

Phase I & II Geo-Environmental Assessment

North Campus East Car Park College Way Welwyn Garden City Hertfordshire AL8 6UN

Prepared for:

Bellway Homes Limited (North London) Bellway House Bury Street Ruislip Middlesex HA4 7SD

EPS Project Reference: U

UK21.5579

Date Issued:

19th November 2021

Report Status:

NORTH CAMPUS EAST CAR PARK, WELWYN GARDEN CITY

NON-TECHNICAL CLIENT SUMMARY

This report presents the findings of a combined Phase I Desk Study and Phase II Geo-Environmental assessment undertaken to determine ground conditions, establish if there are any geo-environmental risks associated with the site and its proposed development and to provide a geotechnical appraisal. Pertinent findings and conclusions may be summarised as follows:

- The site is currently occupied by North Campus East Car Park with current plans understood to be for redevelopment of several new multi-storey buildings that include parking facilities on the ground floor with residential apartments above.
- Historically there have been some railway lines running through the study area and adjacent to the east, with some potential ground workings also noted in northern and central sections (anticipated to be associated with the development of this infrastructure). Some local areas of infilled land and significant commercial land uses (such as car workshops and an obsolete fuel station) have also been noted nearby, all of which present a potential risk to soil and groundwater beneath the site as well as future site users.
- To assess the nature/ quality of soils beneath the site, 15 boreholes were formed to a maximum depth of 25.0m below existing surface level. Ground conditions comprised a variable thickness of made ground overlying granular and clay based superficial Lowestoft Formation to around 10.0m, with chalk bedrock below. Groundwater was not encountered during the works.
- No clear evidence of contamination was noted during the field works and laboratory analysis found shallow soils across the site to be chemically suitable for their proposed end use. However, given the nature of the infill, it is recommended that a minimum of **100mm** of certified clean topsoil material is placed across all proposed soft landscaped areas to provide an adequate growing medium. No further works or risk assessment has been recommended with regards to contamination, providing that some standard health and safety precautions are followed during the redevelopment process.
- A gas monitoring programme has been completed and the data / risk assessment have determined that no gas protection measures are considered necessary for new buildings.

ENGINEERING SUMMARY

- The ground conditions across the site are considered suitable for conventional spread foundations with allowable bearing capacities ranging from 85kN/m^2 to 170kN/m^2 (depending on the nature and depth of the footings). The shallow soils will be subject to volume change, and foundation design should be carried out with all due consideration of the species and proximity of trees.
- Given the anticipated loads associated with the proposed structures, as well as the local presence of shallow clay soils (which will be subject to volume change) and a significant thickness of made ground in certain areas, a deeper foundation solution such as piles may well offer the most appropriate solution for the proposed development.
- Suspended ground floor slabs are recommended for any new buildings.
- A design sulphate class of DS-1 and an aggressive chemical environment for concrete (ACEC) of AC-1s is considered suitable for buried concrete in direct contact with the natural soils beneath the site.

The above points represent a simplified summary of the findings of this assessment and **must not** form the basis for key decisions for the proposed development. A thorough review of the details is contained within the following report, or alternatively get in touch and we'll talk you through it.

Project Reference:	UK21.5579	
Title:	Phase I & II Geo–Environmental Assessment North Campus East Car Park, Welwyn Garden City	
Client:	Bellway Homes Limited (North London)	
Date:	19 th November 2021	
	7B Caxton House	T: 01954 710666
FPS Contact Details:	Broad Street	F: 01954 710677
Li 5 Contact Details.	Cambourne	E: info@epstrategies.co.uk
	Cambridge CB23 6JN	W: www.epstrategies.co.uk
Status:	Issue 1	

Author:	Reviewed:	Authorised:
Shaun Cahill	Ben Virtue	Steve Bullock
Consultant	Principal Consultant	Director

This report has been prepared for the client(s) listed on the report title page. EPS accepts no liability or responsibility for use of, or reliance upon, this report and / or the information contained within it by third parties.

If third parties have been contracted / consulted during compilation of this report, the validity of any data they may have supplied, and which are included in the report, have been assessed as far as possible by EPS however, EPS cannot guarantee the validity of these data.

Where ground investigations have been conducted, these have been limited to the level of detail required for the site in order to achieve the objectives of the investigation.

No part of this report, or references to it, may be included in published documents of any kind without approval from EPS. This report and its contents, together with any supporting correspondence or other documentation, remain the property of Environmental Protection Strategies Ltd until paid for in full.

The report has been written, reviewed and authorised by the persons listed above. It has also undergone EPS' in house quality management inspection. Should you require any further assistance regarding the information provided within the report, please do not hesitate to contact us.

The National Planning Policy Framework requires a competent person to prepare site investigation information, which is defined as a person with a recognised relevant qualification, sufficient experience in dealing with the type(s) of pollution or land instability, and membership of a relevant professional organisation. EPS considers that it fulfils these criteria and would welcome any request for staff CVs or case studies to demonstrate it.

As stated within DEFRA's Contaminated Land Statutory Guidance, with any complex risk assessment it is possible that different suitably qualified people may reach slightly different conclusions when interpreting the same information. EPS recognises this and considers the conclusions presented within this report to be robust and appropriate but input from the Local Authority and their judgement in line with this guidance would still be welcomed.

