BROOKBANKS

Proposed Development Land north east of King George V Playing Fields, Northaw Road East, Cuffley, Hertfordshire.

Surface Water Drainage Report To Discharge Conditions 6 & 19

Document Control Sheet

Document Title	Drainage Report
Document Ref	10929/SWDR rev4
Project Name	Northaw Road East, Cuffley, Hertfordshire
Project Number	10929
Client	Bellway

Document Status

Rev	Issue Status	Prepared / Date	Checked / Date	Approved / Date
0	Draft	NJO / 15.07.22	TM / 21.07.22	RM 21/07/22
1	Final	NJO / 22.08.22	TM / 22.08.22	RM / 22.08.22
2	Final	NJO / 09.11.22	TM / 17.11.22	RM / 17.11.22
3	Final	NJO / 12.01.23	TM / 12.01.23	RM / 12.01.23
4	Final	NJO / 18.04.23	TM / 18.04.23	RM / 18.04.23

Issue Record

Name / Date & Revision	21.07.22	05/10/22	17/11/22	12/01/23	18/04/23	
George Daniel - Savills	0	1	2	3	4	
Fiona Flaherty – Bellway Homes Ltd (North London)	0	1	2	3	4	

© Copyright Brookbanks Consulting Ltd 2020

This document may not be reproduced or transmitted, in any form or by any means whether electronic, mechanical, photographic, recording or otherwise, or stored in a retrieval system of any nature without the written permission of Brookbanks Consulting Limited. No part of this work may be modified without the written permission of Brookbanks Consulting Ltd. No part of this work may be exposed to public view in any form or by any means, without identifying the creator as Brookbanks Consulting Ltd

Contents

1	Introduction	4
	Surface Water Drainage	
3	SuDS Maintenance	11
4	Foul Water Drainage	15
5	Summary	16
6	Limitations	17

Appendices

Appendix A – Drawing P1848.01 rev.L (sourced by AAP Architecture Ltd)

Appendix B - Drawing 10929-500-001D & 002D - Drainage Strategy

Plan Appendix C – MD Hydraulic calculations –

Surface Water Network 1 including Basin 1 Basin 1 - Velocity, Volume & Depth Graphs Swale - Velocity, Volume & Depth Graphs

Basin 2 - Source Control calculations

Basin 2 -- Velocity, Volume & Depth Graphs

Impermeable Areas Schedule

Appendix D – Drawing 10929-500-003C – Catchment Plan Drawing 10929-500-004D – Exceedance Plan Drawing 10929-500-005A – Basin and Swale Cross-sections

1 Introduction

- 1.1 Brookbanks Consulting (BCL) is appointed by Bellway Homes to produce a surface water drainage report for a residential development on Land north east of King George V playing fields, Northaw Road East, Cuffley.
- 1.2 This Report has been prepared in order to satisfy the following surface water drainage planning conditions with respect to the outline planning permission (ref. S6/2015/1342/PP) issued 31st March 2022 by Welwyn Hatfield.

1.3 Condition 6. Surface Water -

No development shall take place until a detailed surface water drainage scheme for the site based on the approved drainage strategy and sustainable drainage principles has been submitted to and approved in writing by the Local Planning Authority. The drainage strategy should demonstrate the surface water runoff generated up to and including the 1 in 100year plus climate change critical event will not exceed the run off from the undeveloped site following the corresponding rainfall event. The scheme shall also include:

a) Detailed engineering drawings of the proposed SuDS features including cross section drawings, their size, volume, depth and any inlet and outlets features including any connecting pipe runs.

b) Final detailed post development network calculations for all storm events up to the 1 in 100year plus 40% climate change event with half drain down times less than 24 hours.

c) Assessment of the surface water flow path and the volumes to be managed as part of the development.

d) Exceedance flow routes for storms greater than the 1 in 100year plus 40% climate change event.

e) Final detailed management plan to include arrangements for adoption and other arrangements to secure the operation throughout its lifetime.

The mitigation measures shall be fully implemented prior to occupation and maintained in accordance with the timing/ phasing arrangements embodied within the scheme or any other period as may subsequently be agreed in writing by the Local Planning Authority.

Reason: To reduce the risk and impact of flooding by ensuring the satisfactory storage and disposal of surface water from the site; and to ensure surface water can be managed in a sustainable manner in accordance with Policy R7 and R10 of the Welwyn Hatfield District Plan 2005; Policy SADM14 of the draft Local Plan Proposed Submission August 2016; and the National Planning Policy Framework.

1.4 Condition 19. Surface Water -

The development hereby permitted must be carried out in accordance with the approved Flood Risk Assessment prepared by Brookbanks (ref. 10710 FRA01 Rv0 dated 11 June 2021) and the following mitigation measures detailed within the Flood Risk Assessment.

a) Limiting the surface water run off generated by the critical storm events so that it will not exceed the surface water run off rate of 8.2 l/s during the 1 in 100year plus 40% climate change event.

b) Providing storage to ensure no increase in surface water volumes up to the 1 in 100year plus 40% climate change event providing a minimum of 1,494m³ (or such volume agreed with the LLFA) of total storage volume in attenuation basin and swale.

c) Discharge of surface water from the private drain into the ordinary watercourse south of the site.

The mitigation measures shall be fully implemented prior to occupation and maintained in accordance with the timing/ phasing arrangements embodied within the scheme or any other period as may subsequently be agreed in writing by the Local Planning Authority.

Reason: To reduce the risk and impact of flooding by ensuring the satisfactory storage and disposal of surface water from the site; and to ensure surface water can be managed in a sustainable manner in accordance with Policy R7 and R10 of the Welwyn Hatfield District Plan 2005; Policy SADM14 of the draft Local Plan Proposed Submission August 2016; and the National Planning Policy Framework This report should be read in in accordance with the engineering drawings and other documents included in the Reserved Matters submission.

1.5 This report should be read in in accordance with the engineering drawings and other documents included in the Reserved Matters submission.

2 Surface Water Drainage

Background

- 2.1 The strategic surface water drainage scheme is based on the principles set out in the Flood Risk Assessment (FRA) (ref. 10710/FRA01/rev0) submitted and approved as part of the outline planning application.
- 2.2 The FRA outlined the drainage strategy for the development which included for flows to discharge via detention basins 1 and 2 to an existing ordinary watercourse flowing along the southern boundary of the Site conveying flows generally in a south easterly direction towards the Northaw Brook.

Baseline Conditions

2.3 The FRA includes baseline site discharge assessments using the nationally accepted IoH124 methodology for small rural catchments. Local policy is to employ IoH124 in a manner set out by CIRIA C697. This methodology requires that, for catchments of less than 50ha, the IoH assessment is completed for a 50ha area with the results linearly interpolated to determine the flow rate value based on the ratio of the development to 50ha.

2.4 The baseline IoH run-off rates are shown on Table 2.1 below:

Event	IOH scaled to (l/s/ha)
1 in 1 year	3.30
Qbar	3.88
1 in 100 year	12.39

Table 2.1: IoH124 baseline discharge rates

2.5 To determine the permitted rates of run-off from the development, the future impermeable catchment areas must be derived. This has been based on a BCL measured ratio from previous projects. Calculations below show these ratios and areas and how this correlate to the rates of discharge.

Catchment	Impermeable Area (ha)	Existing 100year run-off (I/s)	Proposed 100year run-off (I/s)
1	2.046	25.35	6.5
2	0.072	0.89	1.7

2.6 The calculations for this are shown in Table 2.2 below:

- 2.7 Using these methods, development at the site will comply with the requirements set out in paragraph 9 of the Technical Guide to the National Planning Policy Framework (NPPF), with the discharge of surface water from the proposed developments not exceeding that of the existing greenfield sites, thus ensuring that there is no material increase in the flood risk to surrounding areas.
- **2.8** The proposed discharge rate from Basin 2 has been increased from the baseline greenfield rate, as such a small rate would have led to a small opening being required in the flow control which would have the potential for blockage.
- 2.9 Assessments have thereafter been completed to determine the characteristics of proposed SuDS features to be situated within the development. Best practice methods have been employed by performing detention routing calculations for both the 1 in 2year, 1 in 30year and 1 in 100 years + 40% climate change events.

Surface Water Strategy

- **2.10** The preferred option for the disposal of surface water utilises two outfall points into the existing ditch to the south of the Site.
- **2.10** Calculations have determined the volumes required to attenuate storm water discharges from the Site during the critical 1 in 100 year + 40% climate change storm event.
- 2.11 Peak discharges will be limited to the equivalent to the mean annual storm (Qbar), estimated by the IoH124 calculations above, representing a circa 69% reduction on peak greenfield rates. Table 2.3 below summarises the overall detention requirements.

Catchment 1	Impermeable Area (ha)	Proposed 100year run-off (l/s)	Detention volume during 1:100year (+40%cc) event
1	2.169	6.5	1,940
Swale			21.0
2	0.079	1.7	42.8
TOTAL	2.248	8.2	2,003.8

- **2.12** Hydraulic calculations include Volume : Time graphs for each basin which demonstrate the half drain down times during the critical 1 in 100 year + 40% climate change storm event are approximately 2256 minutes and 252 minutes for Basins 1 and 2 respectively.
- 2.13 Detailed MD hydraulic calculations are included in Appendix C.

Drainage Proposals

2.14 Preliminary assessment of the requirements for storm drainage have been based on the following criteria:

Criteria	Measure/Rate/Factor
Impermeability factor – Residential	0.55
Impermeability factor – Highways	1.00
Urban Creep allowance	10%
Sewer design return period	1 in 2 year
Sewer flood protection	1 in 30 years
Fluvial / Development flood protection	1 in 100 years
M5-60	20.0 mm
Ratio r	0.40
Minimum cover to sewers	1.2 m
Minimum velocity	1.0 m/sec
Pipe ks value	0.6 mm
Climate change	40%

Table 2.4: Drainage Criteria and Measures

- A surface water sewer layout serving the development has been shown on Drawing No's 10929-500-001
 & 002 included in Appendix B to demonstrate the layout of the drainage system and location of proposed SuDS features.
- 2.16 Hydraulic design and analysis of the strategic surface water drainage systems has been completed using the MD Network module for various storm events up to the 1 in 100year (+40%cc) maximum design storm event. The surface water system including the detention basins has been tested against the 1:2year, 1:30year and the 1 in 100year (+40%cc) events using FEH2013 rainfall data.
- 2.17 Surface water sewers have been designed in accordance with the Sewerage Sector Guidance Appendix C
 Design & Construction Guidance (DCG) (formerly Sewers for Adoption) and will be offered to Thames
 Water (TW) or New Appointment and Variations (NAV) for adoption under a Section 104 agreement.
 Further detailing of the drainage design will be undertaken as part of the Section 104 submission to TW.
- **2.18** Surface water sewers have been designed in accordance with DCG standards for no pipe surcharging during a 1 in 2 year storm event and no surface flooding during a 1 in 30 year storm event.
- **2.19** The surface water system has also be checked against storms up to the 1 in 100 year (+40%cc) event, in accordance with DCG requirements. Results show there is no surface water flooding from the system during the 1 in 100 year (+40%cc) event.
- **2.20** Impermeable areas have been measured from the Cuffley Appraisal Layout included in Appendix A. An urban creep factor of 10% has been applied to plot development impermeable areas to allow for future urban expansion. A schedule of impermeable areas is included in the Appendix.

Overland Flows

- **2.21** The FRA identified that an overland surface water flow paths crosses the existing site. The flow path follows the natural topography from the higher ground to the north of the site down to the watercourse flowing along the southern boundary.
- **2.22** The approved FRA however concluded that 'given the baseline site characteristics and further mitigating measures to be implemented residual flood risk from an overland flow mechanism is considered of a low probability'.
- 2.23 Extracts from EA Surface water flood mapping GIS data are included in Figure 2.5. This shows the extents of medium risk chance of flooding between 1 in 100 Year Return (1%) and 1 in 30 Year Return (3.3%). The flood extents extends north into the proposed development area from the existing watercourse. Extracts also indicate the depth of flooding to be generally 0.0 0.15m within the site. The majority of the

proposed development will be within areas that have a very low potential risk of flooding from surface water.

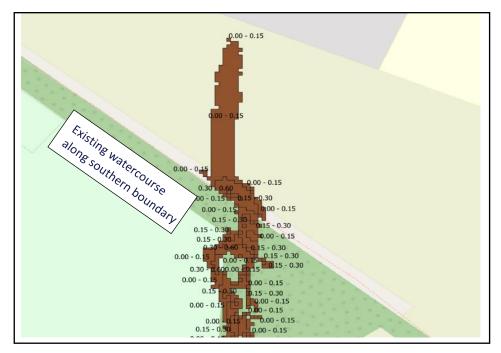


Figure 2.5: EA Surface water flood mapping 1:100year event

- 2.24 The new development will manage the existing surface water flood extents by developing the site with residential dwellings and altering the site topography. A new stormwater drainage and SuDS management system will also be constructed which will alter the surface run off regimes within the site. Surface water flows generated within the proposed site will now be collected by the new drainage scheme and exceedance routes associated with the drainage infrastructure have been established.
- 2.25 Although of a low flood risk, during the 1 in 100 year (+40%cc) event the potential for a surface water flow path originating at the north of the site from South Drive has also been considered. Surface water flood modelling has been undertaken to assess this impact at the request of the LLFA. Technical note 10929-TN01 accompanies this report and provides the modelling results for the existing baseline and post development conditions for the 1 in 1000yr and 1 in 100yr+ 40%CC rainfall events. Flood modelling demonstrates that the proposed surface water drainage system can manage the potential surface water flooding effectively.
- 2.26 The inflow hydrograph from the flood modelling has been added to PN 2.008 (MH S13) in the Micro Drainage model to replicate the impact of the surface water flooding collecting within the proposed carpark area south of South Drive and then being passes into the drainage network. This causes a marginal increase (< 100m3) in the volume requirement at Basin 1 due to the inflow for the critical 960min 1:100year (+40%cc) return period event. Exceedance from the pipe system is not an issue as the critical</p>

storm duration (15-30minutes) for the pipes will have passed before the surface water flood inflow commences (peak occurring after 960mins).

2.27 The revised basin area and volume is detailed on Drawings 10929-500-001 & 002 included in Appendix B and shows that the depth of the pond remains at 1.4m +0.3m freeboard with the proposed volume increased by a change in the pond area. 10929-500-004 D - Exceedance Plan is also included in the Appendix.

Exceedance Flows

- **2.27** As a result of extreme rainfall it is inevitable that the capacities of sewers and other drainage systems will be exceeded on occasion. Periods of exceedance occur when the rate of surface runoff exceeds the drainage system inlet capacity, when the pipe system becomes overloaded, or when the outfall becomes restricted due to flood levels in the receiving water.
- 2.28 Underground conveyance cannot economically or sustainably be built large enough for the most extreme events and, as a result, there will be occasions when surface water runoff will exceed the design capacity of drains. When drainage system capacity is exceeded the excess water (exceedance flow) is conveyed above ground, and will travel along streets and paths, and across open space areas.
- **2.29** The topography of the majority of the site falls towards the existing watercourse flowing along the southern boundary.
- **2.30** The proposed levels for the development site will replicate the existing topography, subject to acceptable development gradients, and strategic drainage exceedance flow paths have been designed to follow above ground routes towards the southern boundary.
- **2.31** Drawing 10929-500-004 Exceedance Plan shows exceedance flow directions have been established through the strategic highway network of the development with flows routed to discharge at crossings to the southern boundary.
- **2.32** Basins and swales have also been designed with freeboard allowances above maximum design storm event water levels and spare capacity is available for exceedance run-off during more extreme events.

