6		6.7	-	
7	1.7		6.8	3.0	
9	1.8		6.9		
12	1.9		7.0	-	
12	2.0		7.1		
12	2.1		7.2	4.0	
12	2.2		7.3	-	
12	2.3		7.4		
9	2.4		7.5	<u> </u>	
10	2.5		7.6	b b b	
10	2.6		7.7		
10	2.7		7.8	-	
10	2.8		7.9	-	
8	2.9		8.0	-	
6	3.0		8.1	6.0	
6	3.1		8.2	-	
9	3.2		8.3	-	
6	3.3		8.4	-	
5	3.4		8.5	7.0	
6	3.5		8.6		
4	3.6		8.7		
<u>ა</u>	<u> ৩./</u>		8.8		
<u>3</u>	<u> </u>		8.9	8.0	
4	3.9		9.0	-	
2	4.U		9.1		
3 2	4.1 ∕1.2		9.2		
2	+.∠ ⊿ २		9.3 Q /		
2	4.0		9.4	9.0	
2	4.5		9.5		
3	4.6		97		
3	47		9.8		
3	4.8		9.0	10.0	
4	4.9		10.0	1	
4	5.0			1	

		DYNA	MIC F	PROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No	p: 37
Job No: 13	896		-	DATE: 19	9th-28th June 2023
Blows	Depth	Blows	Depth		
	0.0	6	5.1		No. Blows 100 mm (N ₁₀₀)
4	0.1	7	5.2	4	
4	0.2	4	5.3	0	5 10 15 20 25 30 35 40 45 50
9	0.3	5	5.4	0.0 +	
9	0.4	30	5.5		
1	0.5	53	5.0	1 1	
2 2	0.0	60	5.7		
2	0.7		5.0	1.0	
2	0.0		5.9		
2	1.0		6.1		
2	1.0		62		
3	12		6.3		
4	1.3		6.4	2.0	
9	1.4		6.5	1 1	
12	1.5		6.6	1 ‡	
10	1.6		6.7		
13	1.7		6.8	3.0	
10	1.8		6.9		
8	1.9		7.0		
8	2.0		7.1] -	
12	2.1		7.2	4.0	
8	2.2		7.3		
7	2.3		7.4	- E	
9	2.4		7.5	<u>د</u>	
9	2.5		7.6	5.0	
9	2.6		7.7	^	
6	2.7		7.8		
/	2.8		7.9		
9	2.9		0.U	60	
1	3.0		0.1 9.2		
4	3.1		83		
4	3.3		84		
4	3.4		8.5		
4	3.5		8.6	7.0	
4	3.6		8.7	1 ‡	
3	3.7		8.8		
3	3.8		8.9		
3	3.9		9.0	8.0	
3	4.0		9.1	l I	
3	4.1		9.2	. 1	
2	4.2		9.3		
3	4.3		9.4	9.0	
2	4.4		9.5	- +	
2	4.5		9.6	- E	
1	4.6		9.7	- 1	
2	4./		9.8	10.0 ±	
2	4.ð		9.9	4	
2	4.9		10.0	4	
Jotos: She	0.0	1	I		
10165. 011					

	I	DYNA	MIC F	PROB	E RE	ECO	RD) (D	PS	H	ME	TH	10	D)			
Project Na	me: Broa	adwater R	oad	DPSH N	o: 37												
Job No: 13	896	<u></u>		DATE: 1	9th-28	<u>h Jun</u>	e 20	23									
Blows	Depth	Blows	Depth	-							•	(6)	,				
	10.0		15.1	-				N	D. BIO	ws 10	0 mm	(N ₁₀₀)				
	10.1		15.2	-													
	10.2		15.3	c) 5	10	1	5	20	25	3()	35	2	10	45	50
	10.3		15.4	10.0							++++				+++	+++	 1
	10.4		15.5	-													-
	10.5		15.6														-
	10.6		15.7	-													-
	10.7		15.0	11.0													-
	10.0		15.9	11.0					*								-
	11.0		16.0	-				•==									-
21	11.0		16.2														-
21	11.1		16.2														-
16	11.2		16.0	12.0							*						-
24	11.0		16.4	-													-
2 4 25	11.4		16.5														-
23	11.6		16.7	-													-
23	11.0		16.8	13.0					•		•						-
20	11.7		16.9	-							•						-
24	11.0		17.0	-													\$
29	12.0		17.0	-													-
29	12.1		17.2	14.0													-
28	12.2		17.3	-													-
26	12.3		17.4														-
26	12.4		17.5	E E													-
27	12.5		17.6	b t													-
27	12.6		17.7	ق 15.0													-
28	12.7		17.8	-													-
28	12.8		17.9	-													-
22	12.9		18.0														-
30	13.0		18.1	16.0													-
31	13.1		18.2	-													-
30	13.2		18.3														-
48	13.3		18.4	-													-
50	13.4		18.5	17.0													-
50	13.5		18.6	-													-
	13.6		18.7	-													-
	13.7		18.8	-													-
	13.8		18.9	18.0													-
	13.9		19.0	10.0													-
	14.0		19.1	-													-
	14.1		19.2														-
	14.2		19.3	-													-
	14.3		19.4	19.0													-
	14.4		19.5														-
	14.0		19.0														-
	14.0		19.7														-
	14.7		19.0	20.0]
	14.0		20.0	1													
	14.9		20.0	ł													
Notes: She	eet 1 of 1		<u> </u>	1													

		DYNAI	MIC F	PROB	E RECORD (DPSH METHOD)
roject Na	me: Bro	adwater R	oad	DPSH N	0: 38
ob No: 13	3896			DATE: 1	9th-28th June 2023
Blows	Depth	Blows	Depth	1	
	0.0	5	5.1	4	No. Blows 100 mm (N ₁₀₀)
5	0.1	4	5.2	4	
10	0.2	4	5.3) 5 10 15 20 25 30 35 40 45 50
10	0.3	5	5.4	0.0	
<u>/</u>	0.4	5	5.5		
5	0.5	4	5.0		
5	0.0	5	5.7		
2	0.7	20	5.0	1.0	
2	0.0	42	5.3 6.0		
1	1.0	90	6.1		
2	1.0	50	6.2		
4	1.1		6.3		
6	1.3		6.4	2.0	
5	1.4		6.5		
7	1.5		6.6		
7	1.6		6.7	1]	
7	1.7		6.8	3.0	
5	1.8		6.9	1 1	
5	1.9		7.0	1	
6	2.0		7.1	1	
8	2.1		7.2	4.0	
6	2.2		7.3		
5	2.3		7.4		
5	2.4		7.5	<u> </u>	
3	2.5		7.6	bt [
5	2.6		7.7		
6	2.7		7.8		
6	2.8		7.9		
7	2.9		8.0		
6	3.0		8.1	6.0	
6	3.1		8.2	. 1	
6	3.2		8.3		
6	3.3		8.4	4 1	
6	3.4		8.5	7.0	
6	3.5		8.6	- 1	
2	3.6		8.7		
2	<u>3./</u>		8.8		
2	3.ð 2.0		0.9	8.0	
2	3.9		9.0		
<u> </u>	4.U 4 1		9.1	1]	
2	4.1		9.2	1 1	
2	<u> </u>		9.5		
3	4.0		9.5	9.0	
1	4.5		9.6	1 1	
2	4.6		97	1 1	
3	4.7		9.8	1]	
2	4.8		9.9	10.0	
2	4.9		10.0	1	
3	5.0			1	
				-	

		DYNAI	MIC F	PROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH N	lo: 39
Job No: 13	896			DATE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth	4	
0	0.0	2	5.1	4	No. Blows 100 mm (N_{100})
0	0.1	2	5.2	4	
0	0.2	2	5.3	(0 5 10 15 20 25 30 35 40 45 50
6	0.3	2	5.4	0.0	
0 8	0.4	3	5.5		
0 7	0.5	3	5.0	1	
7	0.0	4	5.8		
4	0.7	4	5.0	1.0 -	
4	0.9	4	6.0	-	
4	1.0	5	6.1		
6	1.1	5	6.2		
5	1.2	4	6.3	20	
6	1.3	5	6.4	2.0	
8	1.4	5	6.5	1	
7	1.5	5	6.6	1	
7	1.6	6	6.7	-	
7	1.7	7	6.8	3.0 -	
10	1.8	7	6.9		
9	1.9	8	7.0	-	
14	2.0	9	7.1		
10	2.1	9	7.2	4.0	
7	2.2	10	7.3		
8	2.3	10	7.4	Ê Î	
8	2.4	11	7.5	- 	
8 7	2.5	13	7.0	b 5.0	
7	2.0	10	7.8	1 :	
7	2.7	10	7.0		
7	2.0	24	8.0		
7	3.0	29	8.1	6.0 -	
8	3.1	40	8.2		
6	3.2	50	8.3		
6	3.3	50	8.4	1 -	
5	3.4		8.5	7.0 -	
5	3.5		8.6		
4	3.6		8.7		
3	3.7		8.8		
3	3.8		8.9	- ۹	
2	3.9		9.0	0.0	
2	4.0		9.1	4 :	
1	4.1		9.2	-	
ו ס	4.∠ ∕\2		9.3	-	
5	4.3 [] [] []		9.4 Q 5	9.0	
<u> </u>	4.4		9.5	1	
	4.6		97	1 :	
2	4.7		9.8	1	
1	4.8		9.9	10.0 -	
1	4.9		10.0	1	
1	5.0			1	
Notes: She	et 1 of 3	3.			