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Objectives	. 1
1.2	Scope of Work	. 1
1.3	Project Limitations and Constraints	. 2
2	SITE CHARACTERISATION	3
2.1	Site Location and Description	. 3
2.2	Geo-Environmental Setting	. 4
2.3	Site History	. 8
3	PRELIMINARY RISK ASSESSMENT AND CONCEPTUAL SITE MODEL	10
3.1	Background	10
3.2	Source Characterisation	10
3.3	Potential Receptors	11
3.4	Potential Pathways	12
3.5	Summary of Site-Specific Contaminant Linkages	13
4	SUMMARY OF INTRUSIVE INVESTIGATIONS	16
4.1	Borehole Locations	16
4.2	In-Situ Testing & Soil Sampling	17
4.3	Laboratory Testing	17
4.4	Soil Gas and Organic Vapour Monitoring	18
5	FINDINGS OF THE INVESTIGATION	19
5.1	Ground Conditions	19
5.1.1	Made Ground	19
5.1.2	Lowestoft Formation (LOFT)	20
5.1.3	Lewes Nodular & Seaford Chalk Formation (LESE)	20
5.2	Groundwater	20
5.3	Physical Evidence of Contamination	21
5.4	Laboratory Analysis – Soil	21
5.5	Waste Classification	22
5.6	Soil Gas and Organic Vapour Results	23
5.7	Geotechnical Testing	24
5.7.1	In-Situ Geotechnical Testing	24
5.7.2	Laboratory Geotechnical Testing	25
6	GEOTECHNICAL APPRAISAL	27
6.1	Geotechnical Category	27
6.2	Structural Foundations	28
6.2.1	Spread Foundations	28
6.2.2	Piles	29
6.2.3	Chalk Dissolution	30
6.3	Ground Floor Construction	30
6.4	Drainage	30
6.5	Groundworks	31
6.6	Concrete Grade	32
7	ENVIRONMENTAL APPRAISAL	33
7.1	Human Health	33
7.1.1	Land Use Setting & Generic Screening Criteria	33
	6	

7.1.2	Assessment of Soil Results	33
7.2	Controlled Waters	34
7.2.1	Generic Screening	34
7.2.2	Assessment of Soil Results – Controlled Waters	34
7.3	Ground Gas and Organic Vapour Monitoring	35
7.3.1	Generic Screening	35
7.3.2	Assessment of Ground Gas Results	35
7.4	Summary of Findings	36
7.5	Recommendations	37

Figures

Site Location Plan
Current Site Layout Plan
Aerial Photograph
Borehole Location Plan

Tables

Table 1	Environmental Laboratory Testing Schedule
Table 2	Geotechnical Laboratory Testing Schedule
Table 3	Ground Gas Monitoring Well Analysis

Appendices

Appendix A	Selected Site Photographs
Appendix B	Indicative Proposed Development Plan
Appendix C	Surrounding Land Use
Appendix D	Geological Context
Appendix E	Groundwater Vulnerability and Flood Maps
Appendix F	A Selection of Historic Maps
Appendix G	Site Specific Borehole Logs
Appendix H	Laboratory Results – Environmental
Appendix I	Waste Classification Report
Appendix J	Laboratory Results – Geotechnical
Appendix K	Summary of Screening Criteria
Appendix L	Cover Soil Checklist
Appendix M	Method Statement for Encountering Unexpected Contamination

1 INTRODUCTION

In September 2021, Environmental Protection Strategies Ltd (EPS) was commissioned by Bellway Homes Limited (North London) to complete a Phase I & II Geo-Environmental Assessment at North Campus East Car Park, College Way, Welwyn Garden City, Hertfordshire, AL8 6UN, ('the site'); see Figure 1.

The work was commissioned in order to support future planning requirements as relating to contaminated land and to collect information on ground conditions and strength, in order to make appropriate recommendations for geotechnical design. At the time of writing, outline development proposals are understood to comprise the construction of several new multi-storey buildings that include parking facilities on the ground floor with residential apartments above. External works are anticipated to include areas of communal soft landscaping and hardstanding.

This report presents the findings, conclusions, and recommendations of the Phase I Desk Study and subsequent Phase II Intrusive Investigation undertaken.

1.1 Objectives

The objectives of this investigation were as follows:

- a) Compile a Phase I desk study and Conceptual Site Model (CSM) to evaluate the potential risks the site may pose to human and environmental receptors, both currently and in future.
- b) Assess potential contaminant linkages identified through the CSM by means of investigating shallow soils and groundwater (if encountered).
- c) Determine the potential risks posed by the site and make recommendations for further work that may be required, to ensure safe development in accordance with the Environment Agency's Land Contamination: Risk Management (2020) and the National Planning Policy Framework.
- d) Collect information on ground conditions and strength in order to make appropriate recommendations for geotechnical design.
- e) Identify waste streams which could be generated as part of the redevelopment and appropriately classify these soils for future off-site disposal.

1.2 Scope of Work

The scope of works was to perform an exploratory assessment of the site in accordance with the principles and requirements of DEFRAs 'Contaminated Land Statutory Guidance' (2012), BS10175 (2011) – 'Investigation of Potentially Contaminated Sites', BS5930:2015 'Code of Practice for Ground Investigation' and BS EN 1997:2007 'Geotechnical Design', and therefore, the following tasks were undertaken:

Desk Study:

- Collection of site records.
- Study of existing geological, hydrogeological and historic maps of the area.
- Consultation of environmental databases, including records held by the local authority (where available).
- Review of proposed development plans.
- Development of a Conceptual Site Model (CSM) and Preliminary Risk Assessment.

Intrusive Investigation:

- Site walkover, inspection of any visual evidence of contamination, obtaining photographic records.
- Health and safety briefing/ site supervision.
- Drilling of three shell and auger boreholes, to a depth of 25.0m below ground level (bgl), using cable percussive methods.
- Formation of twelve window sample boreholes to a maximum depth of 4.0m bgl using a trackmounted, percussive drilling rig; and the completion of falling head infiltration tests at four of these positions.
- Installation of standpipes at selected borehole locations, with a return monitoring programme undertaken.
- In-situ testing, to assist with geotechnical design.
- Continual logging of ground conditions including inspection of samples for visual and olfactory contamination, and laboratory analysis of selected soil samples.