Water Quality

2.33 Impermeable surfaces collect pollutants from a wide variety of sources including cleaning activities, wear from car tyres, vehicle oil and exhaust leaks and general atmospheric deposition (source: CIRIA C609). The implementation of SUDS in development drainage provides a significant benefit in removal of pollutant from development run-off.

- **2.34** The SuDS Manual C753 describes a 'Simple Index Approach' for assessing the pollution risk of surface runoff to the receiving environment using indices for likely pollution levels for different land uses and SUDS performance capabilities. A 'Simple Index Approach' assessment has been undertaken below.
- 2.35 CIRIA document C753 Table 26.2, as shown in Table 2.5 below, indicates the minimum treatment indices appropriate for contributing pollution hazards for different land use classifications. To deliver adequate treatment, the selected SuDS components should have a total pollution mitigation index (for each contaminant type) that equals or exceeds the pollution hazard index.
- **2.36** For Phase 1B (typically a residential type development), run-off from low traffic roads such as cul-de-sacs and individual property driveways pose the worst case pollution hazard.

Land Use	Pollution Hazard Level	Total suspended solids (TSS)	Metals	Hydro-carbons
Residential roofs	Very Low	0.2	0.2	0.05
Individual property driveways, residential car parks, low traffic roads (e.g. cul-de-sacs, home zones and general access roads) and non-residential car parking with infrequent change (e.g. schools, offices) i.e. < 300 traffic movements/day	Low	0.5	0.4	0.4

Table 2.6 CIRIA 753 Table 26.2 Pollution Hazard Indices

Type of SUDS component	Total suspended solids (TSS)	Metals	Hydro-carbons
Detention Basin	0.5	0.5	0.6
Swales	0.5	0.6	0.6

 Table 2.7
 CIRIA 753 Table 26.3 SuDS Mitigation Indices for discharges to surface waters.

- 2.37 To provide the correct level of treatment, an assessment needs to be made of the mitigation provided by each SuDS feature. Table 26.3 of The SuDS Manual CIRIA document C753 shown as Table 2.6 for discharges to surface waters indicate the treatment mitigation indices provided by each SuDS feature.
- 2.38 Typically the strategic surface water system provides treatment of flows utilising a minimum of two SuDS features. Catchment 1 drains via a swale and detention basin 1. However with only a small area of plot development (0.079ha) within catchment 2, it is considered detention basin 2 will be sufficient to cater for the pollution risks posed. Pollution mitigation indices for treatment scenarios are shown in Table 2.7.
- **2.39** The SuDS management train being promoted for the development has been tailored to encourage passive treatment and from the above assessment in accordance with the 'Simple Index Approach' procedure,

ref: Table 2.7, the combined SuDS pollution mitigation proposals are sufficient to manage the pollution hazards arising from the development.

Catchment Ref:	Pollution Hazard/ Mitigation Indices	Total suspended solids (TSS)	Metals	Hydro-carbons
1	Pollution Mitigation Indices (Swale>Basin1)	0.75	0.85	0.90
	Water Pollution Management	Sufficient	Sufficient	Sufficient
2	Pollution Mitigation Indices (Basin2)	0.50	0.50	0.60
	Water Pollution Management	Sufficient	Sufficient	Sufficient

 Table 2.7:
 Simple Index Approach Assessment

Implementation

- 2.40 The anticipated build programme is 26 months starting October 2022. 40 units being delivered year 23/24 and 81 units being delivered in 24/25.
- **2.41** Implementation of the storm water management system will be undertaken prior to first occupation of dwellings.

3.0 SuDS Maintenance

- **3.1** In accordance with condition 20 within the outline planning permission, upon completion of the drainage works for the site in accordance with the timing/ phasing arrangements, a management and maintenance plan for the SuDS features and drainage system will be submitted to and approved in writing by the Local Planning Authority. The management and maintenance plan will include:
 - i. Provision of complete set of as-built drawings for site drainage
 - ii. Maintenance and operational activities
 - iii. Arrangements for adoption and other measures to secure the operations of the scheme throughout its lifetime.

Background

- **3.2** Storm water from the proposed main access road and residential development will drain into the basin 1 in the south east of the site which has downstream flow controls prior to discharging into the existing watercourse. A small area of residential development drains to basin 2 in the south of the site which also has downstream flow controls prior to discharging into the existing watercourse.
- **3.3** Basins 1 and 2 have storage volumes of approximately 1,940m³ and 48m³ respectively during the 1 in 100 year (+40%cc) storm event.
- **3.4** The control chambers to the detention basins both incorporate a hydrobrake flow control set to limit discharges to the greenfield Qbar rate of 6.5 l/s and 1.7 l/s respectively during storms up to the 1 in 100 year (+40%cc) event.
- **3.5** In accordance with legislative requirements, the detention proposals have been assessed for the potential effects of climate change. The 1 in 100 year (1% AEP) return events have been modelled with 40% climate change allowance and show the detention basin performs adequately by retaining the additional flows within the system while maintaining a minimum 300mm freeboard.
- 3.6 Discharges of surface water to the existing watercourse will be subject to Land drainage consent.

SuDS Maintenance & Management Arrangements

- **3.7** The upstream surface water sewer system draining to the detention basin will be offered to TW or NAV for adoption under a section 104 agreement for future adoption and maintenance.
- **3.8** The detention basins, including the downstream headwall, control chamber and outlet pipe and grass swale will be managed and maintained by a private management company on behalf of the developer.

- **3.9** Detailed plans and design drawings indicating features and areas which are to be maintained by the private management company will be included in the management and maintenance plan.
- **3.10** The development layout provides adequate access and working areas in order to undertake the above maintenance procedures. Formal rights of access will be provided, where necessary, to the management company, if required.

Maintenance Schedules

3.11 The management and maintenance plan will include best practice guidance based on typical maintenance regimes for SuDS features as shown in the tables below:

Maintenance Schedule	Required Action	Typical Frequency
	Remove litter (including leaf litter) and debris	Monthly or as required
	Cut grass for spillways and access routes	Monthly during growing season or as required
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly
Regular Maintenance	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly or when required
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies	Monthly for 12 months, then annually or as required
	Check any penstocks and other mechanical devices	Annually
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlets, outlet and forebay	Annually or as required
	Manage wetland plants in outlet pool- where provided	Annually
	Reseed areas of poor vegetation growth.	As required
Occasional Maintenance	Prune and trim any trees and remove cuttings	Every 2 years or as required
	Remove sediment from inlets, outlet and forebay and main basin	Every 5 years or as required

Remedial	Repair erosion or other damage by re-turfing or reseeding	As required		
Actions	Re-alignment of rip-rap	As required		
	Repair/ rehabilitate inlets, outlets and overflows	As required		
	Relevel uneven surfaces and reinstate design levels.	As required		

Table 3.1: Recommended maintenance activities for Detention basins

Maintenance Schedule	Required Action	Typical Frequency
	Remove litter (including leaf litter) and debris	Monthly or as required
Regular Maintenance	Cut grass to retain grass height with specified design range	Monthly during growing season or as required
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly
	Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding > 48 hours	Monthly or when required
	Inspect vegetation coverage	Monthly for six months, quarterly for 2 years , then half yearly
	Inspect inlets and facility surface for silt accumulation, and establish appropriate silt removal frequencies	Six Monthly
Occasional Maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required.	As required or if bare soil is exposed over 10% or more of the swale treatment area
	Repair erosion or other damage by re-turfing or reseeding	As required
Remedial Actions	Relevel uneven surfaces and reinstate design levels	As required
	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface.	As required

Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip.	As required
Remove and dispose of oils or petrol residues using safe standard practices	As required

Table 3.2: Recommended maintenance activities for swales

4.0 Foul Water Drainage

Background

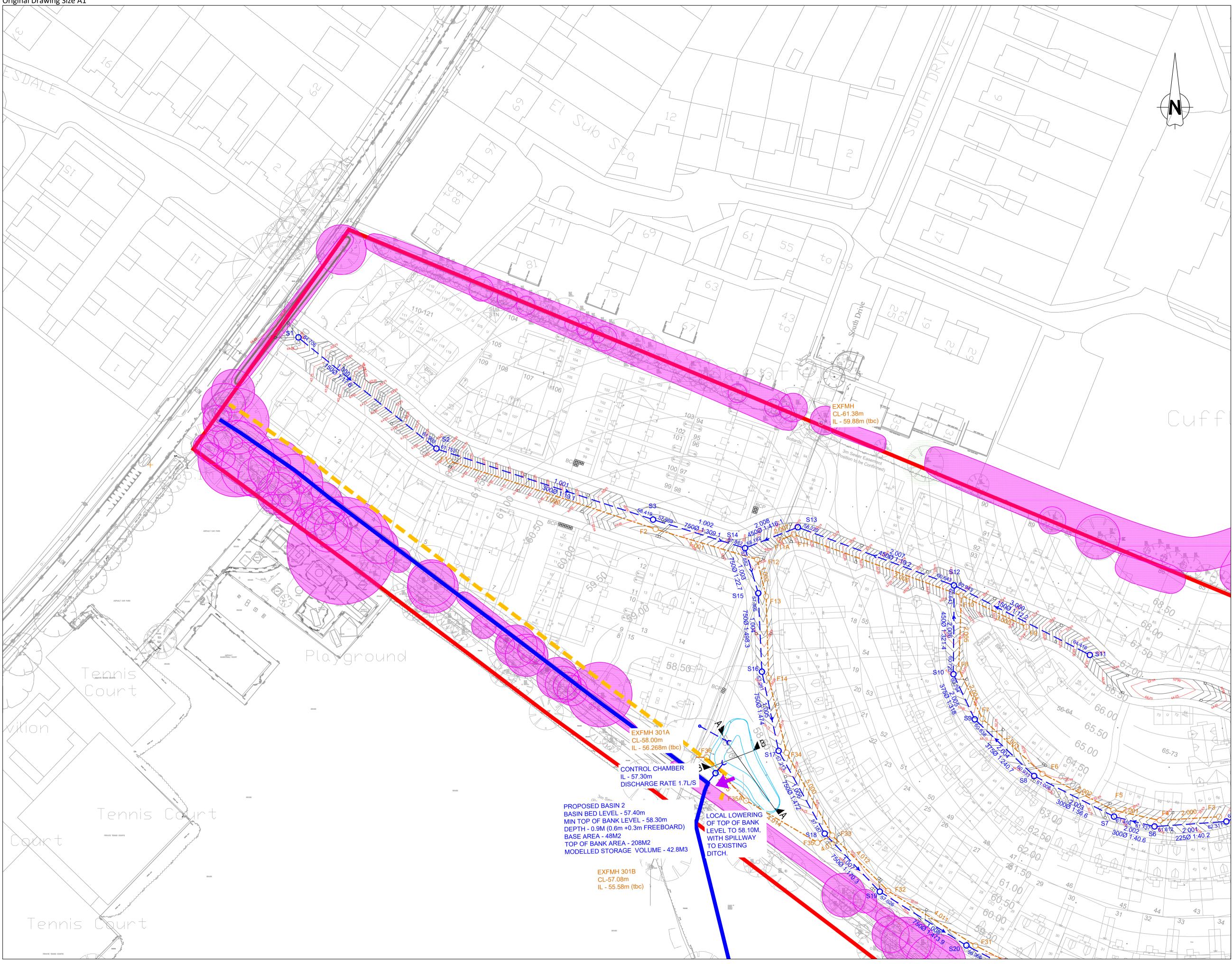
- **4.1** The foul water drainage scheme is based on the principles set out in the Flood Risk Assessment (FRA) (ref. 10710/FRA01/rev0) submitted and approved as part of the outline planning application.
- **4.2** The FRA outlined the drainage strategy for the development which included for flows to discharge to an existing public sewer crossing within the site.

Point of Connection

- **4.3** Foul drainage proposals have been developed in consultation with TW that provide for an on-site connection to the existing public sewer crossing within the site.
- **4.4** TW are instructed to undertake a modelling study to assess the impacts of the development. At the time of writing this report timescales are awaited from TW to confirm the delivery date for the modelling study results.
- **4.5** Water companies have a statutory obligation through the Water Industry Act 1991, 2003 et al., to provide capital investment in strategic treatment infrastructure to meet development growth. This investment planning is managed and regulated by OFWAT through the Asset Management Plan (AMP) process. The five yearly cyclical process requires that water companies allocate finances to a range of strategic projects to meet their statutory obligations.
- **4.6** Where development programming requirements necessitate the reinforcement of facilities ahead of allocation in an AMP period, mechanisms are available to ensure the infrastructure can be delivered in a timely fashion, to meet the development programme.

5.0 Summary

- **5.1** The purpose of this Report is to set out details of the proposed surface water drainage scheme to manage surface water run-off from the development, as required by Conditions 6 and 19 of the outline planning permission.
- **5.2** A strategy for storm drainage at the site has been developed to meet both national and local policy. The above proposals employ means of drainage to comply with NPPF guidance, together with SFRA and other national and local guidance.
- **5.3** The drainage proposals will manage storm water by way of a SUDS management train and ensure peak discharges from the developed land provide betterment from the appraised baseline rates.
- **5.4** The proposals will also provide to maintain the quality of water discharged from the development during the construction and operational stages.
- **5.5** The storm water management proposals will improve the amenity and biodiversity of the site.
- **5.6** The storm water system has been designed so that it is suitable for adoption by TW or NAV for future maintenance. Future maintenance of the non- adoptable SuDS elements of the system will be undertaken by a private management company for the site.
- **5.7** Implementation of the storm water management system will be undertaken prior to first occupation of dwellings.
- **5.8** This Report demonstrates that against the requirements of the relevant conditions a suitable scheme for the discharge of surface water has been designed in accordance with the approved Surface Water Drainage Strategy contained within the approved FRA. The drainage scheme, designed and constructed in accordance with DCG standards with outfalls at agreed points of discharge, will be put in place to minimise the impacts of development during the construction and operational stages and cater for future phases of development.


6.0 Limitations

- **6.1** The conclusions and recommendations contained herein are limited to those given the general availability of background information and the planned usage of the site.
- **6.2** Third party information has been used in the preparation of this report, which Brookbanks Consulting Ltd, by necessity assumes is correct at the time of writing. While all reasonable checks have been made on data sources and the accuracy of data, Brookbanks Consulting Ltd accepts no liability for same.
- **6.3** The benefits of this report are provided solely to Bellway Homes for the proposed development only.
- 6.4 Brookbanks Consulting Ltd excludes third party rights for the information contained in the report.

Appendix A - Cuffley Appraisal Layout Plan

Appendix B - Drainage Plans

UNTIL TECHNICAL APPROVAL HAS BEEN OBTAINED FROM THE RELEVANT LOCAL AUTHORITIES, IT SHOULD BE UNDERSTOOD THAT ALL DRAWINGS ARE ISSUED AS PRELIMINARY AND <u>NOT</u> FOR CONSTRUCTION. SHOULD THE CONTRACTOR COMMENCE SITE WORK PRIOR TO APPROVAL BEING GIVEN, IT IS ENTIRELY AT HIS OWN RISK.