		DYNAI	MIC F	ROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH N	o: 39 Continued
lob No: 13	896			DATE: 1	9th-28th June 2023
Blows	Depth	Blows	Depth		No. Plays 100 mm (N)
	10.0	3	15.1		NO. BIOWS 100 mm (N_{100})
	10.1	<u> </u>	15.2		
	10.2	5	15.5	0	0 5 10 15 20 25 30 35 40 45 50
	10.3	3	15.4	10.0	
	10.4	4	15.6	-	
	10.6	2	15.7		
	10.7	4	15.8	-	
	10.8	4	15.9	11.0	
	10.9	3	16.0		
	11.0	2	16.1	-	
	11.1	2	16.2		
	11.2	3	16.3	12.0	
	11.3	4	16.4	-	
	11.4	6	16.5	-	
	11.5	8	16.6	-	
	11.6	6	16.7	12.0	
	11.7	4	16.8	15.0	
	11.8	5	16.9	-	
	11.9	4	17.0		
	12.0	6	17.1	-	
	12.1	4	17.2	14.0	
	12.2	3	17.3		
	12.3	10	17.4	Ê Î	
	12.4	20	17.5	ţ.	
	12.5	15	17.0	d 15.0	
	12.7	9	17.8		
	12.8	6	17.9	-	
	12.9	6	18.0	-	
	13.0	6	18.1	16.0	
	13.1	5	18.2	-	
	13.2	5	18.3	-	
	13.3	9	18.4	-	
	13.4	24	18.5	17.0	
	13.5	10	18.6		
	13.6	8	18.7	-	
	13.7	15	10.0		
	13.0 13.0	15	10.9	18.0	
	14.0	7	10.0		
2	14.1	6	19.2		
2	14.2	7	19.3	-	
1	14.3	7	19.4	19.0	
1	14.4	7	19.5		
3	1 <u>4.5</u>	10	19.6		
2	14.6	10	19.7		
3	14.7	8	19.8	20.0	
2	14.8	10	19.9	20.0 -	•••••••••••••••••••••••••••••
3	14.9	26	20.0		
3	15.0				
Notes: She	et 2 of 3	3.			

 $\langle | \rangle$

		DYNAMIC F	PROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater Road	DPSH N	o: 39 continued
Job No: 13	896		DATE: 1	9th-28th June 2023
Blows	Depth	Blows Depth		
	20.0	25.1		No. Blows 100 mm (N ₁₀₀)
13	20.1	25.2		
6	20.2	25.3		
14	20.3	25.4	20.0	5 10 15 20 25 30 35 40 45 50
9	20.4	25.5	20.0	
6	20.5	25.6	-	
7	20.6	25.7	-	
6	20.7	25.8	-	
7	20.8	25.9	21.0	
8	20.9	26.0	-	
10	21.0	26.1	-	
9	21.1	26.2	-	
9	21.2	26.3	22.0	
9	21.3	26.4	-	
10	21.4	26.5	-	
11	21.5	26.6		
12	21.6	26.7	22.0	
12	21.7	26.8	23.0	
13	21.8	26.9	-	
10	21.9	27.0	-	
10	22.0	27.1		
11	22.1	27.2	24.0	
11	22.2	27.3		
17	22.3	27.4	a	
16	22.4	27.5	ר ר	
9	22.5	27.6	b 25.0	
9	22.6	27.7		
19	22.7	27.8	-	
18	22.8	27.9		
17	22.9	20.0	26.0	
17	23.0	20.1		
10	23.1	20.2	-	
14	23.2	20.3	-	
17	23.4	28.5		
16	23.5	28.6	27.0 +	
14	23.6	28.7		
14	23.7	28.8		
16	23.8	28.9	-	
16	23.9	29.0	28.0	
17	24.0	29.1	-	
26	24.1	29.2	-	
25	24.2	29.3		
7	24.3	29.4	29.0	
29	24.4	29.5		
39	24.5	29.6	-	
49	24.6	29.7	-	
50	24.7	29.8	1 ‡	
	24.8	29.9	30.0 1	
	24.9	30.0		
	25.0			
Notes: She	et 3 of 3	3.		

		DYNAI	MIC F	PROB	BE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH N	No: 41
Job No: 13	896			DATE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth		
	0.0	3	5.1		No. Blows 100 mm (N ₁₀₀)
0	0.1	3	5.2		
0	0.2	3	5.3		0 5 10 15 20 25 30 35 40 45 50
4	0.3	3	5.4	0.0	
3	0.4	4	5.5		
1	0.5	5	5.6	-	
2	0.6	6	5.7	-	
2	0.7	/	5.8	10	
2	0.8	6	5.9	1.0	
3	0.9	/	6.0	-	
4	1.0	8	6.1	-	
0	1.1	9	0.2	-	
<i>I</i>	1.2	9	0.3	2.0	
0	1.3	9 10	6.4		
9 10	1.4	0	6.0		
11	1.5	و ۸	67		
10	1.0	6	6.8	3.0	
10	1.7	6	6.0		
10	1.0	6	7.0	-	
12	2.0	7	7.0	-	
18	21	6	7.2	40	
24	2.2	8	7.3		
11	2.3	8	7.4		
9	2.4	8	7.5	۲ س	
9	2.5	9	7.6	bth	
7	2.6	9	7.7	ق 5.0	
6	2.7	8	7.8	-	
5	2.8	6	7.9	-	
6	2.9	7	8.0	-	
5	3.0	8	8.1	6.0	
5	3.1	8	8.2	-	
4	3.2	10	8.3	-	
5	3.3	10	8.4	-	
6	3.4	13	8.5	7.0	
4	3.5	14	8.6		
<u>ა</u>	3.0 2.7	14	0./		
ა ი	৩.1 ২০	12	0.0 2 0	-	
2	3.0	22	0.9	8.0	
2	4.0	23	9.0		
2	4.1	26	92		
2	4.2	30	9.3		
1	4.3	30	9.4	9.0	
1	4.4	40	9.5		
2	4.5	30	9.6		
1	4.6	31	9.7		
2	4.7	30	9.8	10.0	
2	4.8	29	9.9	10.0	
2	4.9	30	10.0		
3	5.0				
Notes: She	eet 1 of 1	1.			

		DYNA	MIC F	PROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 42
Job No: 13	896			DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	
	0.0	3	5.1	NO. BIOWS 100 mm (N ₁₀₀)
2	0.1	1	5.2	
3	0.2	2	5.3	0 5 10 15 20 25 30 35 40 45 50
3	0.3	2	5.4	0.0
2	0.4	2	5.5	
2	0.5	2	5.7	
2	0.0	4	5.8	
1	0.8	8	5.9	1.0
4	0.9	8	6.0	
4	1.0	7	6.1	
10	1.1	5	6.2	
14	1.2	6	6.3	20
12	1.3	6	6.4	
10	1.4	8	6.5	
10	1.5	9	6.6	
16	1.6	16	6.7	
14	1.7	14	6.8	3.0
14	1.8	12	6.9	
14	1.9	11	7.0	
11	2.0	15	7.1	
10	2.1	15	7.2	4.0
8	2.2	7	7.3	
8	2.3	32	7.4	2
5	2.4	16	7.5	
8	2.5	30	7.6	5.0 5 .0
7	2.6	23	7.7	
8	2.7	30	7.8	
8	2.8	38	7.9	
10	2.9	39	8.U 9.1	60
10	3.0	3/2	0.1 9.2	
5	3.1	30	8.3	
5	33	42	8.4	
5	3.4	63	8.5	
3	3.5	00	8.6	
2	3.6		8.7	
1	3.7		8.8	
2	3.8		8.9	
3	3.9		9.0	8.0
2	4.0		9.1	
2	4.1		9.2	
2	4.2		9.3	
2	4.3		9.4	9.0
1	4.4		9.5	
1	4.5		9.6	
1	4.6		9.7	
1	4.7		9.8	10.0
1	4.8		9.9	4
1	4.9		10.0	4
	0.C	1	L	
NOLES: SNE	et TOT			

		DYNA	MIC F	ROBE	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No	p: 43
Job No: 13	896		-	DATE: 19)th-28th June 2023
Blows	Depth	Blows	Depth		
	0.0	2	5.1		No. Blows 100 mm (N ₁₀₀)
0	0.1	2	5.2		
0	0.2	2	5.3	0	5 10 15 20 25 30 35 40 45 50
2	0.3	4	5.4	0.0	
2	0.4	3	5.5		
4	0.5	4	5.0		
4	0.6	3	5.7		
4	0.7	4	5.0	1.0	
2	0.0	6	5.9		
2	1.0	7	6.1		
2	1.0	7	6.2		
2	1.1	7	6.3		
1	1.2	6	6.4	2.0	
1	1.4	6	6.5		
2	1.5	6	6.6		
2	1.6	6	6.7		
3	1.7	6	6.8	3.0	
4	1.8	8	6.9		
6	1.9	10	7.0		
6	2.0	11	7.1		
8	2.1	14	7.2	4.0	
8	2.2	26	7.3		
8	2.3	41	7.4		
9	2.4	50	7.5	<u>ا</u> ا	
7	2.5	50	7.6		
6	2.6		7.7		
6	2.7		7.8		
6	2.8		7.9		
6	2.9		8.0		
6	3.0		8.1	6.0	
5	3.1		8.2		
5	3.2		8.3		
5	3.3		8.4		
4	3.4		8.5	7.0	
4 2	3.5 2.6		0.0 9.7		
3 2	3.0		0.7 8.8		
5	3.8		8 Q		
3	39		9.0	8.0 井	
3	4.0		9.1		
3	4.1		9.2		
2	4.2		9.3	H	
1	4.3		9.4	9.0	
2	4.4		9.5		
1	4.5		9.6	1 =	
1	4.6		9.7		
1	4.7		9.8		
1	4.8		9.9	10.0	
1	4.9		10.0		
1	5.0				
Notes: She	et 1 of 1	Ι.			