Reporting:

- Data collection
- Interpretation of data including completion of Generic Quantitative Risk Assessment
- Reporting

The findings of these investigations and their conclusions are presented in the following sections.

1.3 Project Limitations and Constraints

The purpose of this report is to present the findings of a soil sampling investigation conducted at the location(s) specified. When examining the data collected from the investigations made during the assessment, Environmental Protection Strategies Ltd (EPS) makes the following statements:

No investigation method is capable of completely identifying all ground conditions that might be present in the soil or groundwater under a site. Where outlined in our report, we have examined the ground beneath a site by constructing a number of boreholes and / or trial pits to recover soil and / or groundwater samples. The locations of these excavations and sampling points are considered to be representative of the condition of the whole site subsurface however, ground conditions are naturally variable and it may be possible that the ground conditions encountered may differ to those encountered during the investigation.

No visible evidence of Japanese Knotweed was identified during the site walkover. However, this plant can be difficult to identify in the early stages of growth and therefore it is not always possible to identify its presence at certain times of the year. For this reason, EPS cannot confirm that Japanese Knotweed rhizomes do not exist and it is recommended that if it is suspected that this species, or other similarly invasive plants are present at the site, a specialist contractor should be commissioned to make a detailed assessment.

The investigation was carried out to assess the significance of contamination resulting from the use of the site as identified in this report. Unless EPS has otherwise indicated, no assessment of potential impact of any other previous uses has been made.

2 SITE CHARACTERISATION

The following section provides a summary of the information collected in relation to the site location and history.

2.1 Site Location and Description

Detail	Description	
Location	The site is located to the east of College Way, roughly 0.3km north east of Welwyn Garden City town centre in Hertfordshire.	
National Grid Reference	523990, 213320	
Topography	Levels lie between approximately 90m and 92m above ordnance datum (AOD) and appear to slope gently from north to south. The lowest lying sections of the property are along the southern boundary.	
	A walkover survey was completed by EPS on the 4 th October 2021 and the site was found to comprise an irregular shaped parcel of land, covering approximately 2.15ha.	
Description of Site	The area of investigation was occupied by North Campus East Car Park which was open and active at the time of the work. The main access point was from the western boundary; which enters from College Way and runs just inside the northern boundary to an asphalt and concrete surfaced car park, covering the majority of the eastern area.	
	In the centre is a two-storey structure that included private garages with locked, roller shutter doors on the ground floor and additional (uncovered) parking facilities above. This structure was noted to be roughly rectangular in shape, of brick construction and featured some cantilever sections on the upper platform, to extend the footprint of the parking area. Three access ramps were noted at the western elevation of this feature, with adjoining roads intersecting an adjacent area of grass surfaced soft landscaping to the west. A one-way system was in place throughout the car park with rows of spaces generally orientated north to south and east to west. Metal railings and grass verges separated selected rows, with a grid of large flood lights and pedestrian footpath borders also present.	
	A small section of an east-to-west trending drain / ditch that marks the northern boundary was also identified during the EPS walkover, and was noted to contain shallow water. It is anticipated that sections of the channel may be culverted. A number of semi-mature to mature hedgerows, plants, shrubs and trees marked large sections of the property boundaries and were also present towards the centre of the car park and within the soft landscaping to the west.	
	No external areas of significant fuel or chemical storage were noted. However, a fenced compound (secured at the time of the inspection), containing a number of coaches was noted in the east of the car park.	

Detail	Description	
Surrounding Land Use	The site is immediately surrounded by Oaklands College – Welwyn Garden City Campus and residential properties in the north with Welwyn rail depot and a north-to-south trending railway line adjacent to the east. In the south is a supermarket and associated parking with council offices and an assisted living facility located beyond College Way (to the west).	

A plan showing the site location is provided as Figure 1, the current site layout is detailed on Figure 2 and an aerial photograph is included as Figure 3. Selected site photographs are included as Appendix A, an indicative proposed development plan is included as Appendix B and relevant extracts of the Envirocheck Report are included as Appendix C.

2.2 Geo-Environmental Setting

The following details are taken from the Envirocheck report sourced for the study area.

Detail	Description	
Geology	Geological mapping indicates the site to be underlain by superficial Lowestoft Formation (diamicton) overlying bedrock of Lewes Nodular & Seaford Chalk Formation. Information on the site's geological context is included as Appendix D.	
British Geological Survey (BGS)	An historical borehole log was reviewed for a location around 255m south west of the site at 91m AOD, to give an indication of the ground conditions that may be anticipated beneath the study area. The log reports made ground to 0.4m, overlying layers of orangish brown, clayey, sandy, silty gravel and sandy silty clay to 10.6m. This was underlain by 'reworked chalk' interbedded with clay and gravel to 17.0m; before the natural chalk bedrock was recorded to the maximum depth of 25.5m bgl. Groundwater was encountered at 18.7m depth and the historical log is also included in Appendix D.	
	Hazard	On Site Risk
	Mining Activities	Rare
	Collapsible Ground	Very Low
	Compressible Ground	No Hazard
	Ground Dissolution	Moderate
	Running Sand	Very Low
Geological	Landslide	Very Low
Hazards	Shrinking/ Swelling Clay	Low
	Three BGS recorded mineral sites are listed within 1km, all of which are	
	former opencast quarries which hav	ve now ceased operation. The closest of
	these features is located around 539	m north and was previously used for the
	extraction of chalk.	
	Seven entries for natural cavities are of sinkholes, the closest of which is a	highlighted within 500m, all in the form round 80m west.