NOTES:

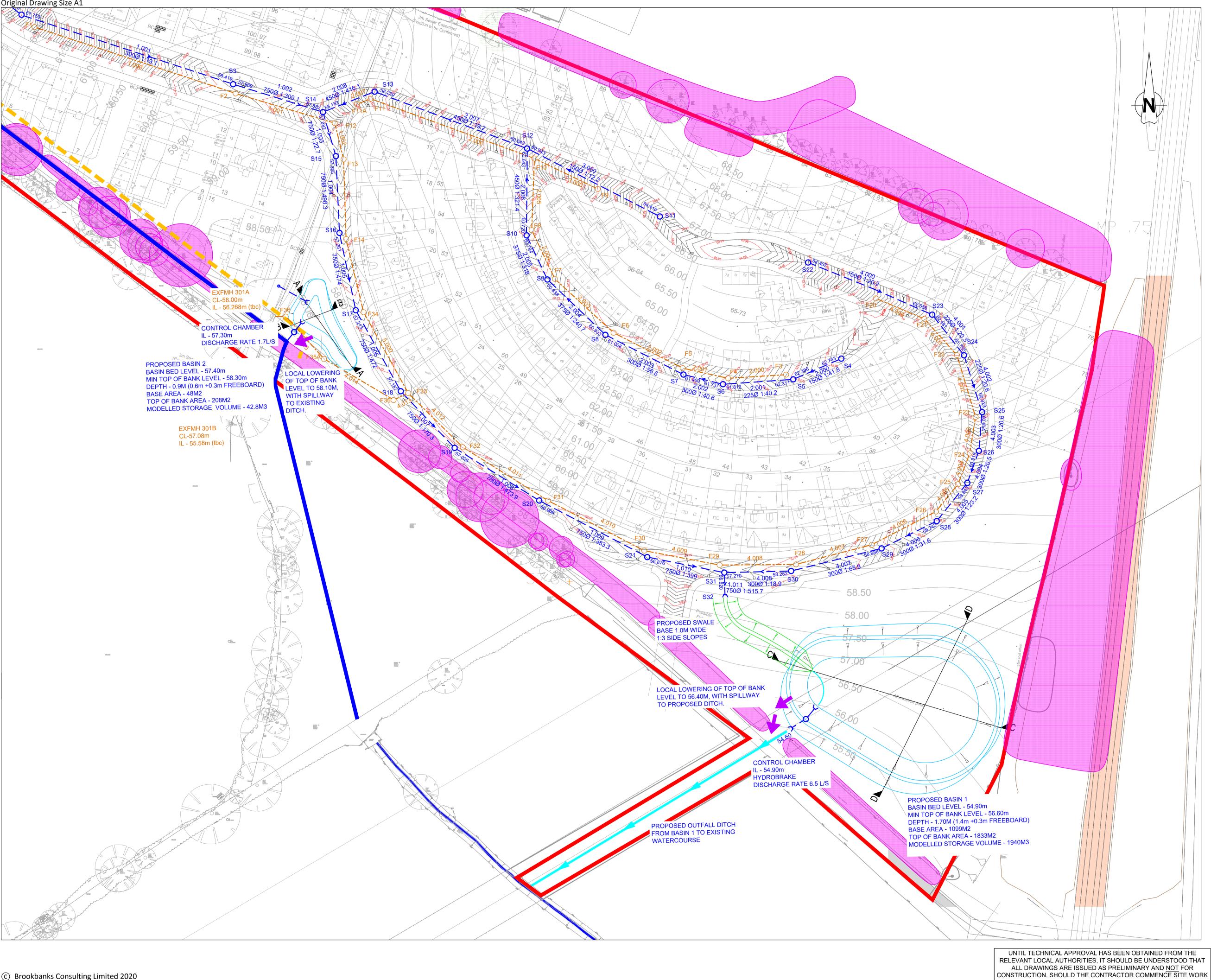
- 1. Do not scale from this drawing.
- 2. All dimensions are in metres unless otherwise stated.
- 3. Brookbanks Consulting Ltd has prepared this drawing for the sole use of the client. The drawing may not be relied upon by any other party without the express agreement of the client and Brookbanks Consulting Ltd. Where any data supplied by the client or from other sources has been used, it has been assumed that the information is correct. No responsibility can be accepted by Brookbanks Consulting Ltd for inaccuracies in the data supplied by any other party. The drawing has been produced based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.
- No part of this drawing may be copied or duplicated without the express permission of Brookbanks Consulting Ltd.
- 5. Precise line and level of the existing foul water sewer are to be notified to the Engineer prior to the commencement of the works.

KEY:

	Site Boundary
	Existing Foul water
	Proposed Foul water sewer
	Proposed Surface water sewer
	Existing Watercourse
	Watercourse 5m offset
	Proposed SuDS Basin 1 in 3 slopes
¥	Basin spillway
	Proposed Basin 1 Outfall Route
O	Root protection zones
CELLER CONTROL	Proposed Swale

D C B A	Basin 2 Volume ammended PN1.002 & 1.003 amended. Basin notes amended. Amended to comply with LLFA comments Drainage and Basins amended First Issue	NO NO HG HG	TM TM DC DC DC	TM TM TM RM TM	18.04.23 12.01.23 08/11/22 17.10.22 16.06.22

BROOKBANKS


6150 Knights Court, Solihull Parkway, Birmingham, B37 7WY T +44 (0)203 958 5400 E mail@brookbanks.com W brookbanks.com

Land at Cuffley Hertfordshire

Foul & Surface Water Drainage Strategy

Status				Status Dat	te
Approv	/al			June	2022
Drawn		Checked		Date	
HG		DC		16.0	6.22
Scale		Number		Rev	
1:500		10929-5	500-001	D	
0	10	20	30	40	50
METRES					

PRIOR TO APPROVAL BEING GIVEN, IT IS ENTIRELY AT HIS OWN RISK.

NOTES:

- 1. Do not scale from this drawing.
- 2. All dimensions are in metres unless otherwise stated.
- 3. Brookbanks Consulting Ltd has prepared this drawing for the sole use of the client. The drawing may not be relied upon by any other party without the express agreement of the client and Brookbanks Consulting Ltd. Where any data supplied by the client or from other sources has been used, it has been assumed that the information is correct. No responsibility can be accepted by Brookbanks Consulting Ltd for inaccuracies in the data supplied by any other party. The drawing has been produced based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.
- No part of this drawing may be copied or duplicated without the express permission of Brookbanks Consulting Ltd.
- 5. Precise line and level of the existing foul water sewer are to be notified to the Engineer prior to the commencement of the works.

KEY:	
	Site Boundary
	Existing Foul water
	Proposed Foul water sewer
	Proposed Surface water sewer
	Existing Watercourse
	Watercourse 5m offset
	Proposed SuDS Basin 1 in 3 slopes
*	Basin spillway
	Proposed Basin 1 Outfall Route
Ø	Root protection zones
The second second	Proposed Swale

-	First Issue	HG	DC	ΤM	16.06.22
А	Drainage and Basins amended	HG	DC	RM	17.10.22
В	Amended to comply with LLFA comments	NO	DC	ΤM	08/11/22
С	PN1.002 & 1.003 amended. Basin notes amended.	NO	ΤM	ΤM	12.01.23
D	Basin 2 Volume ammended	NO	TM	TM	18.04.23

6150 Knights Court, Solihull Parkway, Birmingham, B37 7WY T +44 (0)203 958 5400 E mail@brookbanks.com W brookbanks.com

Land at Cuffley Hertfordshire

Foul & Surface Water Drainage Strategy 2

Status						Status	Date
Approv	al					Jui	ne 2022
Drawn		Checked				Date	
HG		DC				16	.06.22
Scale		Number				Rev	
1:500		1092	29-50	00-00)2	D	
0	10	2	0	3	0	40	50
METRES							

Appendix C - MD Hydraulic calculations

Brookbanks Consulting		Page 1
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	SW Network 1	
Birmingham B37 7WY	Basin 1	Micro
Date 08/11/2022	Designed by Brookbanks	Drainage
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions	Diamage
Micro Drainage	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

<u>Design Criteria for Storm</u>

Pipe Sizes STANDARD Manhole Sizes STANDARD

FEH Rainfall Model	
Return Period (years)	2
FEH Rainfall Version 201	13
Site Location GB 530950 201600 TL 30950 016)0
Data Type Catchme	ιt
Maximum Rainfall (mm/hr) 1	00
Maximum Time of Concentration (mins)	30
Foul Sewage (l/s/ha) 0.0) ()
Volumetric Runoff Coeff. 0.7	50
PIMP (%) 1	00
Add Flow / Climate Change (%)	0
Minimum Backdrop Height (m) 0.2) ()
Maximum Backdrop Height (m) 1.5)0
Min Design Depth for Optimisation (m) 1.2) ()
Min Vel for Auto Design only (m/s) 1.)0
Min Slope for Optimisation (1:X) 50	00

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (l/s)	k (mm)	n HYD SECT	DIA (mm)	Section Type	Auto Design
	49.394 63.543		17.6 19.1	0.060	5.00		0.600	0		Pipe/Conduit	ð
	26.894			0.323	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	
	14.931		41.8	0.043	5.00		0.600	0		Pipe/Conduit	ð
	20.083 11.639		40.2 40.6	0.050 0.094	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	
	25.002 22.863	•••		0.015	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	6
	13.993			0.115	0.00		0.600	0		Pipe/Conduit	• •

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.000	63.18		64.705	0.060	0.0	0.0	0.0	2.41	42.6	10.3
1.001 1.002	61.75 60.41		61.753 57.969	0.273 0.596	0.0	0.0	0.0		255.7 700.8	45.7 97.5
2.000	64.08	5.16	62.743	0.043	0.0	0.0	0.0	1.56	27.6	7.5
2.001 2.002	63.28 62.89		62.311 61.737	0.093 0.187	0.0	0.0 0.0	0.0	2.07 2.48	82.2 175.0	15.9 31.9
2.003 2.004	61.92 60.37		61.450 60.933	0.202	0.0	0.0	0.0		148.1 128.5	33.9 48.7
2.005	59.31	6.16	60.838	0.413	0.0	0.0	0.0	1.01	111.6	66.3

Brookbanks Consulting	Page 2	
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	SW Network 1	
Birmingham B37 7WY	Basin 1	Micro
Date 08/11/2022	Designed by Brookbanks	Drainage
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions	Diamage
Micro Drainage	Network 2020.1	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Bas Flow		k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
2.006	24.744	0.077	321.4	0.023	0.00		0.0	0.600		0	450	Pipe/Conduit	•
3.000	42.499	3.473	12.2	0.096	5.00		0.0	0.600		0	150	Pipe/Conduit	ð
2.007	46.504	2.423	19.2	0.084	0.00		0.0	0.600		0	450	Pipe/Conduit	€
2.008	15.813	0.038	416.1	0.062	0.00		0.0	0.600		0	450	Pipe/Conduit	
1.003	13.070	0.577	22.7	0.071	0.00		0.0	0.600		0	750	Pipe/Conduit	e
1.004	21.923	0.044	498.3	0.033	0.00		0.0	0.600		0	750	Pipe/Conduit	
1.005	22.543	0.048	474.0	0.016	0.00		0.0	0.600		0	750	Pipe/Conduit	- J
1.006	26.430	0.056	472.0	0.079	0.00		0.0	0.600		0	750	Pipe/Conduit	ð
1.007	22.308	0.131	170.3	0.041	0.00		0.0	0.600		0	750	Pipe/Conduit	Ť
1.008	28.432	0.060	473.9	0.087	0.00		0.0	0.600		0	750	Pipe/Conduit	- T
1.009	34.881	0.091	383.3	0.078	0.00		0.0	0.600		0	750	Pipe/Conduit	Ū.
1.010	22.342	0.056	399.0	0.050	0.00		0.0	0.600		0	750	Pipe/Conduit	0
4.000	38.426	1.901	20.2	0.087	5.00		0.0	0.600		0	150	Pipe/Conduit	0
4.001	14.716	0.726	20.3	0.044	0.00		0.0	0.600		0	225	Pipe/Conduit	ð
4.002	17.029	0.826	20.6	0.063	0.00		0.0	0.600		0	225	Pipe/Conduit	ň
4.003	11.064	0.538	20.6	0.074	0.00		0.0	0.600		0	300	Pipe/Conduit	e de la companya de l
4.004	9.703	0.473	20.5	0.013	0.00		0.0	0.600		0	300	Pipe/Conduit	
4.005	13.963	0.601	23.2	0.020	0.00		0.0	0.600		0	300	Pipe/Conduit	- ĕ
4.006	17.562	0.556	31.6	0.018	0.00		0.0	0.600		0	300	Pipe/Conduit	ď

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
	• • •		• •	• •						
2.006	57.69	6.52	60.720	0.436	0.0	0.0	0.0	1.13	179.5	68.1
3.000	63.65	5.24	64.416	0.096	0.0	0.0	0.0	2.90	51.2	16.5
2.007	56.98	6 69	60.643	0.616	0.0	0.0	0.0	4.66	740.7	95.1
2.008	55.88	6.95	58.220	0.678	0.0	0.0	0.0	0.99	157.5	102.6
1.003	55.73	6.99	57.882	1.345	0.0	0.0	0.0	5.89	2604.2	203.0
1.004	54.58	7.28	57.305	1.378	0.0	0.0	0.0	1.25	550.8	203.7
1.005	53.46		57.261	1.394	0.0	0.0	0.0	1.28	564.9	
1.006	52.22		57.213	1.473	0.0	0.0	0.0	1.28	566.1	
1.007	51.61	8.10	57.157	1.514	0.0	0.0	0.0	2.14	946.2	
1.008	50.36		57.026	1.601	0.0	0.0	0.0	1.28	565.0	
1.009	49.06	8.87	56.966	1.679	0.0	0.0	0.0	1.42	628.8	
1.010	48.25		56.876	1.729	0.0	0.0	0.0	1.39	616.2	
1.010	10.20	J.11	00.070	1.725	0.0	0.0	0.0	1.00	010.2	220.9
4.000	63.46	5.28	64.457	0.087	0.0	0.0	0.0	2.25	39.8	15.0
4.001	63.04	5.37	62.481	0.131	0.0	0.0	0.0	2.92	116.1	22.4
4.002	62.56	5.47	61.755	0.194	0.0	0.0	0.0	2.89	115.1	32.9
4.003	62.31	5.52	60.854	0.268	0.0	0.0	0.0	3.48	246.2	45.2
4.004	62.08	5.57	60.316	0.281	0.0	0.0	0.0	3.49	246.5	47.2
4.005	61.74	5.64	59.843	0.301	0.0	0.0	0.0	3.28	231.5	50.3
4.006	61.24		59.242	0.319	0.0	0.0	0.0	2.81	198.5	52.9