		DYNA	MIC F	PRO	BE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPS	H No: 44
Job No: 13	896			DATI	E: 19th-28th June 2023
Blows	Depth	Blows	Depth		
4	0.0	4	5.1		No. Blows 100 mm (N ₁₀₀)
4	0.1	3	5.2		
3	0.2	5	5.3		0 5 10 15 20 25 30 35 40 45 50
1	0.3	4	5.4	C	.0
2	0.4	5	5.5		
2	0.5		5.0		
<u> </u>	0.0	4	5.8		
4	0.7	4	5.0	1	.0
9	0.0	4	6.0		
6	1.0	4	6.1		
11	1.1	4	6.2		
11	1.2	5	6.3		
11	1.3	8	6.4	1 1	
10	1.4	10	6.5	1	
7	1.5	9	6.6	1	
7	1.6	7	6.7	1	
8	1.7	14	6.8	3	
8	1.8	14	6.9		
10	1.9	13	7.0		
8	2.0	30	7.1		
7	2.1	32	7.2	4	.0
8	2.2	40	7.3		
6	2.3	52	7.4	ि	
6	2.4	44	7.5	<u>ب</u>	
6	2.5	33	7.6	e bt	.0
6	2.6	37	7.7	Ō	
5	2.7	42	7.8		
5	2.8	46	7.9		
4	2.9		8.0		
4	3.0		8.1		
5	3.1		8.2		
1	3.2		0.3		
0 /	3.3		0.4 8.5	1	
+ 2	3.4		8.6	7	
<u>२</u>	3.5		87	1	
2	37		8.8	1	
3	3.8		8.9	1	
3	3.9		9.0	8	.0
3	4.0		9.1	1	
1	4.1		9.2	1	
1	4.2		9.3	1	
1	4.3		9.4	9	.0
1	4.4		9.5	1	
1	4.5		9.6]	
1	4.6		9.7]	
1	4.7		9.8	10	
3	4.8		9.9	10	
2	4.9		10.0	l	
2	5.0				
Notes: She	et 1 of 1	1.			

		DYNA	MIC F	PROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 45
Job No: 13	896			DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	
4	0.0	4	5.1	No. Blows 100 mm (N ₁₀₀)
1	0.1	5	5.2	4
4	0.2	5	5.3	0 5 10 15 20 25 30 35 40 45 50
3	0.3	6	5.4 5.5	0.0
4	0.4	7	5.5	
3	0.0	7	5.0	
3	0.7	7	5.8	
5	0.8	8	5.9	1.0
5	0.9	7	6.0	
9	1.0	8	6.1	
15	1.1	7	6.2	
11	1.2	9	6.3	2.0
10	1.3	24	6.4	
8	1.4	20	6.5	
8	1.5	31	6.6	
10	1.6	49	6.7	
10	1.7		6.8	-
7	1.8		6.9	
6	1.9		7.0	
6	2.0		<i>/</i> .1	
8	2.1	-	7.2	
0 8	2.2		7.3	
0	2.3		7.4	
18	2.4		7.5	
12	2.6		7.7	
10	2.7		7.8	
7	2.8		7.9	
7	2.9		8.0	
6	3.0		8.1	6.0
6	3.1		8.2	
8	3.2		8.3	
6	3.3		8.4	
5	3.4		8.5	7.0
5	3.5		8.6	
5	3.6		<u>٥.</u> /	
4	ა./ ვჲ		0.0 8.0	
2	3.0		0.9 Q ()	8.0
3	4.0		9.1	
3	4,1		9.2	
4	4.2		9.3	
3	4.3		9.4	9.0
2	4.4		9.5	
2	4.5		9.6	
2	4.6		9.7	
2	4.7		9.8	
2	4.8		9.9	
2	4.9		10.0	4
3	5.0			
votes: She	et 1 of 3	Ζ.		

		DYNA	MIC F	ROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No	lo: 45 Continued
Job No: 13	896			DATE: 1	9th-28th June 2023
Blows	Depth	Blows	Depth		
	10.0	6	15.1		No. Blows 100 mm (N ₁₀₀)
	10.1	5	15.2		
	10.2	6	15.3	0	0 5 10 15 20 25 30 35 40 45 50
	10.3	6	15.4	10.0 +	
	10.4	5	15.5		
	10.5	5	15.6	. 1	
	10.6	6	15.7		
	10.7	5	15.8	11.0	
	10.8	19	15.9	11.0	
	11.9	25	16.0		
F	11.0	9	10.1		
0 4	11.1	9	16.2		
<u> </u>	11.2	6	10.3	12.0	
4 /	11.3	10	16.4	1 1	
4 /	11.4	10	16.6	1	
+ 	11.0	2 2	16.7	1 1	
4	11.0	6	16.8	13.0	
4	11.7	7	16.0	l I	
3	11 9	7	17.0	1 1	
5	12.0	6	17.0		
4	12.0	7	17.1	14.0	
4	12.1	6	17.2	14.0	
4	12.3	6	17.4		
7	12.4	6	17.5	E E	
6	12.5	8	17.6	F	
5	12.6	9	17.7	15 .0	
6	12.7	11	17.8		
4	12.8	10	17.9		
4	12.9	24	18.0		
4	13.0	26	18.1	16.0	
4	13.1	10	18.2	-	
4	13.2	6	18.3	-	
6	13.3	9	18.4		
7	13.4	10	18.5	17.0	
5	13.5	10	18.6	. 1	
4	13.6	11	18.7	1	
6	13.7	12	18.8	. 1	
6	13.8	10	18.9	180	
6	13.9	7	19.0	10.0	
6	14.0	10	19.1	. 1	
6	14.1	7	19.2	4 7	
6	14.2	14	19.3	. 1	
6	14.3	12	19.4	19.0	
5	14.4	8	19.5		
5	14.5	9	19.6	1	
5	14.6	20	19.7	1	
4	14.7	30 40	19.8	20.0 ±	
<u>ح</u>	14.8	49	19.9	ł	
5	14.9	50	20.0	ł	
		2	L		
voles: 50	eet 2 OF 2	٤.			

		DYNAI	MIC F	'ROB	E RECORD (DPSH METHOD)						
Project Na	me: Bro	adwater R	load	DPSH No: 46							
Job No: 13	896		1 - 11	DATE: 1	19th-28th June 2023						
Blows	Depth	Blows	Depth	4							
4	0.0	2	5.1	-	No. Blows 100 mm (N ₁₀₀)						
1	0.1	4	5.2	4							
4	0.2	3	5.3		0 5 10 15 20 25 30 35 40 45 50						
4	0.3	4	5.4	0.0 -							
3	0.4	4	5.5	-							
4	0.5	4	5.0								
5	0.0	<u>4</u> 27	5.7	4							
<u>5</u>	0.7	21	5.0	1.0							
6	0.0	32 20	6.0								
7	1.0	52	6.1								
10	1.0	72	6.2	d .							
10	1.1	12	63								
10	13		6.0	2.0							
8	1.0		6.5	-							
8	1.5		6.6								
10	1.0		67	┨ [↓]							
10	1.0		6.8	3.0 -							
10	1.8		6.9	- J -							
10	1.9		7.0	• -							
11	2.0		7.1								
	2.1		7.2	4.0							
6	2.2		7.3								
8	2.3		7.4	1 1							
3	2.4		7.5	E E							
8	2.5		7.6	ਤੂ							
8	2.6		7.7	j 5.0 +							
5	2.7		7.8								
4	2.8		7.9								
5	2.9		8.0	1 - H							
5	3.0		8.1	6.0 -							
3	3.1		8.2	ال ب							
5	3.2		8.3	- -							
5	3.3		8.4								
4	3.4		8.5	7.0							
3	3.5		8.6								
1	3.6		8.7	-							
2	3.7		8.8								
4	3.8		8.9								
2	3.9		9.0	8.0 +							
3	4.0		9.1								
2	4.1	_	9.2								
21	4.2		9.3								
1	4.3		9.4	9.0							
2	4.4		9.5								
1	4.5		9.6								
2	4.6		9.7								
1	4.7		9.8	10.0							
2	4.8		9.9	10.0							
3	4.9		10.0	4							
<u></u>											