Detail	Description	
Radon	The Envirocheck report indicates the site to lie in a location where the percentage of homes above the radon action level is less than 1%. It further reports that the site does not require any radon protection measures in the construction of new buildings.	
Hydrogeology	Groundwater vulnerability maps for the area show that the superficial Lowestoft Formation is classified as a Secondary (Undifferentiated) Aquifer with the underlying bedrock of the Lewes Nodular & Seaford Chalk Formation defined as a sensitive Principal Aquifer. Furthermore, the site lies within a Total Catchment (Zone 3) groundwater Source Protection Zone (SPZ).	
	east and used by Rank Xerox Ltd for industrial processing (miscellaneous). Groundwater vulnerability maps are included as Appendix E.	
Hydrology	The nearest surface water feature appears to be a small east-to-west trending drain/ ditch, that marks the northern boundary. A small section of this feature was identified during the EPS site works, and was noted to contain shallow water, but it is anticipated that sections of the channel may be culverted. No further significant watercourses are noted in the local area. One discharge consent is listed within 1km and is located roughly 124m east and refers to a soakaway discharging into the underlying chalk bedrock between 30 th October 1991 and 31 st March 1996 by Rank Xerox Ltd (who manufacture electronic devices/ components). There are no surface water abstractions listed within 500m.	
Known Site Drainage & Utilities	Based on the mains utilities plans it is anticipated that telecommunications cables enter the site from College Way in the west and run towards the north west corner of the garages / car park. These cables then divert to the south, around the west and south of the same structure, before reaching the boundary with the rail depot in the east. Whilst not clear on services plans, underground electricity cables associated with flood lights are anticipated in this section of the property. Surface water drainage was recorded entering the site in the north eastern corner, initially running in a south westerly direction before changing to a westerly course, around the southern elevation of the garages and car park, before crossing the boundary in the south western corner. Waste water drainage was recorded entering the site towards the centre of the northern boundary, running in a south westerly direction towards and around the western face of the garages and car park, before leaving the site in the south estern face of the garages and car park, before leaving the site in the south west. An additional east to west trending sewer was also identified towards the centre north of the car park.	

Detail	Description	
Flood Risk	Review of the EA flood zone map for the area indicates that the site lies within Flood Zone 1, which is defined within Table 1 of the technical guidance to the National Planning Policy Framework (NPPF) as 'the area with a low probability of flooding from rivers or the sea'. It should be noted that the EA maps do not take into account flooding from other potential sources of floodwater, such as from poor drainage, or groundwater. Given the site is larger than 1ha in area, it is possible that a flood risk assessment will be required in support of any future planning submission. An indicative flood zone map is included in Appendix E.	
Landfill & Waste	One registered landfill is listed within 1km and is located 425m south at 30 Broadwater Road. The landfill is categorised as 'very small' (less than 10,000 tonnes per year) and highlighted to have been active in June 1979 with authorised waste including aqueous effluent waste and industrial effluent treatment sludge. Seven registered waste treatment or disposal sites are listed within 1km, the closest of which is located 51m east at Bessemer Road. This facility is dated from May 1984 with authorised wastes included flammable solvents, industrial effluent/ treatment sludge and oil/water mixtures. Three licensed waste management facilities are listed within 1km, the closest of which is located 500m east and refers to an expired vehicle depollution facility that operated between February 2011 and July 2018. One registered waste transfer site is listed within 1km and is located 522m east at Tewin Road Depot. The waste transfer site is dated from May 1999 with authorised waste including bonded asbestos, household, commercial and industrial waste, general scrap metal and non-putrescible waste. Two records of potentially infilled land (non-water) are held within a 1km radius, the nearest of which is located 958m east and refers to the infilling of an unknown pit or quarry in the late 1980's.	
Licensed	Ten sites licensed by the local authority for industrial activity are reported	
Industrial	within 1km, the closest of which (permitted) is located 257m south west and	
Activity	refers to dry cleaning.	

Detail	Description			
	The Envirocheck report lists 59 industrial land uses within 500m (nine of which are present within 250m); the most pertinent of which are summarised below.			
	Land Use	Distance (Direction)	Status	
	D L G Auto Services (Car Body Repairs)	89m (SE)	Active	
	Funnybones (Distribution Services)	168m (E)	Inactive	
Industrial Land Use	Grace Foods (Distribution Services)	168m (E) Inactive		
	Luvata Welwyn Garden (Car Manufacturers)	168m (E)	Active	
	Travis Perkins Plc (Builders' Merchants)	204m (SE)	Active	
	Pakex Uk Plc (Cleaning Materials & Equipment)	213m (E)	Active	
	One fuel station entry is recorded within 500m and refers to a now obsolete Central Garage Petrol Filling Station (PFS) site, located roughly 448m south west.			
Pollution Incidents	Two pollution incidents to controlled waters are reported within 500m, the closest of which is located around 433m east. This event was recorded as a 'Category 3' minor incident and occurred in April 1992, involving the release of unknown chemicals.			
Sensitive Land Use	The site is reported to be located within a Nitrate Vulnerable Zone where surface water is considered to be susceptible to the leaching of nitrates from agricultural land.			
Previous Investigation or Remediation	EPS are not aware of any previous site investigations or remedial works undertaken at the site.			

2.3 Site History

A summary of historical map data from 1878 to 2021 is summarised below. Key points are highlighted, and copies of relevant historic maps and any others examined during the investigation are included in this report as Appendix F.