Brookbanks Consulting		Page 3
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	SW Network 1	
Birmingham B37 7WY	Basin 1	Micro
Date 08/11/2022	Designed by Brookbanks	Drainage
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions	Diamage
Micro Drainage	Network 2020.1	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (l/s)	k (mm)	n HY SE			Auto Design
4.007 4.008	26.605 19.096		65.9 18.9	0.056 0.035	0.00		0.600 0.600			Pipe/Conduit Pipe/Conduit	
	3.610 26.348 20.106 4.629	0.200	515.7 26.3 100.5 15.4	0.031 0.000 0.000 0.000	0.00 0.00 0.00 0.00	0.0	0.600	0.030	<pre> / -:</pre>	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	ð

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
4.007 4.008	60.17 59.76		58.686 58.282	0.375 0.410	0.0		0.0	1.94 3.64	137.2 257.0	61.1 66.4
1.011 1.012 1.013 1.014	48.11 47.81 47.55 47.49	9.29 9.38	56.820 56.588 55.100 54.900	2.170 2.170 2.170 2.170 2.170	0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0	1.23 4.34 3.73 4.02	17354.7 4220.5	282.7 282.7

Free Flowing Outfall Details for Storm

Outfall Pipe Number					Min Level (m)		
1.014	35	55.500	54	4.600	0.000	0	0

Brookbanks Consulting	Page 4
6150 Knights Court	Northaw Lane, Cuffley
Solihull Parkway	SW Network 1
Birmingham B37 7WY	Basin 1 Micro
Date 08/11/2022	
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions
Micro Drainage	Network 2020.1
Onlin	ne Controls for Storm
<u>Hydro-Brake® Optimum Manh</u>	nole: 34, DS/PN: 1.014, Volume (m³): 22.7
	hit Reference MD-SHE-0113-6500-1400-6500 sign Head (m) 1.400
	gn Flow (1/s) 6.5
20019	Flush-Flo™ Calculated
	Objective Minimise upstream storage
	Application Surface
	ump Available Yes
	Diameter (mm) 113
Inve Minimum Outlet Pipe D	Price 54.900 Diameter (mm) 150
Suggested Manhole D	
Control Points Head (m) Fl	low (l/s) Control Points Head (m) Flow (l/s)
Design Point (Calculated) 1.400 Flush-Flo™ 0.412	6.5 Kick-Flo® 0.862 5.2 6.5 Mean Flow over Head Range - 5.7
Flush-Flo. 0.412	6.5 Mean Flow over Head Range - 5.7
The hydrological calculations have been base	ed on the Head/Discharge relationship for the Hydro-Brake®
	of control device other than a Hydro-Brake Optimum® be utilise
then these storage routing calculations will	l be invalidated
then these storage routing calculations will	be invalidated
then these storage routing calculations will Depth (m) Flow (1/s) Depth (m) Flow (1/s) D	Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)
then these storage routing calculations will Depth (m) Flow (1/s) Depth (m) Flow (1/s) D 0.100 4.0 0.800 5.6	Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 2.000 7.7 4.000 10.7 7.000 13.1
then these storage routing calculations will Depth (m) Flow (1/s) Depth (m) Flow (1/s) D 0.100 4.0 0.800 5.6 0.200 6.0 1.000 5.6	Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 2.000 7.7 4.000 10.7 7.000 13.7 2.200 8.0 4.500 11.3 7.500 14.7
then these storage routing calculations will Depth (m) Flow (1/s) Depth (m) Flow (1/s) D 0.100 4.0 0.800 5.6 0.200 6.0 1.000 5.6 0.300 6.4 1.200 6.0	Depth (m)Flow (1/s)Depth (m)Flow (1/s)Depth (m)Flow (1/s)2.0007.74.00010.77.00013.12.2008.04.50011.37.50014.42.4008.45.00011.88.00014.4
then these storage routing calculations will Depth (m) Flow (1/s) Depth (m) Flow (1/s) D 0.100 4.0 0.800 5.6 0.200 6.0 1.000 5.6	Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 2.000 7.7 4.000 10.7 7.000 13.7 2.200 8.0 4.500 11.3 7.500 14.7

Brookbanks Consulting	Page 5	
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	SW Network 1	
Birmingham B37 7WY	Basin 1	Micro
Date 08/11/2022	Designed by Brookbanks	Drainage
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions	Diamage
Micro Drainage	Network 2020.1	•

Storage Structures for Storm

Tank or Pond Manhole: 34, DS/PN: 1.014

Invert Level (m) 54.900

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 1085.0 1.700 1816.0

Brookbanks Consulting		Page 6
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	SW Network 1	
Birmingham B37 7WY	Basin 1	Micro
Date 08/11/2022	Designed by Brookbanks	Drainage
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions	Diamage
Micro Drainage	Network 2020.1	

Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins) 0 Hot Start Level (mm) 0 Inlet Coeffiecient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

		Synthe	tic Rain	nfa	ll Deta	ails				
Rainfall Model						FEH		Data	Туре	Catchment
FEH Rainfall Version						2013	Cv	(Sur	nmer)	0.750
Site Location	GB	530950	201600	TL	30950	01600	Cv	(Wir	nter)	0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, Duration(s) (mins) 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 2, 30, 100 Climate Change (%) 0, 0, 40

Return Period(s) (years)

PN	US/MH Name	5	Storm		Climate Change		t (X) harge	First (Y) Flood	First Overf	 Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)
											. ,		
1.000			Winter	2	+0%						64.754	-0.101	0.000
1.001	2	15	Winter	2	+0%						61.833	-0.220	0.000
1.002	3	15	Winter	2	+0%	100/15	Summer				58.167	-0.552	0.000
2.000	4	15	Winter	2	+0%	100/15	Summer				62.796	-0.097	0.000
2.001	5	15	Winter	2	+0%	100/15	Summer				62.376	-0.160	0.000
2.002	6	15	Winter	2	+0%	100/15	Summer				61.828	-0.209	0.000
2.003	7	15	Winter	2	+0%	100/15	Summer				61.545	-0.205	0.000
2.004	8	15	Winter	2	+0%	30/15	Summer				61.111	-0.197	0.000
2.005	9	15	Winter	2	+0%	30/15	Summer				61.060	-0.153	0.000
2.006	10	15	Winter	2	+0%	30/15	Winter				60.915	-0.255	0.000
3.000	11	15	Winter	2	+0%	100/15	Summer				64.473	-0.093	0.000
2.007	12	15	Winter	2	+0%						60.748	-0.345	0.000
2.008	13	15	Winter	2	+0%	30/15	Summer				58.540	-0.130	0.000
1.003	14	15	Winter	2	+0%	100/15	Summer				58.076	-0.556	0.000
1.004	15	15	Winter	2	+0%	30/15	Summer				57.688	-0.367	0.000
1.005	16	15	Winter	2	+0%	30/15	Summer				57.625	-0.386	0.000
1.006	17	15	Winter	2	+0%	30/15	Winter				57.560	-0.403	0.000
1.007	18	15	Winter	2	+0%	100/15	Summer				57.467	-0.441	0.000
1.008	19	15	Winter	2	+0%	30/15	Summer				57.413	-0.363	0.000
1.009	20	15	Winter	2	+0%	30/15	Winter				57.353	-0.364	0.000
1.010	21	15	Winter	2	+0%	30/15	Summer				57.291	-0.335	0.000
4.000	22	15	Winter	2	+0%	100/15	Summer				64.520	-0.087	0.000
4.001	23	15	Winter	2	+0%	100/15	Winter				62.549	-0.157	0.000
4.002	24	15	Winter	2	+0%	100/15	Summer				61.836	-0.144	0.000
4.003	25	15	Winter	2	+0%	100/15	Summer			 	60.947	-0.207	0.000
						01	982-20	20 Innov	W70				

©1982-2020 Innovyze

Brookbanks Consulting	Page 7	
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	SW Network 1	
Birmingham B37 7WY	Basin 1	Mirro
Date 08/11/2022	Designed by Brookbanks	Drainage
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions	Diamage
Micro Drainage	Network 2020.1	

	IIS/MH	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	•					Exceeded
1.000	1	0.23			9.5	OK	
1.001	2	0.16			38.4	OK	
1.002	3	0.16			82.3	OK	
2.000	4	0.27			6.9	OK	
2.001	5	0.18			13.6	OK	
2.002	6	0.20			26.3	OK	
2.003	7	0.22			28.5	OK	
2.004	8	0.37			41.2	OK	
2.005	9	0.65			55.5	OK	
2.006	10	0.39			58.5	OK	
3.000	11	0.31			15.4	OK	
2.007	12	0.12			82.1	OK	
2.008	13	0.85			90.3	OK	
1.003	14	0.15			178.4	OK	
1.004	15	0.48			180.7	OK	
1.005	16	0.45			179.7	OK	
1.006	17	0.43			185.7	OK	
1.007	18	0.31			187.2	OK	
1.008	19	0.44			189.3	OK	
1.009	20	0.38			190.1	OK	
1.010	21	0.43			192.4	OK	
4.000	22	0.36			13.8	OK	
4.001	23	0.19			19.7	OK	
4.002	24	0.28			28.4	OK	
4.003	25	0.21			38.5	OK	

Brookbanks Consulting	Page 8		
6150 Knights Court	Northaw Lane, Cuffley		
Solihull Parkway	SW Network 1		
Birmingham B37 7WY	Basin 1	Micro	
Date 08/11/2022	Designed by Brookbanks	Drainage	
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions	Dialitacje	
Micro Drainage	Network 2020.1		

	US/MH			Climate	First (X)	First (Y)	First (Z)		Water Level	Surcharged Depth	Volume
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)
4.004	26	15 Winter	2	+0%	100/15 Summer				60.414	-0.202	0.000
4.005	27	15 Winter	2	+0%	100/15 Summer				59.939	-0.204	0.000
4.006	28	15 Winter	2	+0%	100/15 Summer				59.347	-0.195	0.000
4.007	29	15 Winter	2	+0 %	30/15 Summer				58.823	-0.163	0.000
4.008	30	15 Winter	2	+0%	100/15 Summer				58.385	-0.197	0.000
1.011	31	15 Winter	2	+0%	30/15 Winter				57.252	-0.318	0.000
1.012	32	15 Winter	2	+0 %					56.705	-0.883	0.000
1.013	33	15 Winter	2	+0 %					55.369	-0.931	0.000
1.014	34	480 Winter	2	+0%	2/180 Winter				55.270	0.070	0.000

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
4.004	26	0.23			40.3	OK	
4.005	27	0.22			43.0	OK	
4.006	28	0.27			45.4	OK	
4.007	29	0.43			52.7	OK	
4.008	30	0.26			57.1	OK	
1.011	31	0.63			224.2	OK	
1.012	32	0.02			222.7	OK	
1.013	33	0.11			223.1	OK*	
1.014	34	0.05			6.5	SURCHARGED*	

Brookbanks Consulting						
Northaw Lane, Cuffley						
SW Network 1						
Basin 1	Micro					
Designed by Brookbanks	Drainage					
Checked by N.J.Onions	Diamage					
Network 2020.1	1					
	SW Network 1 Basin 1 Designed by Brookbanks Checked by N.J.Onions					

Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins) 0 Hot Start Level (mm) 0 Inlet Coeffiecient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

		Synthe	tic Rain	nfa	ll Deta	ails				
Rainfall Model						FEH	Ι	Data	Туре	Catchment
FEH Rainfall Version						2013	Cv	(Sur	nmer)	0.750
Site Location	GB	530950	201600	TL	30950	01600	Cv	(Wir	nter)	0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, Duration(s) (mins) 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 2, 30, 100 Climate Change (%) 0, 0, 40

Return Period(s) (years)

	US/MH				Climate	First		First (Y)			Overflow	Level	Surcharged Depth	Volume
PN	Name	:	Storm	Period	Change	Surch	narge	Flood	Overf:	Low	Act.	(m)	(m)	(m³)
1.000	1	15	Winter	30	+0%							64.784	-0.071	0.000
1.001	2	15	Winter	30	+0%							61.892	-0.161	0.000
1.002	3	15	Winter	30	+0%	100/15	Summer					58.319	-0.400	0.000
2.000	4	15	Winter	30	+0%	100/15	Summer					62.830	-0.063	0.000
2.001	5	15	Winter	30	+0%	100/15	Summer					62.422	-0.114	0.000
2.002	6	15	Winter	30	+0읭	100/15	Summer					61.896	-0.141	0.000
2.003	7	15	Winter	30	+0읭	100/15	Summer					61.618	-0.132	0.000
2.004	8	15	Winter	30	+0%	30/15	Summer					61.425	0.117	0.000
2.005	9	15	Winter	30	+0%	30/15	Summer					61.328	0.115	0.000
2.006	10	15	Winter	30	+0%	30/15	Winter					61.171	0.001	0.000
3.000	11	15	Winter	30	+0%	100/15	Summer					64.511	-0.055	0.000
2.007	12	15	Winter	30	+0%							60.822	-0.271	0.000
2.008	13	15	Winter	30	+0%	30/15	Summer					58.796	0.126	0.000
1.003	14	15	Winter	30	+0%	100/15	Summer					58.219	-0.413	0.000
1.004	15	15	Winter	30	+0%	30/15	Summer					58.100	0.045	0.000
1.005	16	15	Winter	30	+0%	30/15	Summer					58.035	0.024	0.000
1.006	17	15	Winter	30	+0%	30/15	Winter					57.966	0.002	0.000
1.007	18	15	Winter	30	+0%	100/15	Summer					57.875	-0.032	0.000
1.008	19	15	Winter	30	+0%	30/15	Summer					57.815	0.038	0.000
1.009	20	15	Winter	30	+0%	30/15	Winter					57.738	0.022	0.000
1.010	21	15	Winter	30	+0%	30/15	Summer					57.647	0.021	0.000
4.000	22	15	Winter	30	+0%	100/15	Summer					64.564	-0.043	0.000
4.001	23	15	Winter	30	+0%	100/15	Winter					62.593	-0.113	0.000
4.002	24	15	Winter	30	+0%	100/15	Summer					61.899	-0.081	0.000
4.003	25	15	Winter	30	+0%	100/15	Summer					61.017	-0.137	0.000
						©1	982-20	20 Innov	yze					

Brookbanks Consulting	Page 10	
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	SW Network 1	
Birmingham B37 7WY	Basin 1	Micro
Date 08/11/2022	Designed by Brookbanks	Drainage
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions	Diamage
Micro Drainage	Network 2020.1	

PN	US/MH Name	•	Overflow (l/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded
1.000	1	0.53			22.1	OK	
1.001	2	0.44			106.7	OK	
1.002	3	0.44			233.2	OK	
2.000	4	0.63			16.0	OK	
2.001	5	0.48			35.8	OK	
2.002	6	0.55			73.1	OK	
2.003	7	0.60			78.9	OK	
2.004	8	1.02			111.9	SURCHARGED	
2.005	9	1.79			153.2	SURCHARGED	
2.006	10	1.05			157.8	SURCHARGED	
3.000	11	0.72			35.7	OK	
2.007	12	0.33			220.1	OK	
2.008	13	2.25			239.6	SURCHARGED	
1.003	14	0.41			490.9	OK	
1.004	15	1.31			490.5	SURCHARGED	
1.005	16	1.22			488.6	SURCHARGED	
1.006	17	1.14			486.6	SURCHARGED	
1.007	18	0.82			496.0	OK	
1.008	19	1.13			489.0	SURCHARGED	
1.009	20	0.99			495.7	SURCHARGED	
1.010	21	1.10			490.7	SURCHARGED	
4.000	22	0.83			32.1	OK	
4.001	23	0.48			49.3	OK	
4.002	24	0.72			74.0	OK	
4.003	25	0.56			103.0	OK	