		DYNA	MIC F	ROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 47
Job No: 13	896		1	DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	
0	0.0	5	5.1	No. Blows 100 mm (N ₁₀₀)
9	0.1	4	5.2	
8	0.2	4	5.3	0 5 10 15 20 25 30 35 40 45 50
5	0.3	4	5.4	0.0
C 4	0.4	C A	5.5	
4 5	0.5	4	5.0	
3	0.0	50	5.8	
4	0.7	103	5.9	
5	0.9	100	6.0	
4	1.0		6.1	
9	1.1		6.2	
8	1.2		6.3	
8	1.3		6.4	
8	1.4		6.5	
8	1.5		6.6	
7	1.6		6.7	
8	1.7		6.8	3.0
8	1.8		6.9	
5	1.9		7.0	
6	2.0		7.1	
8	2.1		7.2	4.0
8	2.2		7.3	
9	2.3		7.4	
0	2.4		7.5	
9 10	2.0		7.0	g 5.0 5.0
10	2.0		7.8	
6	2.7		7.9	
6	2.9		8.0	
7	3.0		8.1	6.0
6	3.1		8.2	
5	3.2		8.3	
5	3.3		8.4	
3	3.4		8.5	7.0
2	3.5		8.6	
2	3.6		8.7	
2	3.7		8.8	
1	3.8		8.9	8.0
2	3.9		9.0	
2	4.U		9.1	
2	4.1 ∕\2		9.2	
2	4.2 4 3		9.3	
2	4.4		95	
3	4.5		9.6	
2	4.6		9.7	
3	4.7		9.8	
3	4.8		9.9	10.0
4	4.9		10.0	
4	5.0			
Notes: She	et 1 of	1.		

		DYNA	MIC F	PROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH N	No: 48
Job No: 13	896		•	DATE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth		
-	0.0	4	5.1		No. Blows 100 mm (N ₁₀₀)
0	0.1	6	5.2		
3	0.2	5	5.3		0 5 10 15 20 25 30 35 40 45 50
3	0.3	6	5.4	0.0 -	
5	0.4	7	5.5	-	
4	0.5	9	5.6		
2	0.6	20	5.7	-	
4	0.7	32	5.8		
4	0.8	72	5.9	1.0 -	
4	0.9		6.0	-	
5	1.0		6.1	-	
7	1.1		6.2	-	
7	1.2		6.3	2.0	
7	1.3		6.4		
8	1.4		6.5	-	
10	1.5		6.6	-	
11	1.6		6.7	30	
11	1.7		6.8	5.0	
9	1.8		6.9	4 3	
8	1.9		7.0	-	
8	2.0		7.1		
13	2.1		7.2	4.0	
14	2.2		7.3	-	
12	2.3		7.4	Ê	
9	2.4		7.5	ן בי בי	
13	2.5		7.6	d 5.0	
10	2.6		7.7		
9	2.7		7.8	-	
1	2.0		7.9	-	
4	2.9		0.0	60 -	
4 5	3.0		0.1 9.2	0.0	
3	3.1		8.3	-	
4	33		8.4		
6	3.4		85		
6	3.4		8.6	7.0 -	
5	3.6		8.7		
4	3.7		8.8		
4	3.8		8.9	1 :	
5	3.9		9.0	8.0	
3	4.0		9.1	1 :	
2	4.1		9.2	1	
2	4.2		9.3	1	
1	4.3		9.4	9.0	
1	4.4		9.5	1 .	
2	4.5		9.6] :	
3	4.6		9.7] :	
3	4.7		9.8		
2	4.8		9.9	10.0 -	
3	4.9		10.0]	
4	5.0				
lotes: She	et 1 of	1.			

		DYNAI	MIC F	PROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	load	DPSH N	lo: 49
Job No: 13	896		1	DATE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth	1	
	0.0	4	5.1	4	No. Blows 100 mm (N ₁₀₀)
5	0.1	3	5.2	4	
6	0.2	4	5.3		0 5 10 15 20 25 30 35 40 45 50
9	0.3	4	5.4	0.0	
/ F	0.4	5	5.5		
5 5	0.5	5 15	5.0		
5	0.0	10	5.7		
6	0.7	72	5.0	1.0	
5	0.0	50	6.0		
3	1.0	00	6.1		
2	1.0		6.1		
4	1.2		6.3		
3	1.3		6.4	2.0	
3	1.4		6.5	1	
2	1.5		6.6	1	
2	1.6		6.7	1	
3	1.7		6.8	3.0	
2	1.8		6.9]	
2	1.9		7.0]	
2	2.0		7.1		
2	2.1		7.2	4.0	
4	2.2		7.3		
2	2.3		7.4	-	
1	2.4		7.5	<u> </u>	
1	2.5		7.6	50 bt	
1	2.6		7.7	ă ^{3.0}	
2	2.7		7.8		
2	2.8		7.9		
1	2.9		8.0		
2	3.0		8.1	6.0	
3	3.1		8.2		
6	3.2		8.3		
7	3.3		8.4		
5	3.4		8.5	7.0	
5	3.5 2.6		0.0	4 :	
2	3.0 2.7		0./ g o	1	
3 3	ວ. <i>ເ</i> ຊຸຊ		0.0 8 0	1	
3 2	3.0		9.9	8.0	
2	4.0		9.0	1	
2	4.0		92	1	
3	4.2		9.3	1	
2	4.3		9.4	9.0	
1	4.4		9.5	5.0	
2	4.5		9.6	1	
2	4.6		9.7	1	
2	4.7		9.8	1	
3	4.8		9.9	10.0	······································
2	4.9		10.0]	
2	5.0				
lotes: She	et 1 of [·]	1.			

		DYNA	MIC F	PROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 50
Job No: 13	896			DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	
4	0.0	2	5.1	No. Blows 100 mm (N ₁₀₀)
1	0.1	3	5.2	-
5	0.2	3	5.3 5.4	0 5 10 15 20 25 30 35 40 45 50
4	0.3	3	5.4	0.0
3	0.5	4	5.6	
3	0.6	3	5.7	
3	0.7	4	5.8	
1	0.8	4	5.9	1.0
0	0.9	4	6.0	
1	1.0	5	6.1	
1	1.1	6	6.2	
1	1.2	17	6.3	2.0
2	1.3	32	6.4	
2	1.4	50	6.5	
4	1.5	75	0.0 6.7	
4	1.0		6.8	3.0
8	1.8		6.9	
10	1.9		7.0	
12	2.0		7.1	
5	2.1		7.2	4.0
6	2.2		7.3	
7	2.3		7.4	
5	2.4		7.5	
7	2.5		7.6	5.0 5.0
6	2.6		1.1	
6	2.7		7.0	
7	2.0		8.0	
7	3.0		8.1	6.0
5	3.1		8.2	
6	3.2		8.3	
6	3.3		8.4	
7	3.4		8.5	7.0
6	3.5		8.6	
3	3.6		8.7	
4	3.7		8.8	
4	3.8		8.9 0.0	8.0
2	3.9		9.0	
2	4.0		92	
2	4.2		9.3	
2	4.3		9.4	9.0
3	4.4		9.5	
1	4.5		9.6	
2	4.6		9.7	
3	4.7		9.8	10.0
1	4.8		9.9	
2	4.9		10.0	4
خ Notes: Chr	0.C	1		
NOLES: She				

		DYNA	MIC F	ROBE RECORD (DPSH METHOD)							
Project Na	me: Bro	adwater R	oad	DPSH No: 51							
Job No: 13	896			DATE: 19th-28th June 2023							
Blows	Depth	Blows	Depth								
0	0.0	4	5.1	No. Blows 100 mm (N ₁₀₀)							
0	0.1	3	5.2								
0	0.2	4	5.3	0 5 10 15 20 25 30 35 40 45 50							
5	0.3	3	5.4	0.0							
4	0.5	3	5.6								
3	0.6	5	5.7								
2	0.7	4	5.8								
1	0.8	5	5.9	1.0							
1	0.9	5	6.0								
1	1.0	5	6.1								
1	1.1	6	6.2								
1	1.2	6	6.3	2.0							
2	1.3	6	6.4								
1	1.4	7	6.5								
2	1.5	8	6.6								
1	1.6	10	6.7								
1	1.7	40	6.8								
6	1.8	50	6.9								
5	1.9	50	7.0								
3	2.0		7.1								
5	2.1		7.2	4.0							
5	2.2		7.3								
6	2.3		7.4								
0	2.4		7.5								
7	2.5		7.0	g 5.0							
6	2.0		7.8								
6	2.8		7.9								
6	2.9		8.0								
5	3.0		8.1	6.0							
5	3.1		8.2								
4	3.2	1	8.3								
7	3.3		8.4								
3	3.4		8.5	7.0							
4	3.5		8.6								
5	3.6		8.7								
6	3.7		8.8								
4	3.8		8.9	80							
5	3.9		9.0								
3	4.0		9.1								
3	4.1		9.2								
2	4.2		9.3								
2	4.3		9.4								
2	4.4		9.5								
1	4.5		9.7								
1	47		9.8								
2	4.8		9.9	10.0							
2	4.9		10.0								
2	5.0										
Notes: She	et 1 of	1.									