• Early mapping from the late 1870s showed some of the site to have been developed, with a north west-to-south east trending railway line arcing through the centre of the area; which was eventually dismantled by the 1970s. Adjacent to the east was an embankment associated with a larger series of north-to-south trending railway lines, with infrastructure such as travelling cranes, engineering works and tanks noted close by. It is also possible that some ground workings were undertaken across the northern strip of the site, associated with this infrastructure. Further workings were noted slightly further south in the 1960s/1970s and are anticipated to be associated with the decommissioning of the railway. A few tracks were noted spanning the northern and western sections of the property, both of which converged just outside the north western corner, where a small series of buildings were present.

- By the 1970s, the south west of the site was occupied by a 'roof car park' and adjacent to the south west was an electricity sub-station. However, it wasn't until the 1990s that the remainder of the property appeared to resemble its current layout with the construction of the ground level car park in the north east. During this period, the immediate surrounding land had been developed with a local supermarket in the south and services including council offices, assisted living residence and a college to the west (along College Way) with the infrastructure beyond the railway line in the east later redeveloped to comprise a business park.
- Commercial and industrial land use had predominantly occupied the area beyond the railway line to the east and south east since the early 1960s and had largely consisted of various depots, factories, warehouses and work sites.
- The study area has remained largely unchanged for the past 30 years, consistently occupied by North Campus East Car Park with a patch of soft landscaping to the west.

3 PRELIMINARY RISK ASSESSMENT AND CONCEPTUAL SITE MODEL

In accordance with the Environment Agency's Land Contamination: Risk Management (LC:RM, 2020) guidance, there are three stages to managing contaminated land (Risk Assessment, Remedial Options Appraisal / Remediation and Verification). This section outlines the first tier of Stage 1, the Preliminary Risk Assessment.

The following section provides a review of the contaminant linkages that may be active at the site through examination of the potential sources that may be present as a result of historic and / or current site activities and where potential interaction between these sources and the identified human / environmental receptors may occur.

3.1 Background

A preliminary risk assessment comprises the first stage of any geo-environmental assessment, the purpose of which is to determine what potentially contaminative activities may have occurred at the property or the surrounding area which may pose an environmental or geological risk to site users, the surrounding environment or proposed development, either at present or in the future.

The method used in this investigation to assess the environmental risk posed is based on the concept of 'contaminant linkage', which considers the following three factors:

Source	The location from which an environmentally hazardous / contaminative substance is, (or was,) derived.
Pathway	A route or mechanism via which a source could come into contact with a receptor to cause significant harm.
Receptor	An environmentally sensitive object or condition e.g. person, property, controlled water, or ecological system, which may be present now or in future.

If all three factors are identified, there is the potential for a 'contaminant linkage' to be active, which could result in significant harm being caused to the environment or human health.

3.2 Source Characterisation

The following potential contaminant sources have been identified at the site and in the surrounding area:

Potential Source	Source Description	Principal Contaminants of Concern
Current and Historical Site Use	Infill material of unknown origin (made ground) used to level areas beneath the historic railway line/ tracks and current car park/ surfacing.	ТРН, РАН, АСМ
	Historic north west-to-south east trending railway line and associated infrastructure.	& Metals
	Areas of ground workings across the northern and central areas of the property, most likely associated with former railway infrastructure	PAH, Metals ACM & Ground Gas (CH ₄ , CO ₂)

Pote Sou	ential Irce	Source Description	Principal Contaminants of Concern
		North-to-south trending railway lines and associated infrastructure adjacent to the east of the study area.	TPH, PAH, ACM & Metals
Curre	nt and	Electricity sub-station adjacent to the south west.	PAH, PCB & TPH
Histo	orical	A registered landfill site and several entries of potentially infilled land within 1km.	Ground Gas (CH ₄ , CO ₂)
Land Use		Current and historical commercial and industrial land use of the surrounding area including vehicle workshops, an obsolete fuel station, a number of waste transfer/ management facilities and various works sites to the east/ south east (beyond the adjacent railway).	ACM, Metals, PAH, TPH, VOC & SVOC
<u>Notes</u>	TPH ACM CO ₂	Total Petroleum Hydrocarbons PAH Polycyclic Aromatic Hydrocarbons Asbestos Containing Material CH4 Methane Carbon Dioxide PCB Polychorinated Biphenyls Valitile Organia Compounds SWOC Serie Valitile Organia Compounds	

3.3 Potential Receptors

A framework for the assessment of risks arising from the presence of contamination in soils has been produced by the Environment Agency and the Department for the Environment, Food and Rural Affairs (DEFRA) and is presented with the report: 'Using Science to Create A Better Place: Updated Technical Background to the CLEA Model – Science Report SC050021/SR3'. This guidance document defines a series of standard land-uses which have been further developed into six generic land uses in the Category 4 Screening Levels project for Land Affected by Contamination (DEFRA/Contaminated Land: Applications in Real Environments (CL:AIRE) Project Report SP1010, September 2014) which form a basis for the development of the Conceptual Site Model.

It is understood that the development involves the construction of several new multi-storey buildings that include parking facilities on the ground floor with residential apartments above. External works are anticipated to include areas of communal soft landscaping and hardstanding. Therefore, this proposed land use at this stage has been considered as:

• Public Open Space (Residential)

The proposed land use is considered to be most relevant to a POS_{RESI} for the following reasons:

- The soft landscaped areas within the development will likely comprise predominantly grassed or planted areas in close proximity to new multi-storey residential buildings.
- The type of activities which are envisaged in these areas are children playing and informal sports activities, such as a 'kickabout'.
- The critical receptor age class is not as sensitive as typical residential land uses and more realistically reflects the age of children who will use these areas most frequently.
- Home-grown vegetable intake is not assumed to take place but the amenity areas are considered close enough to properties to allow the tracking back of soils into people's homes, where POS (Parks) would not.