Brookbanks Consulting		Page 11
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	SW Network 1	
Birmingham B37 7WY	Basin 1	Micro
Date 08/11/2022	Designed by Brookbanks	Drainage
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions	Diamage
Micro Drainage	Network 2020.1	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	St	torm		Climate Change	First Surcha	• •	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)
4.004	26	15	Winter	30	+0%	100/15 s	ummer				60.490	-0.126	0.000
4.005	27	15	Winter	30	+0%	100/15 S	ummer				60.012	-0.131	0.000
4.006	28	15	Winter	30	+0응	100/15 S	ummer				59.433	-0.109	0.000
4.007	29	15	Winter	30	+0읭	30/15 S	ummer				59.111	0.125	0.000
4.008	30	15	Winter	30	+0응	100/15 S	ummer				58.467	-0.115	0.000
1.011	31	15	Winter	30	+0%	30/15 W	linter				57.577	0.007	0.000
1.012	32	15	Winter	30	+0%						56.779	-0.809	0.000
1.013	33	600	Winter	30	+0응						55.627	-0.673	0.000
1.014	34	600	Winter	30	+0%	2/180 W	linter				55.627	0.427	0.000

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
4.004	26	0.62			107.5	OK	
4.005	27	0.60			114.6	OK	
4.006	28	0.71			120.9	OK	
4.007	29	1.15			142.1	SURCHARGED	
4.008	30	0.69			153.9	OK	
1.011	31	1.61			572.7	SURCHARGED	
1.012	32	0.04			570.1	OK	
1.013	33	0.04			74.8	OK*	
1.014	34	0.05			6.4	SURCHARGED*	

		onsultin	g							Page	LΖ
150 Ki	nights	Court			North	naw Lane, Cu	ffley				
olihu	ll Par	kwav			SW Ne	etwork 1					
		B37 7WY			Basir	- 1					
	-									Mic	[[0]
	8/11/2					gned by Broo				D Ca	inaq
ile 2	20812	SW Net 1	rev C	feh201	3.MDX Check	ked by N.J.O	nions				in idg
icro	Draina	ge			Netwo	ork 2020.1					
<u>100</u>) year	Return	Period	Summar	<u>y of Critica</u>	<u>l Results by</u>	<u>Maxim</u>	um Level	l (Ran	<u>k 1) for S</u>	Storm
		Manhole	Hot S	Hot Start Start Lev	n Factor 1.000 t (mins) 0 vel (mm) 0		ctor * Inl	10m³/ha S et Coeffi	torage ecient	2.000 0.800	
					re $(1/s)$ 0.000	-	on per	Day (1/pc	r/aay)	0.000	
		-		-		ffline Control rage Structure				-	
					<u>Synthetic</u> F	Rainfall Detail	ls				
			Rainfal	l Model			FEH I	Data Type	Catchme	ent	
		FEH Ra	ainfall	Version		2	2013 Cv	(Summer)	0.	750	
			Site L	ocation	GB 530950 2016	500 TL 30950 01	1600 Cv	(Winter)	0.8	840	
						ng (mm) 300.0					
					1	imestep Fine	Inertia	Status C	FF		
			Pr	ofile(s)		Status ON		Summe	er and W	Jinter	
		Du		cofile(s) s) (mins)	15, 30, 6	50, 120, 180, 2		, 480, 60	0, 720,	960,	
			ration(s	s) (mins)	15, 30, 6 1440,			, 480, 60	00, 720, 8640,	960, 10080	
		Return Pe	ration(s eriod(s)	s) (mins)	15, 30, 6 1440,	50, 120, 180, 2		, 480, 60	00, 720, 8640, 2, 30	960,	
		Return Pe	ration(s eriod(s)) (mins) (years)	15, 30, 6 1440,	50, 120, 180, 2		, 480, 60	00, 720, 8640, 2, 30	960, 10080), 100	
		Return Pe	ration(s eriod(s) imate Ch	s) (mins) (years) hange (%)	15, 30, 6 1440,	50, 120, 180, 2 2160, 2880, 4	4320, 57	, 480, 60 60, 7200,	00, 720, 8640, 2, 30 0, Water	960, 10080), 100 0, 40 Surcharged	
PN	US/MH Name	Return Po Cl.	ration(s eriod(s) imate Ch Return	(years) (years) aange (%) Climate	15, 30, 6 1440, First (X)	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir	1320, 57 st (Z)	, 480, 60 60, 7200, Overflow	00, 720, 8640, 2, 30 0, Water Level	960, 10080), 100 0, 40 Surcharged Depth	Volume
PN	Name	Return Po Cl. Storm	ration(s) eriod(s) imate Ch Return Period	<pre>(years) (years) aange (%) Climate Change</pre>	15, 30, 6 1440,	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir	4320, 57	, 480, 60 60, 7200,	00, 720, 8640, 2, 30 0, Water Level (m)	960, 10080 0, 100 0, 40 Surcharged Depth (m)	Volum (m³)
1.000	Name 1	Return Po Cl. Storm 15 Winter	ration(s) eriod(s) imate Ch Return Period 100	<pre>(years) (years) aange (%) Climate Change +40%</pre>	15, 30, 6 1440, First (X)	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir	1320, 57 st (Z)	, 480, 60 60, 7200, Overflow	00, 720, 8640, 2, 30 0, Water Level (m) 64.824	960, 10080), 100 0, 40 Surcharged Depth (m) -0.031	Volum (m ³)
1.000 1.001	Name 1 2	Return Po Cl. Storm 15 Winter 15 Winter	ration(s) eriod(s) imate Ch Return Period 100 100	<pre>(years) (years) aange (%) Climate Change +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ove	1320, 57 st (Z)	, 480, 60 60, 7200, Overflow	00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095	Volum (m ³) 0.00
1.000 1.001 1.002	Name 1 2 3	Return Po Cl. Storm 15 Winter 15 Winter 15 Winter	ration(s) eriod(s) imate Ch Return Period 100 100 100	<pre>(years) (years) ange (%) Climate Change +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ove	1320, 57 st (Z)	, 480, 60 60, 7200, Overflow	00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004	Volum (m ³) 0.00 0.00
1.000 1.001 1.002 2.000	Name 1 2 3 4	Return Po Cl. Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ration(s) eriod(s) imate Ch Return Period 100 100 100	<pre>(years) (years) ange (%) Climate Change +40% +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer 100/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ove	1320, 57 st (Z)	, 480, 60 60, 7200, Overflow	00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723 63.214	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004 0.321	Volum (m ³) 0.00 0.00 0.00
1.000 1.001 1.002 2.000 2.001	Name 1 2 3 4 5	Return Po Cl. Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ration(s) eriod(s) imate Ch Return Period 100 100 100 100 100	<pre>(years) (years) ange (%) Climate Change +40% +40% +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer 100/15 Summer 100/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ove	1320, 57 st (Z)	, 480, 60 60, 7200, Overflow	00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723 63.214 62.846	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004 0.321 0.310	Volum (m ³) 0.00 0.00 0.00 0.00
1.000 1.001 1.002 2.000	Name 1 2 3 4 5 6	Return Po Cl. Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ration(s) eriod(s) imate Ch Return Period 100 100 100 100 100 100	<pre>c) (mins) (years) ange (%) Climate Change +40% +40% +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ove	1320, 57 :st (Z)	, 480, 60 60, 7200, Overflow	00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723 63.214 62.846 62.570	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004 0.321 0.310 0.533	Volum (m ³) 0.00 0.00 0.00 0.00 0.00
1.000 1.001 1.002 2.000 2.001 2.002	Name 1 2 3 4 5 6 7	Return Po Cl. Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ration(s) eriod(s) imate Ch Return Period 100 100 100 100 100	<pre>c) (mins) (years) ange (%) Climate Change +40% +40% +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer 100/15 Summer 100/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ov	1320, 57 :st (Z)	, 480, 60 60, 7200, Overflow	00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723 63.214 62.846 62.570 62.369	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004 0.321 0.310	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00
1.000 1.001 1.002 2.000 2.001 2.002 2.003	Name 1 2 3 4 5 6 7 8	Return Po Cl Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ration(s) eriod(s) imate Ch Return Period 100 100 100 100 100 100	<pre>(years) (years) (years) ange (%) Climate Change +40% +40% +40% +40% +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ov	1320, 57 :st (Z)	, 480, 60 60, 7200, Overflow	00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723 63.214 62.846 62.570	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004 0.321 0.310 0.533 0.619	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.000 1.001 1.002 2.000 2.001 2.002 2.003 2.004	Name 1 2 3 4 5 6 7 8 9	Return Po Cl. Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ration(s eriod(s) imate Ch Return Period 100 100 100 100 100 100 100	<pre>s) (mins) (years) lange (%) Climate Change +40% +40% +40% +40% +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ov	1320, 57 :st (Z)	, 480, 60 60, 7200, Overflow	00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723 63.214 62.846 62.570 62.369 62.011	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004 0.321 0.310 0.533 0.619 0.703	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
1.000 1.001 1.002 2.000 2.001 2.002 2.003 2.004 2.005	Name 1 2 3 4 5 6 7 8 9 10	Return Po Cl. Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ration(s eriod(s) imate Ch Return Period 100 100 100 100 100 100 100	<pre>(mins) (years) (years) ange (%) Climate Change +40% +40% +40% +40% +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 30/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ov	1320, 57 :st (Z)	, 480, 60 60, 7200, Overflow	00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723 63.214 62.846 62.570 62.369 62.011 61.751	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004 0.321 0.310 0.533 0.619 0.703 0.538	Volume (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
1.000 1.001 1.002 2.000 2.001 2.002 2.003 2.004 2.005 2.006	Name 1 2 3 4 5 6 7 8 9 10 11	Return Po Cl. Storm 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter 15 Winter	ration(s eriod(s) imate Ch Period 100 100 100 100 100 100 100 100 100	<pre>(mins) (years) (years) ange (%) Climate Change +40% +40% +40% +40% +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ov	1320, 57 :st (Z)	, 480, 60 60, 7200, Overflow	<pre>00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723 63.214 62.846 62.570 62.369 62.011 61.751 61.318</pre>	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004 0.321 0.310 0.533 0.619 0.703 0.538 0.148	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
1.000 1.001 1.002 2.000 2.001 2.002 2.003 2.004 2.005 2.006 3.000	Name 1 2 3 4 5 6 7 8 9 10 11 12	Return Po Cl. Storm 15 Winter 15 Winter	ration(s eriod(s) imate Cr Period 100 100 100 100 100 100 100 100 100 10	<pre>s) (mins) (years) ange (%) Climate Change +40% +40% +40% +40% +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ov	1320, 57 :st (Z)	, 480, 60 60, 7200, Overflow	<pre>00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723 63.214 62.846 62.570 62.369 62.011 61.751 61.318 65.277</pre>	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004 0.321 0.310 0.533 0.619 0.703 0.538 0.148 0.711	Volum
1.000 1.001 1.002 2.000 2.001 2.002 2.003 2.004 2.005 2.006 3.000 2.007 2.008 1.003	Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Return Po Cl. Storm 15 Winter 15 Winter	ration(s eriod(s) imate Ch Period 100 100 100 100 100 100 100 100 100 10	<pre>s) (mins) (years) ange (%) Climate Change +40% +40% +40% +40% +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 30/15 Summer 100/15 Summer 100/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ov	1320, 57 :st (Z)	, 480, 60 60, 7200, Overflow	<pre>00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723 63.214 62.846 62.570 62.369 62.011 61.751 61.318 65.277 60.884 60.123 59.690</pre>	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004 0.321 0.310 0.533 0.619 0.703 0.538 0.148 0.711 -0.209 1.453 1.058	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 1.001 1.002 2.000 2.001 2.002 2.003 2.004 2.005 2.006 3.000 2.007 2.008	Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Return Po Cl. Storm 15 Winter 15 Winter	ration(s eriod(s) imate Ch Period 100 100 100 100 100 100 100 100 100 10	<pre>s) (mins) (years) ange (%) Climate Change +40% +40% +40% +40% +40% +40% +40% +40%</pre>	15, 30, 6 1440, First (X) Surcharge 100/15 Summer 100/15 Summer 100/15 Summer 100/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer 30/15 Summer	50, 120, 180, 2 2160, 2880, 4 First (Y) Fir Flood Ov	1320, 57 :st (Z)	, 480, 60 60, 7200, Overflow	<pre>00, 720, 8640, 2, 30 0, Water Level (m) 64.824 61.958 59.723 63.214 62.846 62.570 62.369 62.011 61.751 61.318 65.277 60.884 60.123</pre>	960, 10080 0, 100 0, 40 Surcharged Depth (m) -0.031 -0.095 1.004 0.321 0.310 0.533 0.619 0.703 0.538 0.148 0.711 -0.209 1.453	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