		DYNA	MIC F	ROBE F	RECOR	RD (I	DPS	SH N	/IET	HO))			
Project Na	me: Bro	adwater R	oad	DPSH No: 5	2						-			
Job No: 13	896			DATE: 19th-	28th June	2023								
Blows	Depth	Blows	Depth											
-	0.0	3	5.1			I	No. Blo	ws 100	mm (N	100)				
0	0.1	3	5.2											
2	0.2	3	5.3	0	5 10	15	20	25	30	35	40	45	50	
1	0.3	4	5.4	0.0								++++		
2	0.4	C A	5.5											
2	0.5	4	5.0											
1	0.0	5	5.8											
2	0.8	5	5.9	1.0										
1	0.9	5	6.0											
1	1.0	5	6.1											
1	1.1	5	6.2		•									
2	1.2	3	6.3	20										
1	1.3	6	6.4	2.0										
4	1.4	9	6.5											
4	1.5	8	6.6											
5	1.6	9	6.7											
7	1.7	12	6.8	3.0										
7	1.8	10	6.9		•									
7	1.9	12	7.0		✓									
6	2.0	10	7.1											
4	2.1	12	7.2	4.0										
5	2.2	12	7.3											
5 5	2.3	12	7.4	Ê 🕴										
7	2.4	12	7.5	÷										
6	2.5	22	7.0	de 5.0										
5	2.0	30	7.8	-										
5	2.8	46	7.9											
5	2.9	42	8.0		•									
6	3.0	70	8.1	6.0										
5	3.1		8.2											
5	3.2		8.3											
4	3.3		8.4											
5	3.4		8.5	7.0										
4	3.5		8.6											
2	3.6		8.7											
2	3.7		8.8				+							
4	3.8		8.9	8.0							•			
4	3.9		9.0											
1	4.0		9.1											
0	4.1		9.3											
1	4.3		9.4	90										
1	4.4		9.5											
1	4.5		9.6											
0	4.6		9.7											
1	4.7		9.8	10.0										
1	4.8		9.9	10.0										
2	4.9		10.0											
2	5.0													
Notes: She	et 1 of 7	1.												

		DYNA	MIC F	ROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No	lo: 53
Job No: 13	896			DATE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth		
	10.0	4	15.1		No. Blows 100 mm (N ₁₀₀)
	10.1	6	15.2		
	10.2	4	15.3	0	0 5 10 15 20 25 20 25 40 45 50
	10.3	7	15.4	10.0 +	
	10.4	9	15.5		
	10.5	7	15.6		
	10.6	4	15.7	-	
	10.7	5	15.8	11.0	
	10.8	5	15.9	11.0	
4	10.9	18	16.0	-	
4	11.0	21	16.1	-	
5	11.1	/ 	16.2	-	
4	11.2	5	16.3	12.0	
5	11.3	6	16.5	-	
6	11.4	6	16.5		
4	11.5	6	16.7	-	
3	11.0	9	16.8	13.0	
2	11.7	9	16.9	-	
2	11.0	6	17.0	-	
2	12.0	4	17.1		
2	12.1	5	17.2	14.0	
3	12.2	5	17.3		
4	12.3	5	17.4		
3	12.4	5	17.5	E	
3	12.5	5	17.6	bt 15 0	
3	12.6	3	17.7		
3	12.7	6	17.8		
4	12.8	4	17.9		
3	12.9	4	18.0	-	
3	13.0	4	18.1	16.0	
2	13.1	7	18.2		
6	13.2	7	18.3	-	
6	13.3	6	18.4		
6	13.4	9	18.5	17.0	
6	13.5	6	18.6		
4	13.0	5	18.7	-	
21	13.7	7	10.0	-	
21 11	13.0	5	10.9	18.0	
6	14.0	5	19.0	-	
6	14.0	8	19.1		
4	14.1	7	19.3	-	
6	14.3	7	19.4	19.0	
7	14.4	7	19.5	15.0	
6	14.5	7	19.6	+	
6	14.6	7	19.7	Ē	
7	14.7	7	19.8		
7	14.8	7	19.9	20.0 -	
7	14.9	8	20.0		
6	15.0				
Notes: She	eet 1 of 2	2. Probe st	arted at	11.0m B	BGL

		DYNAN	IIC P	ROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater Ro	bad	DPSH N	lo: 53 Continued
Job No: 13	896			DATE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth		
	20.0		25.1		No. Blows 100 mm (N ₁₀₀)
7	20.1		25.2		
8	20.2		25.3		
8	20.3		25.4	20.0	0 5 10 15 20 25 30 35 40 45 50
8	20.4		25.5		
9	20.5		25.6	-	
7	20.6		25.7	-	
8	20.7		25.8	-	
8	20.8		25.9	21.0 -	
8	20.9		26.0	-	
8	21.0		26.1	-	
8	21.1		26.2	-	
8	21.2		26.3	22.0 -	
7	21.3		26.4		
7	21.4		26.5	-	
6	21.5		26.6	-	
9	21.6		26.7	-	
11	21.7		26.8	23.0 -	
9	21.8		26.9	-	
12	21.9		27.0	-	
10	22.0		27.1	-	
10	22.1		27.2	24.0 -	
10	22.2		27.3	-	
15	22.3		27.4	•	
24	22.4		27.5	ш)	
8	22.5		27.6	pth	
10	22.6		27.7	De 25.0	
26	22.7		27.8	-	
25	22.8		27.9	-	
25	22.9		28.0	-	
25	23.0		28.1	26.0 -	
9	23.1		28.2	-	
7	23.2		28.3	-	
9	23.3		28.4	-	
9	23.4		28.5	27.0 -	
15	23.5		28.6		
15	23.6		28.7		
9	23.7		28.8	-	
9	23.8		28.9	-	
9	23.9		29.0	28.0 -	
10	24.0		29.1	-	
28	24.1		29.2	-	
46	24.2		29.3	-	
50	24.3		29.4	29.0	
	24.4		29.5	-	
	24.5		29.6	-	
	24.6		29.7	-	
	24.7		29.8	30.0	
	24.8		29.9	50.0	
	24.9		30.0		
	25.0				
Notes: She	et 2 of 2	2.			

		DYNA	MIC F	PROB	E RECORD (DPSH METHOD)							
Project Na	me: Bro	adwater R	oad	DPSH No: 55								
Job No: 13	896		-	DATE: 1 9	9th-28th June 2023							
Blows	Depth	Blows	Depth									
	0.0	6	5.1		No. Blows 100 mm (N ₁₀₀)							
7	0.1	3	5.2									
4	0.2	4	5.3		5 10 15 20 25 20 25 40 45 50							
6	0.3	5	5.4	0.0 +	5 10 15 20 25 50 55 40 45 50							
5	0.4	5	5.5									
5	0.5	5	5.6									
2	0.6	4	5.7									
3	0.7	6	5.8									
3	0.8	10	5.9	1.0								
2	0.9	32	6.0									
2	1.0	40	6.1									
1	1.1	41	6.2	. 1								
2	1.2	43	6.3	2.0								
3	1.3	50	6.4	• ‡								
3	1.4		6.5	-								
4	1.5		0.0									
0	1.0		0.7	3.0 +								
6	1.7		0.0	1								
0 Q	1.0		0.9									
20	2.0		7.0									
12	2.0		7.1	4.0								
5	2.1		73	4.0								
5	2.2		7.0	1 1								
8	2.0		7.5	E E								
8	2.5		7.6	ਤ ਤ								
7	2.6		7.7	1 5.0 +								
5	2.7		7.8									
4	2.8		7.9	1 1								
5	2.9		8.0	1 1								
5	3.0	1	8.1	6.0								
9	3.1		8.2	1 1								
6	3.2		8.3									
3	3.3		8.4									
3	3.4		8.5	7.0								
3	3.5		8.6	-								
2	3.6		8.7									
2	3.7		8.8	-								
4	3.8		8.9	• • •								
2	3.9		9.0	0.0								
2	4.0		9.1									
3	4.1		9.2									
2	4.2		9.3									
2	4.3		9.4	9.0								
2	4.4		9.5	. +								
2	4.5		9.6									
2	4.6 4 7		9.7	1								
2	4./		9.8	10.0 İ								
2	4.ð		9.9	1								
2	4.9 5.0		10.0	1								
Untoe: Cha	3.0	1										
10165. 011												

		DYNA	MIC F	PROB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH N	lo: 56
Job No: 13	896		•	DATE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth		
	0.0	3	5.1		No. Blows 100 mm (N ₁₀₀)
1	0.1	5	5.2		
2	0.2	4	5.3		0 5 10 15 20 25 30 35 40 45 50
1	0.3	4	5.4	0.0	
1	0.4	3	5.5		
1	0.5	5	5.6		
2	0.6	18	5.7		
3	0.7	24	5.8	10	
1	0.0	40	5.9	-	
1	1.0	42	6.1		
0	1.0	55	6.2		
1	1.1		6.3		
0	1.3		6.4	2.0	
1	1.4		6.5		
2	1.5		6.6		
2	1.6		6.7		
1	1.7		6.8	3.0	
2	1.8		6.9		
6	1.9		7.0	•	
4	2.0		7.1		
1	2.1		7.2	4.0	
2	2.2		7.3		
2	2.3		7.4	<u> </u>	
1	2.4		7.5	<u>ר</u>	
1	2.5		7.6	b 5.0	
1	2.0		7.1		
1	2.7		7.0		
0	2.0		8.0		
1	3.0		8.1	6.0	
0	3.1		8.2		
0	3.2		8.3		
0	3.3		8.4		
1	3.4		8.5	70	
0	3.5		8.6	,	
1	3.6		8.7		
1	3.7		8.8		
1	3.8		8.9		
1	3.9		9.0	8.0	
2	4.0		9.1		
1	4.1		9.2		
1	4.2		9.3		
2	4.3		9.4	9.0	
<u>ა</u>	4.4 1 F		9.5	1	
<u>ु</u>	4.5		9.0	1 :	
3	4.0		9.7	1	
3	4.8		9.9	10.0	
4	4.9		10.0	1	
4	5.0			1	
Notes: She	et 1 of ²	1.	-		