It should be noted that the above classification is subject to adjustment should finalised development plans reveal more sensitive areas of landscaping then currently anticipated, such as enclosed or private garden areas, albeit this is considered unlikely at this stage.

In view of the environmental setting, current and potential future land use of the site and surrounding sites, the potential receptors for any contaminant impact are discussed below:

Receptor	Site Specific Description				
Human	Future site users, construction workers involved in the proposed redevelopment, and those working and living in the surrounding area have the potential to be at risk from exposure to potential contaminants of concern (CoCs), including from former or adjacent land uses.				
Groundwater	The geology beneath the site is anticipated to comprise superficial Lowestoft Formation which is classified as a Secondary Aquifer with the underlying Lewes Nodular & Seaford Chalk Formation defined as a sensitive Principal Aquifer. Furthermore, the property lies within a Total Catchment (Zone 3) SPZ for nearby groundwater abstraction and groundwater is anticipated to be present from a local BGS record, albeit relatively deep. On this basis, groundwater should be considered as a sensitive receptor to site derived contaminants.				
Surface Water	The nearest surface water feature appears to be a drain that marks the northern boundary, although no further channels have been highlighted locally. It is possible that site derived contaminants of concern may enter this ditch by overland flow, migration through unsaturated soils or entering shallow surface drainage / historical land drainage which discharges to this feature. Therefore, surface waters must also be considered as a sensitive receptor within the conceptual site model.				
Flora and Fauna	The proposed development is expected to include soft landscaped areas. Some of the identified contaminants of concern are known to be phytotoxic and as such, the potential for this impact should be considered.				
Buildings & Infrastructure	Subsurface structures are likely to be present at the site that may be adversely affected by the potential presence of the identified contaminants of concern. These include concrete used in building foundations, buried potable water supply pipes and other service lines and pipes.				
Adjacent Land	Adjacent properties including private residential dwellings could also be at risk from potential contaminants found at the site.				

3.4 Potential Pathways

Where contaminants may be present in soil, there are a number of potential pathways that enable human receptors to come into contact with or be exposed to them. The most direct pathways, considered under current UK legislation, can be summarised as follows:

- Direct ingestion of contaminated soil
- Ingestion of household dust
- Ingestion of contaminated vegetables
- Ingestion of soil attached to vegetables
- Dermal contact with contaminated soil
- Dermal contact with household dust
- Inhalation of fugitive soil dust
- Inhalation of fugitive household dust
- Inhalation of vapours outdoors
- Inhalation of vapours indoors

Clearly, not all of these potential pathways apply for every standard land-use. For example, ingestion of contaminated vegetables will not apply to land uses other than residential with plant uptake and allotments.

However, in addition to direct exposure pathways, a number of physical transport mechanisms / pathways may also exist at a site that allow remote or less accessible contaminants in soil or groundwater to reach human or environmental receptors both at a site and beyond the site boundary. These include the following:

- Downward and lateral movement of contaminants in soil either by gravity or through being 'leached' by percolating rainwater.
- Direct seepage or leaching of contaminants from soil into subsurface drains or supply pipework.
- Lateral migration of contaminants dissolved in groundwater.
- Volatilisation of contaminants from groundwater or unsaturated soils into buildings or outdoor air.

Through examination of the standard land use and environmental setting at each site, the presence of pathways and transport mechanisms described above must be considered when assessing whether a contaminant linkage may plausibly be active, and therefore be included in the conceptual site model.

3.5 Summary of Site-Specific Contaminant Linkages

Considering the site use and environmental setting, and the proposed land use; the plausible contaminant linkages that require further investigation are summarised in the following table:

Source	Pathway	Receptor	
	Direct contact and inadvertent ingestion by eating or smoking with dirty hands	Construction workers during redevelopment & site users	
	Direct uptake via root systems	Plants	
	Direct contact	Buried infrastructure	
Contaminated Soil	Inhalation of fugitive dusts		
	Ingress/ diffusion through permeable potable water supply pipes	Site Users	
	On-site migration of ground gas to indoor and outdoor air		

Source	Source Pathway	
Contaminated soil / groundwater	On-site migration of contaminants in soil and/ or groundwater and subsequent volatilisation of organic compounds to indoor and outdoor air	Site users
	Leaching of contaminants vertically through unsaturated soils	Groundwater
	Lateral migration of contaminants in soil or groundwater	Surface waters

The following comments are made with respect to contaminant linkages which have been considered through development of the conceptual model, but have not been concluded as 'plausible' – i.e., through which a significant possibility of significant harm could occur to an identified receptor:

- Contaminants including PAHs and Metals have been identified as contaminants of concern associated with the made ground beneath the site, however these contaminants are generally considered to be relatively immobile in the environment by virtue of their very low solubility and volatility. On this basis, plausible pathways by which these site derived contaminants could pose a significant risk to nearby surface watercourses or any underlying groundwater are not considered to be active.
- Despite some former ground workings being noted in the northern and central sections of the site, these entries on historical maps are anticipated to be the result of levelling activities before and after sections of railway were developed. Given that any infilled materials are anticipated to be limited in thickness and no such activities are understood to have taken place since the 1970s, this material is not considered capable of generating any notable concentrations of ground gas. Therefore, any potential risk from on-site sources affecting future or neighbouring site users have been discounted.
- Although significant fuel storage is not anticipated to have been present on site through
 previous or more modern land use, it is possible that small scale spills/ leaks could have
 occurred through daily activities via use as car park/ garages as well as through the presence of
 historic railway tracks. Any such contamination is not considered to be significant enough to
 lead to the generation of organic vapours, however, it is plausible that localised impacts to
 controlled waters may have occurred.
- Whilst the majority of relatively modern electrical transformers do not contain insulation oils containing PCBs, the electricity sub-station adjacent to the south west does represent a potential off-site source that could contain PCBs. However, given the distance of this substation and limited mobility of PCBs in the environment, this source is not considered to pose a significant risk to the proposed development.