59.111

58.908

58.689

58.452

58.198

65.611

62.760

62.407

61.527

1.148 0.000

1.001

0.913

0.735

0.572

1.004

0.054

0.427

0.373

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

+40% 30/15 Winter

+40% 100/15 Summer

+40% 30/15 Summer

+40% 30/15 Winter +40% 30/15 Summer

+40% 100/15 Summer

+40% 100/15 Winter

+40% 100/15 Summer

+40% 100/15 Summer

1.006

1.007

1.008

1.009

1.010

4.000

4.001

4.002

4.003

17 15 Winter 100

19 15 Winter

20 15 Winter

21 15 Winter

22 15 Winter

23 15 Winter

24 15 Winter

25 15 Winter

18 15 Winter 100

100

100

100

100

100

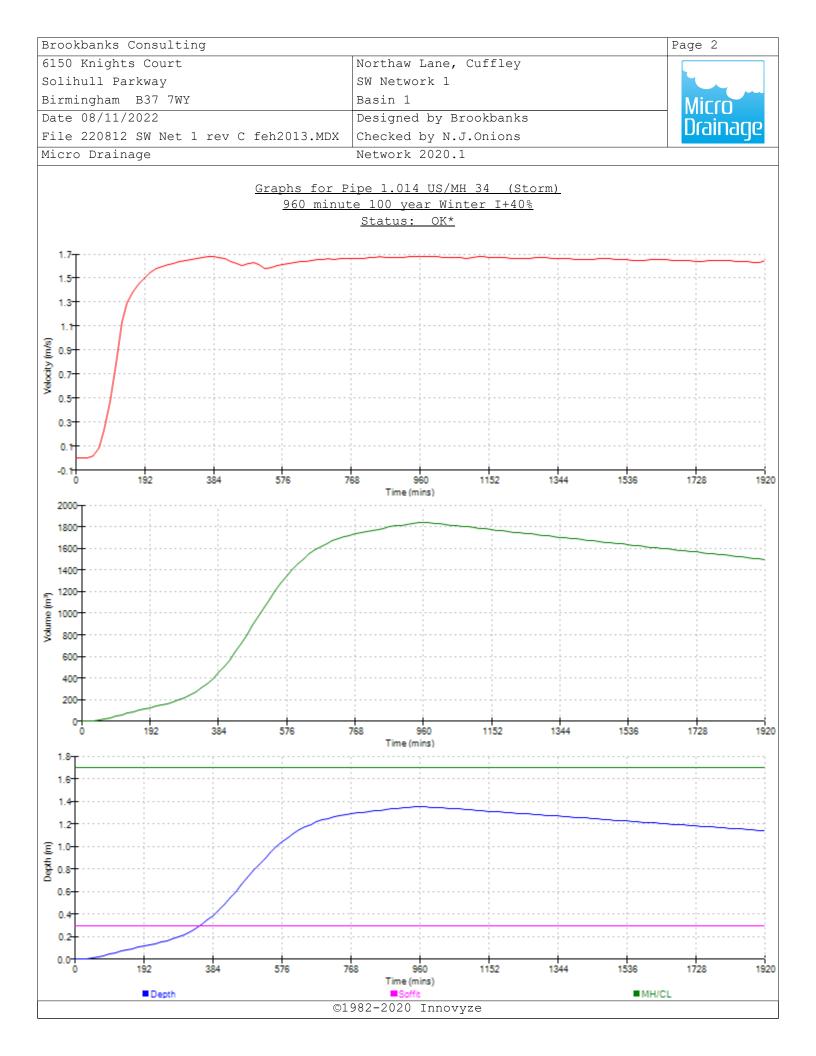
100

100

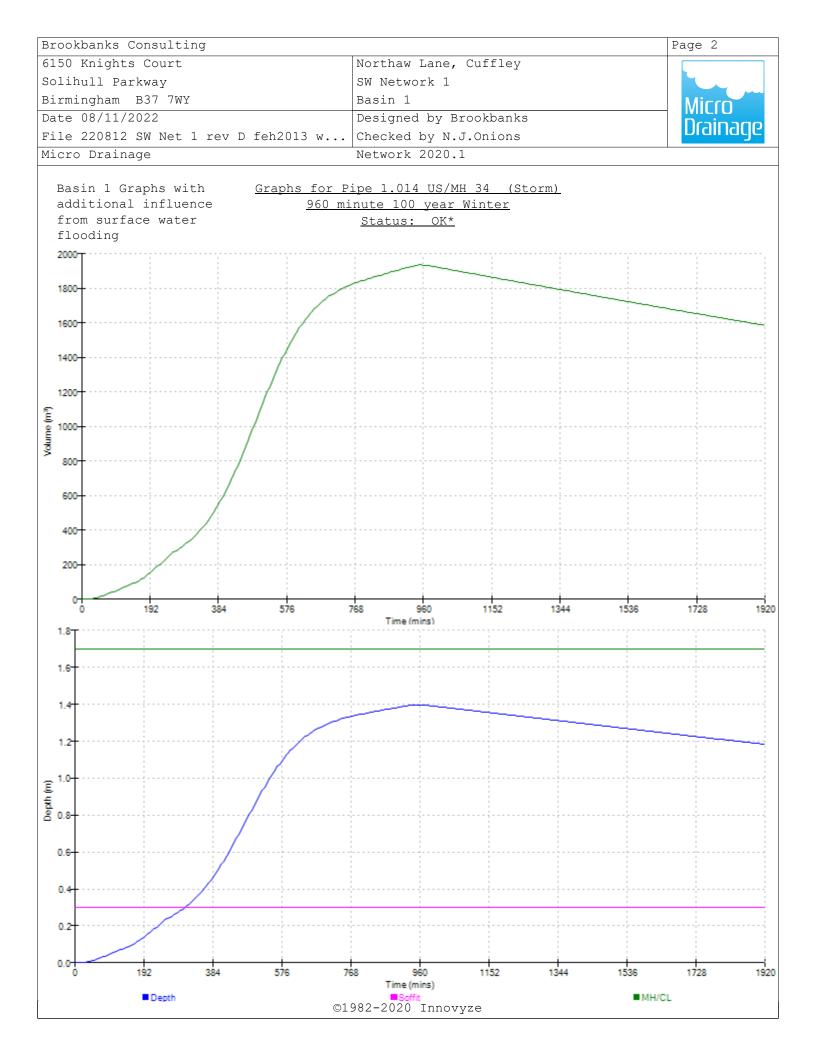
Brookbanks Consulting		Page 13
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	SW Network 1	
Birmingham B37 7WY	Basin 1	Mirro
Date 08/11/2022	Designed by Brookbanks	Drainage
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions	Diamage
Micro Drainage	Network 2020.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

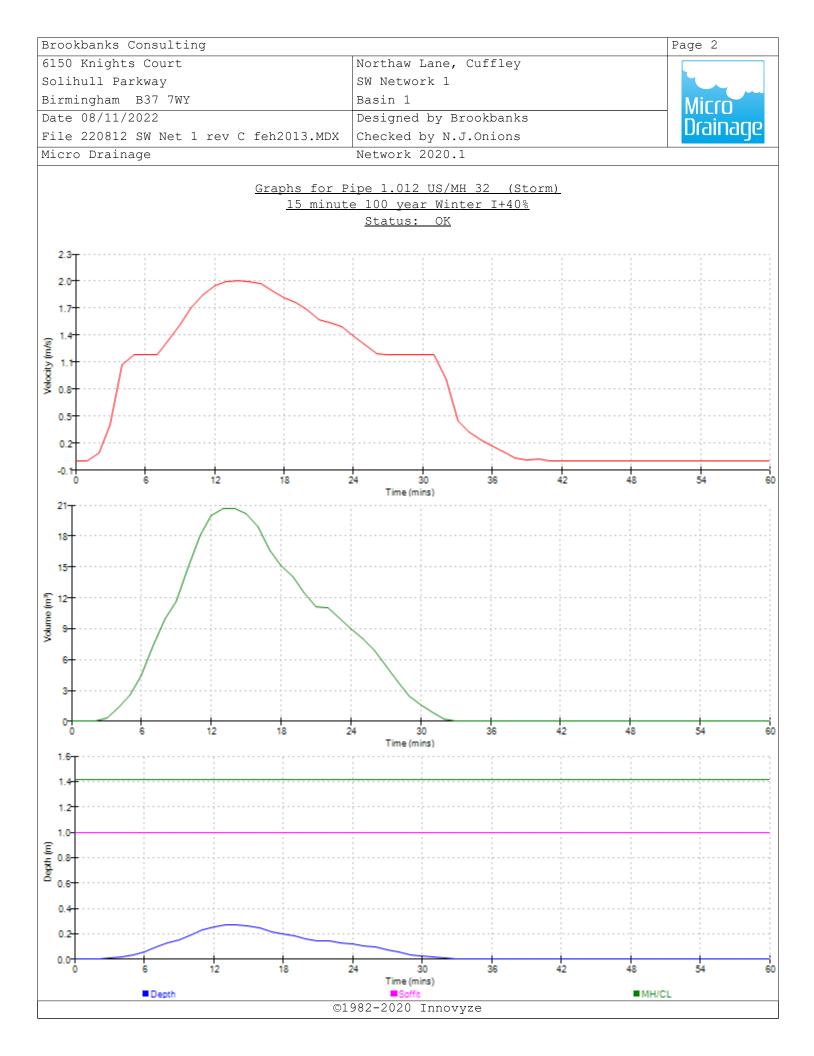
	•	•		Half Drain Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
1.000	1	0.97			40.3	OK	
1.001	2	0.80			193.9	OK	
1.002	3	0.72			380.6	FLOOD RISK	
2.000	4	1.05			26.7	SURCHARGED	
2.001	5	0.76			56.9	SURCHARGED	
2.002	6	0.83			111.8	SURCHARGED	
2.003	7	0.92			122.2	SURCHARGED	
2.004	8	1.64			180.3	SURCHARGED	
2.005	9	2.96			253.3	SURCHARGED	
2.006	10	1.77			265.6	SURCHARGED	
3.000	11	1.10			54.4	SURCHARGED	
2.007	12	0.56			371.3	OK	
2.008	13	3.55			377.1	SURCHARGED	
1.003	14	0.60			714.4	SURCHARGED	
1.004	15	1.91			713.4	SURCHARGED	
1.005	16	1.77			708.6	SURCHARGED	
1.006	17	1.71			730.7	SURCHARGED	
1.007	18	1.23			743.3	FLOOD RISK	
1.008	19	1.77			764.5	FLOOD RISK	
1.009	20	1.56			780.7	SURCHARGED	
1.010	21	1.77			793.5	SURCHARGED	
4.000	22	1.23			47.3	FLOOD RISK	
4.001	23	0.72			73.6	SURCHARGED	
4.002	24	1.08			110.7	SURCHARGED	
4.003	25	0.84			154.5	SURCHARGED	


Brookbanks Consulting		Page 14
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	SW Network 1	
Birmingham B37 7WY	Basin 1	Micro
Date 08/11/2022	Designed by Brookbanks	Drainage
File 220812 SW Net 1 rev C feh2013.MDX	Checked by N.J.Onions	Diamage
Micro Drainage	Network 2020.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm


PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)
4.004	26	15 Winter	100	+40%	100/15 Summer				61.185	0.569	0.000
4.005	27	15 Winter	100	+40%	100/15 Summer				60.814	0.671	0.000
4.006	28	15 Winter	100	+40%	100/15 Summer				60.383	0.841	0.000
4.007	29	15 Winter	100	+40%	30/15 Summer				59.821	0.835	0.000
4.008	30	15 Winter	100	+40%	100/15 Summer				58.801	0.219	0.000
1.011	31	15 Winter	100	+40%	30/15 Winter				57.937	0.367	0.000
1.012	32	15 Winter	100	+40%					56.856	-0.732	0.000
1.013	33	960 Winter	100	+40%					56.241	-0.059	0.000
1.014	34	960 Winter	100	+40%	2/180 Winter				56.241	1.041	0.000

PN	US/MH Name	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
4.004	26	0.89			153.6	SURCHARGED	
4.005	27	0.85			162.7	SURCHARGED	
4.006	28	1.01			171.3	SURCHARGED	
4.007	29	1.64			201.7	SURCHARGED	
4.008	30	0.96			213.6	SURCHARGED	
1.011	31	2.80			1000.5	SURCHARGED	
1.012	32	0.07			999.2	OK	
1.013	33	0.05			93.9	OK*	
1.014	34	0.05			6.4	SURCHARGED*	


5150 Knight Solihull Pa	Consulting	1								Page	1
Colibuli Do	s Court			Nor	thaw Lane	e, Cuff	fley				
SOLLINULL Pa	rkway			SW	Network 1						
Birmingham	B37 7WY			Bas	in 1					N/i	
ate 08/11/	2022			Des	igned by	Brookk	banks				
ile 220812	SW Net 1	rev C	feh2013.	.MDX Che	cked by N	I.J.Oni	lons				ainago
licro Drain	age			Net	work 2020	.1					
	Manhole H Foul Se per of Input umber of Onl	Areal Re Hot St Headloss wage per Hydrogr ine Cont Rainfall V Site Lo	eduction for the Start Coeff (G chectare caphs 0 crols 1 N Model ersion cation GE	Factor 1.00 (mins) 1 (mm) lobal) 0.50 (1/s) 0.00 Number of umber of St	Ation Crite 00 Addit: 0 MM 0 00 Flow per 00 Offline Co corage Stru Rainfall 1600 TL 30	eria ional F1 ADD Fact r Persor ontrols actures <u>Details</u> F 20 950 016	low - % tor * 1 Inle n per I 0 NumM 1 NumM EH D 13 Cv 00 Cv	; of Tot .0m³/ha et Coeff Day (l/p Der of T Der of R ata Type (Summer)	al Flow Storage iecient er/day) ime/Are eal Tim e Catchm 0. 0.	0.000 2.000 0.800 0.000 a Diagrams e Controls	
	Return Pe	ation(s)	-	נס 15, 30,	Timestep 25 Status 60, 120, 0, 2160, 2	ON 180, 24	0, 360	Sumn , 480, 6	er and 00, 720 , 8640, 2, 3	, 960,	
US/MH PN Name				First (X) Surcharge					Level	Surcharged Depth (m)	Volume
1.014 34	960 Winter	100	+40%	2/180 Winte	er				56.253	1.053	0.00
			m ml /		Half Drain	-			T 1		
		US/M		Overflow (1/s)	Time (mins)	Flow (l/s)	Stat		Level ceeded		
	I	PN Name	-								
		?N Nam o 014 3	-			6.4	SURCHAI	RGED*			

Brookbanks Consulting			Page 1
6150 Knights Court	Northaw Lane	, Cuffley	
Solihull Parkway	SW Network 1		
Birmingham B37 7WY	Basin 1		Micro
Date 08/11/2022	Designed by 1	Brookbanks	
File 220812 SW Net 1 rev D feh20	13 w Checked by N	.J.Onions	Drainage
Aicro Drainage	Network 2020	.1	
	narged Flooded pth Volume Flow / Ove		ipe low
PN Name (m) (1	m) (m³) Cap. (1/s) (mins) (1	L/s) Status
1.014 34 56.298	1.098 0.000 0.05		6.5 SURCHARGED*

Brookbanks Consulting				I	Page 1	
6150 Knights Court	Northaw Lane	e, Cuffley				
Solihull Parkway	SW Network	L				
Birmingham B37 7WY	Basin 1				Micro	
Date 08/11/2022	Designed by	Brookbanks				
File 220812 SW Net 1 rev C feh2013.M	IDX Checked by 1	I.J.Onions			Drain	dye
Micro Drainage	Network 2020	0.1				
Hot Start (m Hot Start Level Manhole Headloss Coeff (Glo Foul Sewage per hectare (Number of Input Hydrographs 0 N Number of Online Controls 1 Num Rainfall Model FEH Rainfall Version Site Location GB 1 Margin for Flood	Simulation Crite actor 1.000 Addit ains) 0 M (mm) 0 (bal) 0.500 Flow pe (1/s) 0.000	eria ional Flow - % of ADD Factor * 10m ³ Inlet C r Person per Day ontrols O Number actures 1 Number <u>Details</u> FEH Data 2013 Cv (Su 950 01600 Cv (Wi 300.0 DVD Sta Fine Inertia Sta ON	E Total Flo Coeffiecien (l/per/day of Time/Ar of Real Ti Type Catc mmer) nter) atus OFF atus OFF	<pre>w 0.000 e 2.000 t 0.800) 0.000 ea Diagr me Contr hment 0.750 0.840 d Winter</pre>		
Return Period(s) (years) Climate Change (%)		880, 4320, 5760,	7200, 8640), 10080 30, 100), 0, 40		
US/MH Return Climate First PN Name Storm Period Change Surch				Depth	Volume	
1.012 32 15 Winter 100 +40%			56.856	-0.732	0.000	0.0
T O TO MITHOUT TOO 1100						
1.012 32 13 WINCOL 100 1100						
US/MH Ov			evel eeded			
US/MH Ov	verflow Time (l/s) (mins)	Flow Le				
US/MH Ov PN Name	verflow Time (l/s) (mins)	Flow Le (1/s) Status Exce				