		DYNA	AIC P	PROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 57
Job No: 13	896		-	DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	1
	0.0	18	5.1	No. Blows 100 mm (N ₁₀₀)
0	0.1	13	5.2	
1	0.2	12	5.3	
3	0.3	10	5.4	
2	0.4	12	5.5	
1	0.5	15	5.6	
1	0.6	15	5.7	
1	0.7	15	5.8	
0	0.8	18	5.9	
1	0.9	16	6.0	
1	1.0	23	6.1	
0	1.1	17	6.2	_
1	1.2	16	6.3	2.0
0	1.3	11	6.4	-
0	1.4	16	6.5	
0	1.5	25	6.6	
0	1.0	37	6.7	- 3.0
0	1.7	32	6.8	
1	1.8	40	6.9 7.0	
0	1.9	42	7.0	
2	2.0	00	7.1	
0	2.1		7.2	4.0
0	2.2		7.3	
2	2.5		7.4	
1	2.4		7.5	- £
0	2.0		7.0	
1	2.0		7.8	
1	2.8		7.9	
1	2.9		8.0	
1	3.0		8.1	6.0
1	3.1		8.2	
3	3.2		8.3	
11	3.3		8.4	
37	3.4		8.5	
9	3.5		8.6	
3	3.6		8.7	
1	3.7		8.8	
1	3.8		8.9	
2	3.9		9.0	
2	4.0		9.1	
4	4.1		9.2	
5	4.2		9.3	
5	4.3		9.4	9.0
5	4.4		9.5	
6	4.5	7	9.6	
10	4.6	50	9.7	
9	4.7		9.8	
9	4.8		9.9	4
8	4.9		10.0	4
y Notos: Sha	5.U	l		
NOLES: She	eet 1 Of 1			

		DYNAI	MIC F	PROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 59
lob No: 13	896			DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	
	0.0	5	5.1	No. Blows 100 mm (N ₁₀₀)
1	0.1	5	5.2	-
1	0.2	5	5.3	0 5 10 15 20 25 30 35 40 45 50
0	0.3	5	5.4	
1	0.4	6	5.5	
0	0.5	4	5.6	-
0	0.6	4	5.7	-
0	0.7	5	5.8	
0	0.8	<u> </u>	5.9	
1	0.9	9	6.0	-
0	1.0	10	6.2	
0	1.1	14	6.3	
0	1.2	14	6.4	2.0
0	1.5	17	6.5	
0	1.4	20	6.6	
0	1.0	14	6.7	
0	1.7	17	6.8	3.0
1	1.8	20	6.9	
1	1.9	24	7.0	
1	2.0	26	7.1	
0	2.1	33	7.2	4.0
0	2.2	44	7.3	
0	2.3	76	7.4	
1	2.4		7.5] £
1	2.5		7.6	
0	2.6		7.7	
0	2.7		7.8	
0	2.8		7.9	
1	2.9		8.0	
1	3.0		8.1	6.0
0	3.1		8.2	
1	3.2		8.3	
0	3.3		8.4	
1	3.4		8.5	7.0
1	3.5 2.6		0.0 07	
6	3.0 2.7		0./ g o	
0 Q	<u>১.</u> ২ হ		0.0 8 0	
2	3.0		9.0	8.0
2	4.0		9.0	
3	4.1		92	
2	4.2		9.3	
1	4.3		9.4	
2	4.4		9.5	
2	4.5		9.6	
2	4.6		9.7	
3	4.7		9.8	
4	4.8		9.9	
5	4.9		10.0]
4	5.0]
lotes: She	eet 1 of	1.		

		DYNAI	MIC F	PRO	BE RECORD (DPSH METHOD)
roject Na	me: Bro	adwater R	oad	DPSH	I No: 60
ob No: 13	896		I =	DATE:	: 19th-28th June 2023
Blows	Depth	Blows	Depth	4	
4	0.0	3	5.1	4	No. Blows 100 mm (N ₁₀₀)
4	0.1	4	5.2	-	
3	0.2	5	5.3	4	0 5 10 15 20 25 30 35 40 45 50
2	0.3	4	5.4	0.0	0 +
3	0.4	4	5.5	-	
2	0.5	4	5.0	-	
ა ი	0.0	5	5.7	-	
5	0.7	5	5.0	1.0	
5	0.0	6	5.9		
6	1.0	5	6.1	-	
6	1.0	12	6.2	1	
6	1.1	20	63	1	
6	1.3	.32	6.4	2.0	
5	1.4	45	6.5	1	
4	1.5	50	6.6	1	
4	1.6		6.7		
3	1.7		6.8	3.0	0
3	1.8		6.9	1	
4	1.9		7.0	1	
4	2.0		7.1	1	
4	2.1		7.2	4.0	0
3	2.2		7.3	1	
3	2.3		7.4		
3	2.4		7.5	£	
2	2.5		7.6] Ħ [
2	2.6		7.7	a 5.0	
1	2.7		7.8		
0	2.8		7.9		
1	2.9		8.0		
1	3.0		8.1	6.0	
0	3.1		8.2	4	
0	3.2		8.3	4	
1	3.3		8.4	4	
0	3.4		8.5	7.0	0
0	3.5		8.6	4	
1	3.6		8.7	4	
1	3.7		8.8	4	
2	3.8		8.9	8.0	0
2	3.9		9.0	-	
<u>∠</u>	4.U		9.1	4	
4 2	4.1 12		9.2	1	
3 3	4.Z		9.3		
3	4.5 4.4		9.4	9.0	
5	4.4		9.5	1	
6	4.5		9.0	1	
4	4.7		9.7	1	
2	4.8		9.0	10.0	0
3	4.9		10.0	1	
3	5.0			1	
otes: She	et 1 of	1.			
3 otes: She	5.0 eet 1 of 7	1.	<u> </u>	<u> </u>	

		DYNAI	MIC F	PROB	E REC	OF	RD (DPS	SH I	ИЕТ	HOI	D)		
Project Na	me: Bro	adwater R	oad	DPSH N	o: 61		•							
Job No: 13	896		1	DATE: 1	9th-28th J	une	2023							
Blows	Depth	Blows	Depth											
-	0.0	5	5.1					No. Blo	ows 100	0 mm (N	100)			
4	0.1	5	5.2											
3	0.2	5	5.3) 5	10	15	20	25	30	35	40	45	50
4	0.3	5	5.4	0.0	, , ,	+++++	++++++	++++++	+++++		++++++	++++++		++++
4	0.4	6	5.5											
3	0.5	5	5.6											
2	0.6	6	5.7											
2	0.7	6	5.8		*									
2	0.8	15	5.9	1.0										
1	0.9	30	6.0											
1	1.0	100	6.1											
2	1.1		6.2	. 1										
3	1.2		6.3	2.0										
/	1.3		6.4											
5	1.4		6.5											
6	1.5		6.6											
/	1.6		6.7	3.0										
10	1./		6.8	-										
10	1.8		6.9	4										
6	1.9		7.0											
4	2.0		7.1		•									
3	2.1		7.2	4.0										
3	2.2		7.3											
4	2.3		7.4	Ê Î										
3 6	2.4		7.5	ـــــــــــــــــــــــــــــــــــــ										
0	2.0		7.0	d 5.0										
0 5	2.0		7.0	1 :										
7	2.7		7.0											
7	2.0		8.0											
5	3.0		8.1	6.0										
5	3.1		8.2											
6	32		8.3											
4	3.3		8.4	1 :										
4	3.4		8.5											
5	3.5		8.6	7.0										
6	3.6		8.7	1 :										
6	3.7		8.8	1 :										
5	3.8		8.9	1										
3	3.9		9.0	8.0										
3	4.0		9.1] :										
3	4.1		9.2]										
3	4.2		9.3] :										
3	4.3		9.4	9.0										
3	4.4		9.5											
2	4.5		9.6											
2	4.6		9.7											
2	4.7		9.8	10.0										
3	4.8		9.9	10.0										
4	4.9		10.0											
3	5.0													
lotes: She	et 1 of '	1.												