The following diagram provides an illustration of the plausible contaminant linkages that may be active at the site and which may need further investigation or control to ensure safe development:

North Campus East Car Park, Welwyn Garden City– Illustrative Conceptual Site <u>Model</u>

1 Dieset Contact with/ Ingestion of Soil & Inkulation of Pagintee Durit

2 Flant Uptake via Roort Systems

3 Ingree/ Diffusion through Permeable Potable Water Supply Piper

- 4 On-site Migration of Ground Gas to Indoor and Outdoor Air
- 5 On-ito-Migration of Contaminants in Soil/ Groundwater and Suboposet Volatilization to indeer and Outdoor Air

6 Lescharg of Continuants Vertically through Unstrusted Soli-

7 Later & Migration of Continuumants in Soil or Groundwater

8 Direct Contact between Contaminants & Burled Information

4 SUMMARY OF INTRUSIVE INVESTIGATIONS

The intrusive ground investigation was undertaken between the 4^{th} and 8^{th} October 2021, in accordance with EPS standard operating procedures, copies of which will be made available on request. A summary of the site activities is presented in the following sections:

4.1 Borehole Locations

Borehole locations were selected through consideration of the proposed development layout, the findings of the conceptual site model, the location of below ground utilities as well as operational and health & safety considerations associated with undertaking a ground investigation within an active car park.

The overall objective, in terms of borehole locations, was to deliver an appropriate lateral and vertical coverage of the site in order to offer information relating to the nature, quality and strength of the underlying soils. Further rationale for each sampling location is provided within the table below:

Location	Rationale
BH1-BH3	Provide information on the nature and strength of underlying soils, particularly at depth, to assist with geotechnical design (specifically piling parameters, should they be required for any new buildings). The deeper boreholes were also intended to assess the depth of the groundwater table as well as the presence of any natural cavities within the profile of the chalk bedrock.
WS1-WS12	Assess the nature and quality of shallow soils across the site, providing more detailed lateral coverage for the contamination risk assessment and to assist with geotechnical design.

The borehole locations were formed in accordance with standard EPS methodologies, and all subcontractors were supervised by an EPS engineer throughout the works.

Monitoring wells were installed at all three shell and auger positions (BH1-BH3) and four window sample positions (WS1, WS3, WS6 and WS12) using 50mm diameter uPVC well casing and fitted with a gas tap. Slotted casing (1mm slot) was installed at each location from the base (aside from BH1 and BH2 which were installed from 20.0m bgl) to approximately 1.0m below the surface. The installations were completed using plain casing to ground level. A filter pack of 2-3mm of washed gravel extended from the base of the open boreholes to approximately 0.1m above the slotted section, with a bentonite seal to surface. Each monitoring location was finished with forecourt rated, bolt down headworks.

All remaining positions were backfilled with soil arising's upon completion and concrete hardstanding was reinstated at the surface.

A borehole location plan is presented as Figure 4.

4.2 In-Situ Testing & Soil Sampling

Each borehole was logged for ground conditions encountered and inspected for any physical evidence of contamination, such as soil staining, odour and the presence of separate phase liquids, on a precautionary basis.

Where potentially volatile organic compounds are suspected, EPS carries a Photoionisation Detector (PID), which can be used to measure the relative concentrations of vapour associated with soil samples collected from different depths and locations at the site. PID readings are only used to provide EPS with a basic means to quantify areas of volatile organic compound in the field to help guide the investigation. However, given that no visual or olfactory evidence of impacted soils/ groundwater was encountered throughout the investigation, headspace testing was not conducted during the field works.

Soil samples were recovered from each location at regular intervals for record purposes and future laboratory testing. Selection of samples from the boreholes focused on providing an assessment of the geotechnical properties of the soils encountered, as well as the quality of sub-surface materials present across the site (including any impacts from previous or adjacent land uses, as identified within the Phase I section of this report).

Hand shear vane tests were attempted throughout the clay soils recovered from selected window sampler boreholes, but the material was found to be too friable and this method of strength testing was not considered to be representative.

Therefore, standard or cone penetration tests (SPT / CPT) were carried out in all of the boreholes using an automatic trip hammer. The number of blows required to advance a standard split spoon, (or solid 60° nose cone for the CPT test) over the final 300mm of a 450mm total drive was recorded, and is shown on the borehole records at the penetration resistance ("N" value).

Falling head infiltration tests were completed at WS2, WS5, WS8 and WS11 in order to assess the suitability of surface water drainage options for the scheme.

4.3 Laboratory Testing

Soil samples were obtained for analysis of selected contaminants of concern in order to identify the presence of any contamination, confirm their suitability for future use and to classify for waste disposal purposes. Samples were submitted to Element Materials Technology of Flintshire, who hold appropriate UKAS/ MCERT accreditation for the required testing. Samples were transported in laboratory supplied containers and delivered by an approved courier.

Geotechnical testing was undertaken by Soil Property Testing, Huntingdon, a UKAS accredited laboratory.

Copies of the chain of custody documentation are held by EPS and will be made available on request. Furthermore, laboratory testing schedules detailing all samples submitted for environmental and geotechnical laboratory analysis are included within Table 1 and Table 2 respectively.

4.4 Soil Gas and Organic Vapour Monitoring

Due primarily to the proximity of a number of areas of localised infilling, the presence and concentration of ground gases including carbon dioxide, oxygen, methane and volatile organic compounds along with borehole flow rate were recorded on four separate occasions; following completion of the initial investigation. These return monitoring visits were completed using a GFM435 gas meter, Photoionization Detector and Flow Meter respectively between the 11th October and 1st November 2021, on approximately weekly intervals.