Brookbanks Consulting		Page 1
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	Basin 2	
Birmingham B37 7WY	Storage Calculations	Micro
Date 08/11/2022	Designed by Brookbanks	Drainage
File Basin 2 revC (FEH2013).SRCX	Checked by N.J.Onions	Diamage
Micro Drainage	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
15	min	Summer	57.707	0.307	1.7	20.9	O K
30	min	Summer	57.765	0.365	1.7	26.3	ΟK
60	min	Summer	57.807	0.407	1.7	30.7	ΟK
120	min	Summer	57.853	0.453	1.7	35.8	ΟK
180	min	Summer	57.864	0.464	1.7	37.0	O K
240	min	Summer	57.862	0.462	1.7	36.7	O K
360	min	Summer	57.847	0.447	1.7	35.1	O K
480	min	Summer	57.828	0.428	1.7	32.9	O K
600	min	Summer	57.806	0.406	1.7	30.5	O K
720	min	Summer	57.781	0.381	1.7	27.9	O K
960	min	Summer	57.731	0.331	1.7	23.0	O K
1440	min	Summer	57.643	0.243	1.7	15.4	O K
2160	min	Summer	57.546	0.146	1.7	8.3	O K
2880	min	Summer	57.496	0.096	1.6	5.2	O K
4320	min	Summer	57.468	0.068	1.2	3.5	O K
5760	min	Summer	57.455	0.055	1.0	2.8	ΟK
7200	min	Summer	57.449	0.049	0.8	2.5	ΟK
8640	min	Summer	57.445	0.045	0.7	2.3	ΟK
10080	min	Summer	57.442	0.042	0.6	2.1	ΟK
15	min	Winter	57.736	0.336	1.7	23.5	ΟK
30	min	Winter	57.799	0.399	1.7	29.8	ΟK
60	min	Winter	57.845	0.445	1.7	34.9	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			151.200	0.0	22.3	21
		Summer		0.0	28.8	36
60	min	Summer	59.640	0.0	35.3	64
120	min	Summer	38.010	0.0	45.0	122
180	min	Summer	28.627	0.0	50.8	180
240	min	Summer	23.170	0.0	54.9	210
360	min	Summer	16.917	0.0	60.1	274
480	min	Summer	13.383	0.0	63.4	340
600	min	Summer	11.099	0.0	65.7	408
720	min	Summer	9.497	0.0	67.5	474
960	min	Summer	7.387	0.0	70.0	598
1440	min	Summer	5.157	0.0	73.3	840
2160	min	Summer	3.587	0.0	76.5	1172
2880	min	Summer	2.777	0.0	78.9	1500
4320	min	Summer	1.949	0.0	83.1	2204
5760	min	Summer	1.528	0.0	86.9	2936
7200	min	Summer	1.277	0.0	90.8	3672
8640	min	Summer	1.110	0.0	94.6	4360
10080	min	Summer	0.991	0.0	98.5	5104
15	min	Winter	151.200	0.0	25.0	21
30	min	Winter	97.440	0.0	32.3	36
60	min	Winter	59.640	0.0	39.5	64

Brookbanks Consulting		Page 2
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	Basin 2	
Birmingham B37 7WY	Storage Calculations	Micro
Date 08/11/2022	Designed by Brookbanks	Drainage
File Basin 2 revC (FEH2013).SRCX	Checked by N.J.Onions	Diamage
Micro Drainage	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (l/s)	Max Volume (m³)	Status
120	min	Winter	57.898	0.498	1.7	41.0	ΟK
180	min	Winter	57.912	0.512	1.7	42.8	ОК
240	min	Winter	57.912	0.512	1.7	42.7	ОК
360	min	Winter	57.893	0.493	1.7	40.5	ОК
480	min	Winter	57.869	0.469	1.7	37.6	ОК
600	min	Winter	57.842	0.442	1.7	34.4	ОК
720	min	Winter	57.811	0.411	1.7	31.0	ОК
960	min	Winter	57.737	0.337	1.7	23.6	ОК
1440	min	Winter	57.606	0.206	1.7	12.5	ОК
2160	min	Winter	57.494	0.094	1.6	5.0	ОК
2880	min	Winter	57.470	0.070	1.3	3.7	ОК
4320	min	Winter	57.452	0.052	0.9	2.7	ОК
5760	min	Winter	57.445	0.045	0.7	2.3	ОК
7200	min	Winter	57.440	0.040	0.6	2.0	ОК
8640	min	Winter	57.437	0.037	0.5	1.8	ОК
10080	min	Winter	57.435	0.035	0.5	1.7	ΟK

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Winter	38.010	0.0	50.4	120
180	min	Winter	28.627	0.0	57.0	176
240	min	Winter	23.170	0.0	61.5	230
360	min	Winter	16.917	0.0	67.3	288
480	min	Winter	13.383	0.0	71.0	366
600	min	Winter	11.099	0.0	73.6	442
720	min	Winter	9.497	0.0	75.6	518
960	min	Winter	7.387	0.0	78.4	646
1440	min	Winter	5.157	0.0	82.1	872
2160	min	Winter	3.587	0.0	85.7	1152
2880	min	Winter	2.777	0.0	88.4	1476
4320	min	Winter	1.949	0.0	93.1	2204
5760	min	Winter	1.528	0.0	97.3	2912
7200	min	Winter	1.277	0.0	101.7	3672
8640	min	Winter	1.110	0.0	106.0	4328
10080	min	Winter	0.991	0.0	110.4	5120

Brookbanks Consulting		Page 3
6150 Knights Court	Northaw Lane, Cuffley	
Solihull Parkway	Basin 2	
Birmingham B37 7WY	Storage Calculations	Micro
Date 08/11/2022	Designed by Brookbanks	Drainage
File Basin 2 revC (FEH2013).SRCX	Checked by N.J.Onions	Diginarie
Micro Drainage	Source Control 2020.1	

<u>Rainfall Details</u>

Rainfall Model		FEH	Winter Storms Yes
Return Period (years)		100	Cv (Summer) 0.750
FEH Rainfall Version		2013	Cv (Winter) 0.840
Site Location	GB 530950 201600 TL	30950 01600	Shortest Storm (mins) 15
Data Type		Catchment	Longest Storm (mins) 10080
Summer Storms		Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.079

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.040	4	8	0.039

150 Knights Court						· · · · · · · · · · · · · · · · · · ·	Page 4	
150 MILYILS COULC		Northa	w Lane, Cu	uffley				
olihull Parkway		Basin	2					
irmingham B37 7WY		Storag	e Calculat	cions			Micr	
ate 08/11/2022		Design	ed by Broc	okbanks				
ile Basin 2 revC (FEH	2013).SRCX	Checke	d by N.J.C	Dnions			Drair	Idyl
icro Drainage		Source	Control 2	2020.1				
		Model	<u>Details</u>					
	Storage	is Online Co	over Level	(m) 58.300				
		Tank or Por	nd Structu	re				
		Invert Leve	l (m) 57.40	0				
	Depth	(m) Area (m²)	Depth (m)	Area (m²)				
	0.0	48.0	0.900	208.0				
	<u>Hydro-E</u>	Brake® Optin	num Outflo	<u>w Control</u>				
		Unit Refere	ence MD-SHE-	-0068-1700-060	0-1700			
		Design Head			0.600			
	D	esign Flow ()) Flush-B		Cala	1.7 ulated			
				lse upstream s				
		Applicat		-	urface			
		Sump Availa	able		Yes			
		Diameter	. ,		68			
N.	linimum Qutlat Di	Invert Level	()		57.400 100			
M	Iinimum Outlet Pi Suggested Manhc	-			1200			
Control Poir	nts Head (n	n) Flow (l/s)	Contr	col Points	Head	(m) Flow	(1/s)	
Design Point (Cal	culated) 0.60	00 1.7		Kick-Flo	b® 0.	393	1.4	
1.1	ush-Flo™ 0.17	78 17	Maan Dlass	over Head Rang				

6.500

3.8

5.1

9.500

6.2

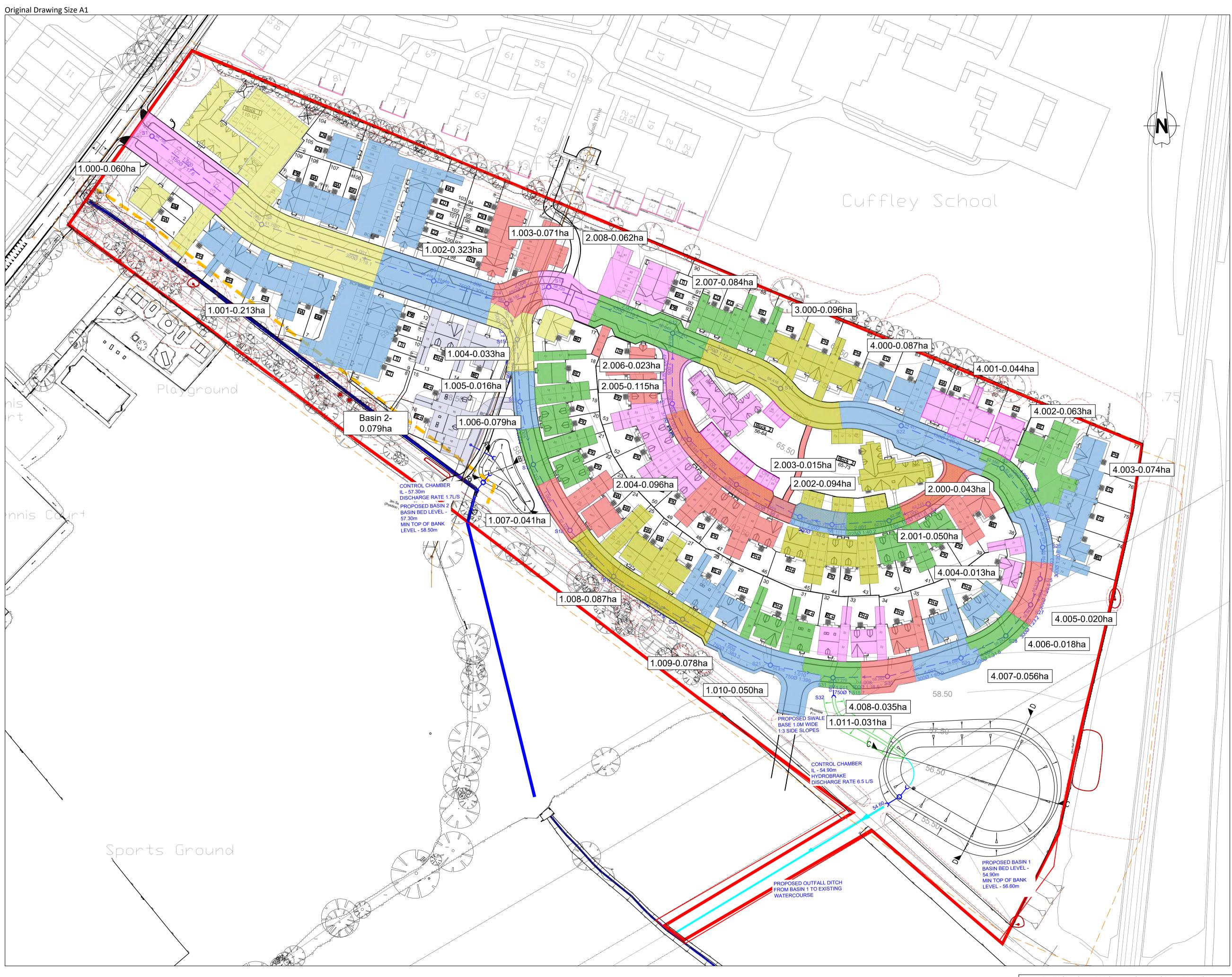
0.600


1.7

1.800

2.8

3.500


©1982-2020 Innovyze

10929-Cuffley Impermeable Areas

PN	USMH	ROAD	PRIVATE	PRIVATE +10% UC	TOTAL
1.000	1	0.060	0.000	0.000	0.060
1.001	2	0.084	0.117	0.129	0.213
1.002	3	0.060	0.239	0.263	0.323
2.000	4	0.021	0.020	0.022	0.043
2.001	5	0.015	0.032	0.035	0.050
2.002	6	0.000	0.085	0.094	0.094
2.003	7	0.015	0.000	0.000	0.015
2.004	8	0.049	0.043	0.047	0.096
2.005	9	0.017	0.089	0.098	0.115
2.006	10	0.000	0.021	0.023	0.023
3.000	11	0.054	0.038	0.042	0.096
2.007	12	0.044	0.036	0.040	0.084
2.008	13	0.025	0.034	0.037	0.062
1.003	14	0.020	0.046	0.051	0.071
1.004	15	0.023	0.009	0.010	0.033
1.005	16	0.016	0.000	0.000	0.016
1.006	17	0.015	0.058	0.064	0.079
1.007	18	0.017	0.022	0.024	0.041
1.008	19	0.042	0.041	0.045	0.087
1.009	20	0.047	0.028	0.031	0.078
1.010	21	0.018	0.029	0.032	0.050
4.000	22	0.052	0.032	0.035	0.087
4.001	23	0.000	0.040	0.044	0.044
4.002	24	0.024	0.035	0.039	0.063
4.003	25	0.020	0.049	0.054	0.074
4.004	26	0.000	0.012	0.013	0.013
4.005	27	0.020	0.000	0.000	0.020
4.006	28	0.018	0.000	0.000	0.018
4.007	29	0.024	0.029	0.032	0.056
4.008	30	0.020	0.014	0.015	0.035
1.011	31	0.000	0.028	0.031	0.031
1.012	32			0.000	0.000
1.013	33			0.000	0.000
1.014	34			0.000	0.000
BASIN 1		0.820	1.226		2.169
BASIN 2		0.000	0.072	0.079	0.079
TOTAL		0.820	1.298		2.248

Appendix D – Additional Drawings

UNTIL TECHNICAL APPROVAL HAS BEEN OBTAINED FROM THE RELEVANT LOCAL AUTHORITIES, IT SHOULD BE UNDERSTOOD THAT ALL DRAWINGS ARE ISSUED AS PRELIMINARY AND NOT FOR CONSTRUCTION. SHOULD THE CONTRACTOR COMMENCE SITE WORK PRIOR TO APPROVAL BEING GIVEN, IT IS ENTIRELY AT HIS OWN RISK.