		DYNA	MIC F	OBE RECORD (DPSH MET	HOD)
Project Na	me: Bro	adwater R	oad	PSH No: 62	•
Job No: 13	896			ATE: 19th-28th June 2023	
Blows	Depth	Blows	Depth		
-	0.0	3	5.1	No. Blows 100 mm (N ₁	.00)
2	0.1	3	5.2		
2	0.2	4	5.3	0 5 10 15 20 25 30	35 40 45 50
2	0.3	4	5.4	0.0	
2	0.4	5	5.5		
6	0.5	5	5.0		
5	0.0	5	5.8		
3	0.8	5	5.9	1.0	
2	0.9	5	6.0		
4	1.0	15	6.1		
5	1.1	22	6.2		
3	1.2	45	6.3	20	
4	1.3	74	6.4		
7	1.4		6.5		
11	1.5		6.6		
10	1.6		6.7		
8	1.7		6.8	3.0	
8	1.8		6.9		
9	1.9		7.0		
9	2.0		7.1		
5	2.1		7.2	4.0	
9	2.2		7.3		
9	2.3		7.4		
9	2.4		7.5		
6	2.0		7.0	5.0	
8	2.7		7.8		
6	2.8		7.9		
8	2.9		8.0		
7	3.0		8.1	6.0	
7	3.1		8.2		
4	3.2		8.3		
4	3.3		8.4		
5	3.4		8.5	7.0	
5	3.5		8.6		
6	3.6		8.7		
/	3.7		8.8		
7	3.8		8.9	8.0	
7	3.9		9.0		
4	4.0		9.1		
5	4.1		9.3		
4	4.3		9.4	9.0	
5	4.4		9.5		
3	4.5		9.6		
4	4.6		9.7		
3	4.7		9.8	10.0	
3	4.8		9.9	10.0	
3	4.9		10.0		
2	5.0				
Notes: She	et 1 of	1.			

		DYNA	MIC F	PR	OB	E RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DP	SH N	lo: 63
Job No: 13	896			DA.	TE: 1	19th-28th June 2023
Blows	Depth	Blows	Depth			
_	0.0	3	5.1			No. Blows 100 mm (N ₁₀₀)
2	0.1	2	5.2			
1	0.2	2	5.3			0 5 10 15 20 25 30 35 40 45 50
1	0.3	4	5.4		0.0 -	
1	0.4	4	5.5			
3	0.5	5	5.6		-	
4	0.6	5	5.7		-	
3	0.7	5	5.8		1.0	
3	0.8	40	5.9		1.0 -	
3	0.9	65	6.0	-	-	
3	1.0		6.1	-		
C 4	1.1		0.2	-	-	
4	1.2		0.3	-	2.0	
2	1.0		0.4 6.5			
3 4	1.4		6.6	1	-	
4 5	1.5		67	1	-	
6	1.0		6.8	1	3.0 -	
5	1.7		69	1	-	
7	1.0		7.0	-	-	
, 8	2.0		7.0		-	
10	2.1		7.2		4.0 -	
17	2.2		7.3	-		
5	2.3		7.4	_	-	
9	2.4		7.5	٦ س	-	
5	2.5		7.6	pth		
4	2.6		7.7	De	5.0 -	
5	2.7		7.8			
5	2.8		7.9		-	
8	2.9		8.0		-	
5	3.0		8.1		6.0	
6	3.1		8.2			
4	3.2		8.3		-	
4	3.3		8.4			
5	3.4		8.5		7.0	
5	3.5		8.6	-		
/	3.6		8.7	1	-	
/ /	<u> ৩./</u>		0.0 0.0		-	
4	ა.Ծ ვი		0.9	1	8.0	
4 1	3.9 4 0		9.0		-	
भ २	+.∪ ⊿ 1		9.1 Q 2	1	-	
4	42		93			
4	4.3		94	1	90	
2	4.4		95		5.0	
1	4.5	7	9.6		-	
2	4.6	50	9.7	1	-	
2	4.7		9.8			
3	4.8		9.9	1	10.0 -	
2	4.9		10.0	1		
2	5.0			L		
Notes: She	et 1 of	1.				

me: Bro	adwator P			
	auwalein	oad	DPSH N	No: 64
896			DATE: 1	19th-28th June 2023
Depth	Blows	Depth		
0.0	1	5.1	-	NO. BIOWS 100 mm (N_{100})
0.1	2	5.2		
0.2	2	5.3		0 5 10 15 20 25 30 35 40 45 50
0.3	<u> </u>	5.4	0.0	
0.4	2	5.5		
0.0	3	5.7		
0.7	34	5.8		
0.8	3	5.9	1.0	
0.9	3	6.0		
1.0	4	6.1	1	
1.1	5	6.2		
1.2	4	6.3	2.0	
1.3	40	6.4	2.0	
1.4	61	6.5] :	
1.5		6.6]	
1.6		6.7		
1.7		6.8	3.0	
1.8		6.9		
1.9		7.0		
2.0		7.1		
2.1		7.2	4.0	
2.2		7.3		
2.3		7.4	<u> </u>	
2.4		7.5	ч Ч	
2.5		7.6	b 5.0	
2.6		1.1		
2.7		7.8		
2.8		7.9		
2.9		0.0 9.1	6.0	
3.0		8.2		
3.1		83		
3.3		8.4		
3.4		8.5	7.0	
3.5		8.6	7.0	
3.6		8.7	1	
3.7		8.8	1	
3.8		8.9	1	
3.9		9.0	8.0	
4.0		9.1		
4.1		9.2		
4.2		9.3		
4.3		9.4	9.0	
4.4		9.5		
4.5		9.6		
4.6		9.7		
4.7		9.8	10.0	
4.8		9.9		
4.9		10.0	4	
5.0				
	Depth 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Depth Blows 0.0 1 0.1 2 0.2 2 0.3 2 0.4 1 0.5 2 0.6 3 0.7 34 0.8 3 0.9 3 1.0 4 1.1 5 1.2 4 1.3 40 1.4 61 1.5 - 1.6 - 1.7 - 1.8 - 1.9 - 2.0 - 2.1 - 2.2 - 2.3 - 2.4 - 2.5 - 2.6 - 2.7 - 2.8 - 2.9 - 3.0 - 3.1 - 3.2 - 3.3	Depth Blows Depth 0.0 1 5.1 0.1 2 5.2 0.2 2 5.3 0.3 2 5.4 0.4 1 5.5 0.5 2 5.6 0.6 3 5.7 0.7 34 5.8 0.8 3 5.9 0.9 3 6.0 1.0 4 6.1 1.1 5 6.2 1.2 4 6.3 1.3 400 6.4 1.4 61 6.5 1.5 6.6 6.6 1.6 6.7 7.1 1.7 6.8 1 1.8 6.9 1 1.9 7.0 7.8 2.1 7.3 2.3 2.2 7.3 7.8 2.3 7.4 7.5 2.5 7.6 2.6 <	Depth Blows Depth 0.0 1 5.1 0.1 2 5.2 0.2 2 5.3 0.3 2 5.4 0.4 1 5.5 0.5 2 5.6 0.6 3 5.7 0.7 34 5.8 0.8 3 5.9 0.9 3 6.0 1.0 4 6.1 1.1 5 6.2 1.2 4 6.3 1.3 400 6.4 1.4 61 6.5 1.5 6.6 1.6 6.7 1.7 6.8 1.8 6.9 1.9 7.0 2.0 7.1 2.1 7.8 2.2 7.3 2.8 7.9 2.9 8.0 3.0 8.1 3.1 8.2 <td< th=""></td<>

		DYNAI	MIC F	'ROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 65
lob No: 13	896			DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	
0	0.0	8	5.1	NO. BIOWS 100 mm (N ₁₀₀)
0	0.1	8	5.2	
0	0.2	9	5.3	0 5 10 15 20 25 30 35 40 45 50
/	0.3	10	5.4	0.0
9	0.4	12	5.5	
12	0.5	13	5.0	
7	0.0	1/	5.8	
6	0.7	14	5.0	
4	0.0	15	6.0	
2	1.0	15	6.1	
2	1.1	17	6.2	
3	1.2	21	6.3	
2	1.3	23	6.4	
3	1.4	24	6.5	
5	1.5	24	6.6	
5	1.6	25	6.7	
4	1.7	29	6.8	
5	1.8	29	6.9	
4	1.9	30	7.0	
4	2.0	38	7.1	
4	2.1	50	7.2	4.0
5	2.2	71	7.3	
6	2.3		7.4	
6	2.4		7.5	
5	2.5		7.6	5.0
5	2.6		7.7	
4	2.7		7.8	
5	2.8		7.9	
4	2.9		8.0	60
4	3.0		0.1	
4 5	3.1		0.2	
6	3.2		0.3 8.4	
5	3.3		8.5	
5	3.5		8.6	
5	3.6		8.7	
4	3.7		8.8	
4	3.8		8.9	
4	3.9		9.0	8.0
5	4.0		9.1	
5	4.1		9.2	
7	4.2		9.3	
7	4.3		9.4	9.0
9	4.4		9.5	
9	4.5		9.6	
9	4.6		9.7	
10	4.7		9.8	10.0
7	4.8		9.9	
9	4.9		10.0	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	50		1	

		DYNA	MIC F	ROBE RECORD (DPSH METHOD)	
Project Na	me: Bro	adwater R	oad	DPSH No: 66	
lob No: 13	896			DATE: 19th-28th June 2023	
Blows	Depth	Blows	Depth	No. Plours 100 mm (N)	
0	0.0	6 7	5.1	NO. BIOWS 100 mm (N_{100})	
1	0.1	7	5.2		
2	0.2	7	5.5	0 5 10 15 20 25 30 35 40 45	50
2	0.4	9	5.5	0.0	Ħ
1	0.5	25	5.6		
2	0.6	40	5.7		
3	0.7		5.8		Ħ
3	0.8		5.9	1.0	E
3	0.9		6.0		Ħ
4	1.0		6.1		Ē
2	1.1		6.2		
2	1.2		6.3	2.0	Ħ
1	1.3		6.4		Ħ
1	1.4		6.5		Ħ
2	1.5		6.6		H
0	1.0		0.7	3.0	Ħ
1	1.7		0.0 6.0		Ħ
1	1.0		7.0		
2	2.0		7.0		Ħ
1	2.1		7.2	4.0	
1	2.2		7.3		Ħ
2	2.3		7.4		E
2	2.4		7.5	£	1
5	2.5		7.6		Ħ
3	2.6		7.7		1
3	2.7		7.8		Ħ
3	2.8		7.9		
43	2.9		8.0	60	Ħ
4	3.0		8.1		
2	3.1		0.Z 8 3		Ħ
3	33		8.4		E
2	3.4		8.5	70	Ħ
3	3.5		8.6		E
2	3.6		8.7		Ħ
3	3.7		8.8		Ħ
3	3.8		8.9		Ħ
38	3.9		9.0	8.0	Ħ
4	4.0		9.1		Ħ
5	4.1		9.2		Ħ
3	4.2		9.3		1
4	4.3		9.4	9.0	Ħ
4	4.4		9.5		H
4 4	4.5		9.0		Ħ
5	47		9.8		Ħ
5	4.8		9.9	10.0	
5	4.9		10.0		
5	5.0				
lotes: She	et 1 of 1	1.			