NOTES:

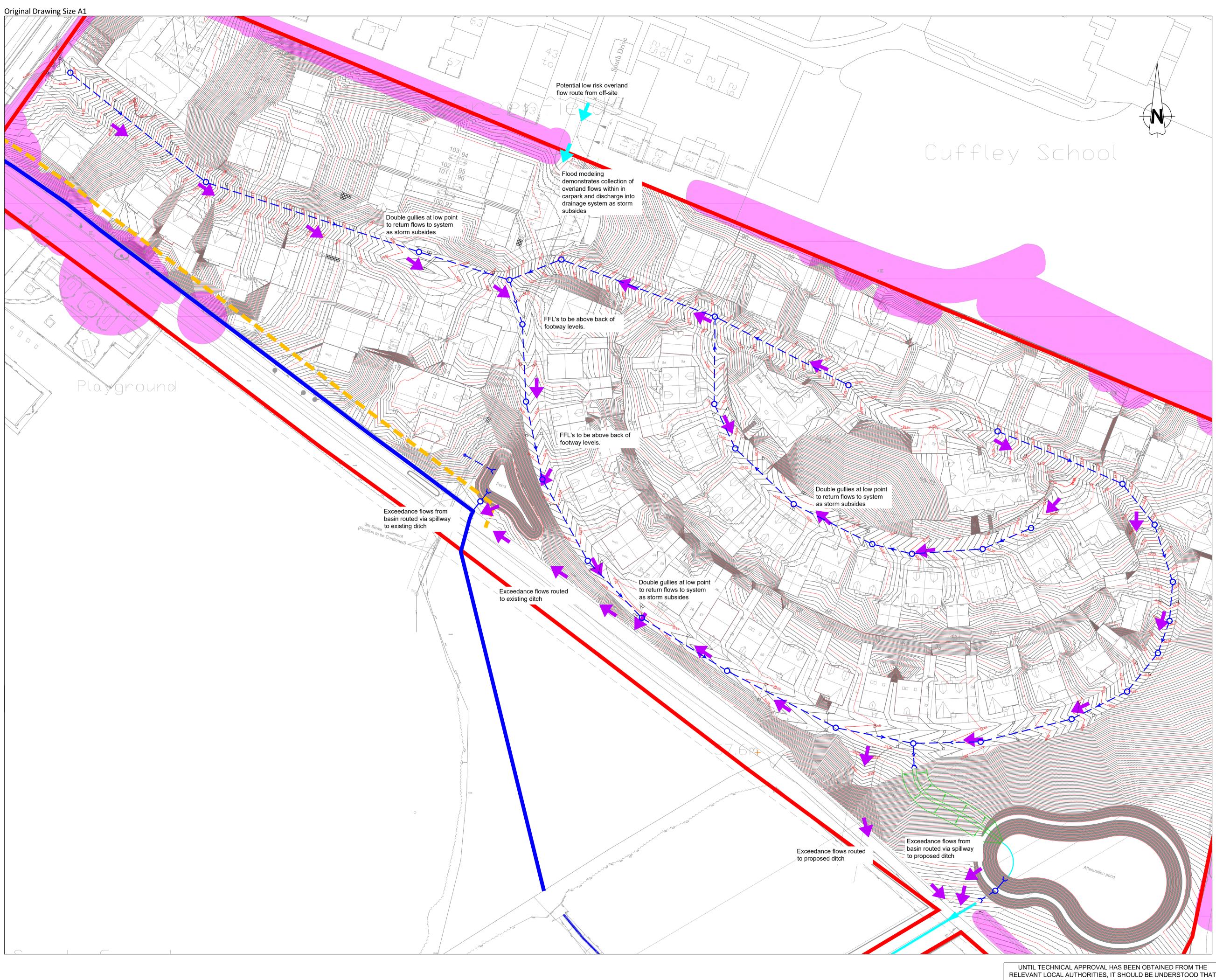
- 1. Do not scale from this drawing.
- 2. All dimensions are in metres unless otherwise stated.
- 3. Brookbanks Consulting Ltd has prepared this drawing for the sole use of the client. The drawing may not be relied upon by any other party without the express agreement of the client and Brookbanks Consulting Ltd. Where any data supplied by the client or from other sources has been used, it has been assumed that the information is correct. No responsibility can be accepted by Brookbanks Consulting Ltd for inaccuracies in the data supplied by any other party. The drawing has been produced based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.
- No part of this drawing may be copied or duplicated without the express permission of Brookbanks Consulting Ltd.
- 5. Impermeable areas shown include a 10% allowance for urban creep.

KEY:

	Site Boundary
	Proposed surface water sewe
	Existing Watercourse
	Watercourse 5m offset
	Potential Culvert
	SuDS Basin 1 in 3 slopes
(ANNARAN MANARANA)	Proposed Outfall Route
HH	

C PN1.002 & 1.003 amended NO NO TM 12.01.23 B Areas updated to include urban creep allowance NO NO TM 08.11.22 A Updated to suit the latest housing layout MA NO TM 12.08.22 HG DC TM 16.06.22 First Issue

BROOKBANKS


6150 Knights Court, Solihull Parkway, Birmingham, B37 7WY T +44 (0)203 958 5400 E mail@brookbanks.com W brookbanks.com

Land at Cuffley Hertfordshire

Surface Water Catchment Plan

Status		Status Date
Approval		June 2022
Drawn	Checked	Date
HG	DC	16.06.22
Scale	Number	Rev
N.T.S.	10929-500-003	С

ALL DRAWINGS ARE ISSUED AS PRELIMINARY AND NOT FOR CONSTRUCTION. SHOULD THE CONTRACTOR COMMENCE SITE WORK PRIOR TO APPROVAL BEING GIVEN, IT IS ENTIRELY AT HIS OWN RISK.

NOTES:

- 1. Do not scale from this drawing.
- 2. All dimensions are in metres unless otherwise stated.
- 3. Brookbanks Consulting Ltd has prepared this drawing for the sole use of the client. The drawing may not be relied upon by any other party without the express agreement of the client and Brookbanks Consulting Ltd. Where any data supplied by the client or from other sources has been used, it has been assumed that the information is correct. No responsibility can be accepted by Brookbanks Consulting Ltd for inaccuracies in the data supplied by any other party. The drawing has been produced based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.
- 4. No part of this drawing may be copied or duplicated without the express permission of Brookbanks Consulting Ltd.

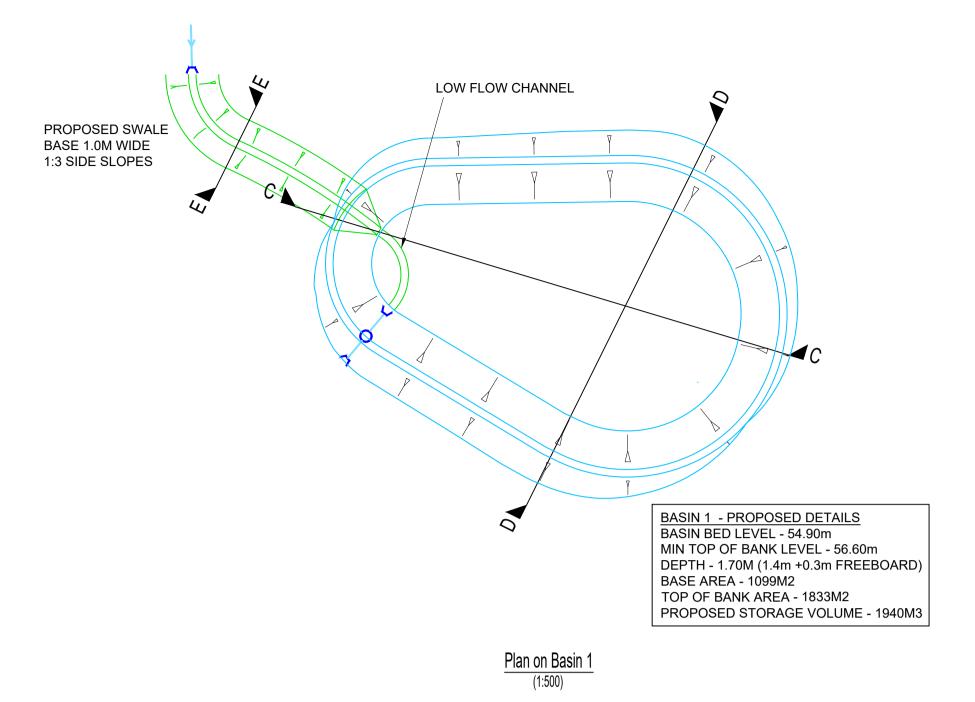
Proposed Swale

Existing Overland Flow Route from off-site to be collected in drainage system

Exceedance Flows Major Contour (0.25m) — Minor Contour (0.05m)

Drainage and Basins amended First Issue	HG HG	DC DC	RM TM	17.10.22 16.06.22	
Amended to comply with LLFA comments	NO	DC	TM	08/11/22	
Proposed contours added. Exceedance route notes added.	NO	ΤM	ΤM	12.01.23	
Overland flow route amended	NO	ΤM	ΤM	18.04.23	

BROOKBANKS

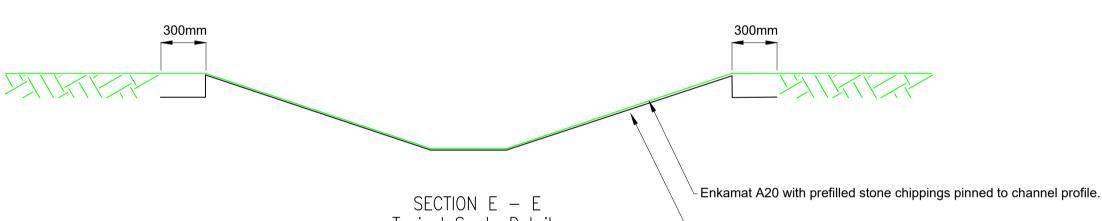

6150 Knights Court, Solihull Parkway, Birmingham, B37 7WY T +44 (0)203 958 5400 E mail@brookbanks.com W brookbanks.com

Land at Cuffley Hertfordshire

Exceedance Plan Drainage Strategy

Status		Status Date
Approval		June 2022
Drawn	Checked	Date
HG	DC	16.06.22
Scale	Number	Rev
N.T.S.	10929-500-004	D

B


BASIN 2 - PROPOSED DETAILS BASIN BED LEVEL - 57.40m MIN TOP OF BANK LEVEL - 58.30m DEPTH - 0.9M (0.6m +0.3m FREEBOARD) BASE AREA - 48M2 TOP OF BANK AREA - 208M2 PROPOSED STORAGE VOLUME - 42.8M3

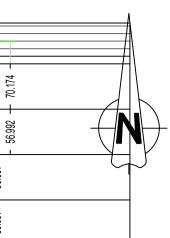
Plan on Basin 2 (1:500)

								ш Ш	
					Max			300mm	
					W.L				
					= 56.3m				~~
Datum: 54.000M AOD 55.000	· · · · · · · · · · · · · · · · · · ·								
EXISTING CHAINAGE (m)	00000	5.700	20.550	29.901	35.539	50.682	53.892		
	l								
EXISTING LEVELS (m)	56.674 -	56.643 56.562 -	56.533	56.417	56.478	56.605	- 629.95		
	ll	 				<u> </u>	1		<u> </u>
Final Surface (m)		56.645 56.645 55.896 55.334 54.900	54.900 54.900 54.900 54.900	56.257	54.900			54.900 54.900 55.552 56.201	56.957
		- 	-+++						\leftarrow
EARTHWORK LEVELS (m)		56.645 56.600 55.896 54.900 54.900	XXXX XXX XX 99900 99000 99000 9000000	8.8.8.8.8.8.8 8.8.8.8 8.8.8 8.8 8.8 8 8.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			54.900 55.552 55.552 56.201	56.957
		В	asin 1 - Sectio	n C-C					
		_	(1:500)						

						Freeboard	
00,000					Max	300mm	
60.000					W.L		
Datum: 54.000M AOD 55.000					= <u>56.3m</u>		
EXISTING CHAINAGE (m)	- 00000	- 5.568 - - 7.679 -	- 13.807 -		- 31.971 -	- 43.016 -	- 58.525 -
EXISTING LEVELS (m)	- 55.278	- 55.411 - - 55.473 -	- 55.745 -		- 56.697 +	- 57.280 -	- 58.045 -
Final Surface (m)		- 55.357 - 56.600 - 56.600 -	< 54.900 >	- 54.900 -	- 54.900 -	- 54.900 - 55.494 - 56.274 - 56.600 - 57.085 - 57.085	
EARTHWORK LEVELS (m)		- 55.357 - - 56.600 - 56.600	- 54.900	- 54.900	- 54.900 -	- 54.900 - 55.494 - 56.200 - 56.204 - 56.204 - 56.204 - 57.085 - 5	

Basin 1 - Section D-D (1:500)

Typical Swale Detail (1:50)


└ Grass swale depth varies but generally 1.0m deep, 1.0m wide base with 1:3 side slopes. Opportunities to vary base width and side slopes depends on location and topography.

	Leeboard Max 000	
22.222	W.L	
60.000	= 58.0m	
Datum: 56.000M AOD		
EXISTING CHAINAGE (m)	232 232 232 232 232 232 232 232 232 232	
	535 35124475 000 535 531247475 000	
	58 5228 884 54475 4	
EXISTING LEVELS (m)	888 8888888888888888888888888888888888	
EXISTING GROUND BOUNDARY.dwg (m)	59.016	
	പ പ്പ പ്പ	
See		

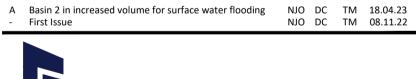
Basin 2	- Section A-A
	(1:500)

	Max Max
Datum: 56.000M AOD 60.000	W.L = 58.0m
EXISTING CHAINAGE (m)	- 0.716 - 1.813 - 4.041 - 16.698
EXISTING LEVELS (m)	57.774 57.874 58.204 58.204
EARTHWORK LEVELS (m)	58.300 58.300 58.307 58.307 58.300 58.300 58.300 58.300 58.300 58.300 58.300 58.300 58.300 58.300 58.300 58.300 58.300 58.300 58.300 58.300 59.55 59.55 50 50 50 50 50 50 50 50 50 50 50 50 5

Basin 2 - Section B-B (1:500)

NOTES:

- 1. Do not scale from this drawing.
- 2. All dimensions are in metres unless otherwise stated.
- 3. Brookbanks Consulting Ltd has prepared this drawing for the sole use of the client. The drawing may not be relied upon by any other party without the express agreement of the client and Brookbanks Consulting Ltd. Where any data supplied by the client or from other sources has been used, it has been assumed that the information is correct. No responsibility can be accepted by Brookbanks Consulting Ltd for inaccuracies in the data supplied by any other party. The drawing has been produced based on the assumption that all relevant information has been supplied by those bodies from whom it was requested.
- 4. No part of this drawing may be copied or duplicated without the express permission of Brookbanks Consulting Ltd.


KEY:

Existing Ground Levels Proposed Basin Levels

Max Water Levels

6150 Knights Court, Solihull Parkway, Birmingham, B37 7WY T +44 (0)203 958 5400 E mail@brookbanks.com W brookbanks.com

Land at Cuffley Hertfordshire

Basins 1 & 2 and Swale **Cross-Sections**

Status		Status Date
Approval		Nov 2022
Drawn	Checked	Date
HG	DC	08.11.22
Scale	Number	Rev
N.T.S.	10929-500-005	А

UNTIL TECHNICAL APPROVAL HAS BEEN OBTAINED FROM THE RELEVANT LOCAL AUTHORITIES, IT SHOULD BE UNDERSTOOD THAT ALL DRAWINGS ARE ISSUED AS PRELIMINARY AND NOT FOR CONSTRUCTION. SHOULD THE CONTRACTOR COMMENCE SITE WORK PRIOR TO APPROVAL BEING GIVEN, IT IS ENTIRELY AT HIS OWN RISK.

Head Office Address

6150 Knights Court, Solihull Parkway, Birmingham Business Park, Birmingham. B37 7WY

T +44(0)121 329 4330 mail@brookbanks.com brookbanks.com