		DYNA	MIC F	PROBE RECORD (DPSH METHOD)
Project Na	me: Bro	adwater R	oad	DPSH No: 67
Job No: 13	896			DATE: 19th-28th June 2023
Blows	Depth	Blows	Depth	
0	0.0	5	5.1	No. Blows 100 mm (N ₁₀₀)
0	0.1	5	5.2	4
1	0.2	4	5.3	0 5 10 15 20 25 30 35 40 45 50
2	0.3	4	5.4	- 0.0
2	0.4	5	5.5	
1	0.5	5	5.0	
0	0.0	10	5.8	
0	0.8	13	5.9	1.0
1	0.9	12	6.0	
1	1.0	32	6.1	
0	1.1	16	6.2	
0	1.2	8	6.3	2.0
0	1.3	8	6.4	
0	1.4	22	6.5	
0	1.5	53	6.6	
0	1.6	74	6.7	
0	1.7		6.8	
0	1.8		6.9	
1	1.9		7.0	
1	2.0		7.1	
1	2.1		7.2	4.0
1	2.2		7.3	
0	2.3		7.4	
0	2.4		7.5	
1	2.0		7.0	
1	2.7		7.8	
1	2.8		7.9	
3	2.9		8.0	
3	3.0		8.1	6.0
7	3.1		8.2	
5	3.2		8.3	
3	3.3		8.4	
8	3.4		8.5	7.0
53	3.5		8.6	
30	3.6		8.7	
3	3.7		8.8	
2	3.0 3.0		0.9	8.0
2	4.0		9.0	
2	4.0		92	
2	4.2		9.3	
2	4.3		9.4	9.0
2	4.4		9.5	
3	4.5		9.6	
3	4.6		9.7	
4	4.7		9.8	
3	4.8		9.9	10.0
4	4.9		10.0	4
4	5.0			
Notes: She	et 1 of	1.		

		DYNA	MIC F	PROBE RECORD (DPSH METHOD)	
Project Na	me: Bro	adwater R	oad	DPSH No: 68	
Job No: 13	896			DATE: 19th-28th June 2023	
Blows	Depth	Blows	Depth		
0	0.0	15	5.1	No. Blows 100 mm (N ₁₀₀)	
3	0.1	18	5.2	4	
2	0.2	14	5.3	0 5 10 15 20 25 30 35 40 45 50	
2	0.3	0	5.4	- 0.0	
3	0.4	0	5.5		
3	0.5	9 10	5.0		
3	0.0	13	5.8		
4	0.7	15	5.0	1.0	
। २	0.0	12	6.0		
3	1.0	12	6.0		
5	1.0	12	6.1		
5	1.2	13	6.3		
5	1.3	20	6.4		
6	1.4	25	6.5		
6	1.5	30	6.6	1	
5	1.6	30	6.7		
5	1.7	37	6.8	3.0	
6	1.8	38	6.9		
7	1.9	34	7.0		
5	2.0	42	7.1		
3	2.1	40	7.2	4.0	
5	2.2	33	7.3		
6	2.3	31	7.4		
4	2.4	27	7.5		
3	2.5	32	7.6		
6	2.6	40	7.7		
5	2.7	42	7.8		
5	2.8	42	7.9		
5	2.9	35	8.0		
5	3.0	40	8.1	-	
4	3.1	30	8.2		
2	3.2	50	8.3		
2	3.3 2.4	50 67	0.4		
2	3.4	07	8.6	7.0	
3	3.0		87		
2	3.7		8.8		
1	3.8		8.9		
3	3.9		9.0	8.0	
3	4.0		9.1		
3	4.1		9.2		
4	4.2		9.3		
4	4.3		9.4	9.0	
3	4.4		9.5		
3	4.5		9.6		
4	4.6		9.7		
4	4.7		9.8	10.0	
4	4.8		9.9		
4	4.9		10.0	4	
5	5.0				
Notes: She	et 1 of	1.			
DYNAMIC PROBE RECORD (DPSH METHOD)					
------------------------------------	------------	-----------	-------------	-------------------	--------------------------------------
Project Na	me: Bro	adwater R	oad	DPSH No	o: 69
Job No: 13	896			DATE: 19	9th-28th June 2023
Blows	Depth	Blows	Depth		
_	0.0	4	5.1		No. Blows 100 mm (N ₁₀₀)
3	0.1	7	5.2		
10	0.2	7	5.3	0	5 10 15 20 25 30 35 40 45 50
6	0.3	/	5.4	0.0 +	
5	0.4	/	5.5		
5	0.5	/	5.6	. 1	
5 5	0.0	25	5.7		
3	0.7	35	5.0	1.0	
4	0.0	22	5.9 6.0		
। २	1.0	27	6.1	· E	
2	1.0	40	6.1		
2	1.2	80	6.3		
3	1.3	~~	6.4	2.0	
2	1.4		6.5	1 ‡	
2	1.5		6.6	1 1	
2	1.6		6.7	1 E	
1	1.7		6.8	3.0	
1	1.8		6.9		
1	1.9		7.0		
1	2.0		7.1		
1	2.1		7.2	4.0	
2	2.2		7.3		
4	2.3		7.4	ר <u>ה</u> ד	
7	2.4		7.5	<u></u>	
9	2.5		7.6	5 .0	
/	2.6		1.1		
3	2.7		7.8		
5	2.8		7.9		
3	2.9		0.0 8 1	6.0	
4	3.0		82		
8	32		8.3		
5	3.3		8.4		
6	3.4		8.5		
5	3.5		8.6	7.0	
3	3.6		8.7] ‡	
2	3.7		8.8	Ē	
2	3.8		8.9		
3	3.9		9.0	8.0	
2	4.0		9.1	. 1	
2	4.1		9.2	‡	
2	4.2		9.3	l I	
4	4.3		9.4	9.0	
4	4.4		9.5	l İ	
5	4.5		9.6		
5	4.0 4.7		9.7		
6	4./ / 2		9.0 0.0	_{10.0} 上	
7	4.0 4 Q		9.9 10.0	ł	
7	5.0		10.0	1	
Notes: She	et 1 of	1.		n	

 $\langle | \rangle$

SITE OVERVIEW PHOTOS

Overview of the site from it's northwestern corner, looking east.

Overview of the site from it's southwestern corner, looking east.

The hole near the centre of the site (centred on British National Grid Reference 524251, 212655), marking the location of the demolished basement.

EXPLORATORY HOLE PHOTOGRAPHS

BH01

Hand dug pit (0.0-1.2mbgl) for BH01.

BH01 1.5-2.0mbgl.

BH01 2.5-3.0mbgl.

BH01 3.5-4.0mbgl.

BH01 4.5-5.0mbgl.

BH01 5.5-6.0mbgl.

BH01 6.5-7.0mbgl.

BH01 7.5-8.0mbgl.

BH01 8.5-9.0mbgl.

BH01 9.5-10.0mbgl.

BH01 10.5-11.0mbgl.

BH01 11.5-12.0mbgl.

BH01 12.5-13.0mbgl.

BH01 13.5-14.0mbgl.

SPT sample from BH01 at 16.0mbgl.

Trimmings from UT100 shoe conducted in BH01 at 17.0mbgl.

SPT sample from BH01 at 18.0mbgl.

Trimmings from UT100 shoe conducted in BH01 at 19.0mbgl.

SPT sample from BH01 at 20.0mbgl.

SPT sample from BH01 at 22.0mbgl.

BH02

Hand dug pit (0.0-1.2mbgl) for BH02.

BH02 1.5-2.0mbgl.

BH02 2.5-3.0mbgl.

BH02 3.5-4.0mbgl.

BH02 4.5-5.0mbgl.

BH02 5.5-6.0mbgl.

BH02 6.5-7.0mbgl.

BH02 7.5-8.0mbgl

BH02 8.3-8.6mbgl.

Trimmings from the UT100 shoe conducted in BH02 at 10.0mbgl.

SPT sample from BH02 at 11.0mbgl.

Trimmings from the UT100 shoe conducted in BH02 at 12.0mbgl.