A summary of the field measurements recorded during the return monitoring programme are summarised in Table 3 of this report.

5 FINDINGS OF THE INVESTIGATION

This section of the report provides a summary of the findings of the intrusive investigations undertaken.

5.1 Ground Conditions

A total of 15 boreholes were formed across the site and the ground conditions encountered, from surface level, have been interpreted to comprise:

- Made Ground
- Lowestoft Formation
- Lewes Nodular & Seaford Chalk Formation

Site specific borehole logs are included as Appendix G and give full descriptions and depths of strata encountered. A summary of the general ground profile beneath the site is provided in the table below, with more detailed description given in the following sub-sections.

Geological Strata	Maximum Depth to Base of Strata (m bgl)	Strata Thickness (m)
Made Ground	4.3	0.3-4.3
Lowestoft Formation	12.7	>1.4-11.8 (where proven)
Lewes Nodular & Seaford Chalk Formation	>25.0	>12.3->15.3 (not proven)

5.1.1 Made Ground

Surfacing at BH1, BH2 and WS1-WS9 comprised a thin layer of asphalt, approximately 0.10-0.15m thick, whilst concrete (0.15-0.20m thick), was encountered from the surface of WS10 and WS11.

Made ground was encountered from the surface of BH3 and WS12 which were formed in areas of existing soft landscaping and generally comprised a yellowish brown, slightly gravelly, sandy, silty clay that extended to a maximum depth of 0.5m. A similar material was also found in BH1, between 0.35m and 0.9m bgl.

A different type of infill was recorded beneath the asphalt at BH1 and WS1-WS9; as a layer of yellowish brown, slightly clayey, sandy, silty gravel/ silty sand that was proven to a maximum depth of 0.9m in BH1. These granular deposits were generally indicative of compacted sub-base installed beneath the existing hardstanding. The materials were similar beneath the concrete at WS10 and WS11, recorded as dark grey, slightly clayey, sandy, silty gravel/ gravelly clay that was proven to a maximum depth of 0.45m. This was fairly typical across the property with Made Ground generally progressing to around 0.5m in the majority of locations.

However, at WS2 and BH2, a more notable thickness of Made Ground was recorded, which also differed in composition to the materials described above. In WS2 a secondary layer of yellowish brown, slightly gravelly, sandy, silty clay with dark grey organic pockets, decayed roots, brick and chert fragments was encountered between 0.5m and 2.3m bgl. At BH2, where made ground was recovered to the maximum thickness encountered during the works (4.3m bgl), the materials were described as dark grey, slightly gravelly, sandy, silty clay/ clayey, sandy, silty gravel with asphalt and brick fragments.

It is anticipated that the deeper infill encountered within WS2 and BH2 is associated with the historic ground workings and railway embankments noted within the historical map data.

5.1.2 Lowestoft Formation (LOFT)

Directly beneath the made ground were soils interpreted to be representative of superficial Lowestoft Formation that were proven to a maximum depth of 12.7m at BH1, 9.7m at BH2 and 10.2m at BH3. Given the typical depth of this unit, the superficial soils often extended beyond the full extent of the shallower window sample positions.

These soils generally comprised an initial layer of firm to stiff, yellowish brown and red, slightly gravelly, sandy, silty clay with light bluish grey mottling, occasional black staining and fine sand / silt pockets. In the deep boreholes and window samples formed towards the south eastern corner, granular deposits were encountered beneath the initial cohesive layers, recorded as medium dense to dense, black, brown and white, angular to rounded, slightly clayey, sandy, silty chert and quartzite gravel. These soils were found to be limited between roughly 0.5-2.5m in the south east (where cohesive material prevailed beneath); with a more significant profile identified in the shell and auger boreholes, between roughly 5.0-10.0m. It should be noted that in some areas the clays and gravels appeared to be finely interbedded.

Furthermore, some slightly lower strength material (soft/ loose) was recognised within the shallow profile of WS7 and WS9 (1.0m - 2.0m bgl), but was not identified in nearby locations.

5.1.3 Lewes Nodular & Seaford Chalk Formation (LESE)

Below the superficial Lowestoft Formation at BH1, BH2 and BH3 were materials interpreted to be representative of the Lewes Nodular & Seaford Chalk Formation.

These soils comprised structureless chalk recovered as <10% intact gravel in a white, slightly clayey, sandy, silty matrix, representative of a Dm (matrix dominated) grade material that extended to beyond maximum formation depth of >25.0m bgl.

5.2 Groundwater

Groundwater strike was not encountered at any location during the intrusive investigation, to a maximum depth of 25.0m bgl.

Furthermore, a discernible groundwater surface was not recorded within the monitoring points during return visits.

5.3 Physical Evidence of Contamination

Despite the presence of construction debris within the profile of the made ground in certain locations, such as asphalt and brick fragments, no palpable evidence of contamination was encountered at any of the borehole locations formed during the ground investigation. The soils did not include any notable evidence of waste or putrefiable material, with hydrocarbon staining/ odours also absent.

5.4 Laboratory Analysis – Soil

An environmental laboratory analysis testing schedule is presented as Table 1 and all environmental soil analysis results obtained from the laboratory are included as Appendix H.

Contaminant	No. of No of Samples Detection		Range of Detections (mg/kg)		Highest Location & Depth (m bgl)
			Min	Max	
Arsenic	13	13	0.6	23.2	WS5 (0.1-0.35)
Cadmium	13	5	0.1	0.5	WS12 (0.1-0.5)
Chromium III	13	13	7.4	83.6	BH2 (6.5-6.9)
Copper	13	13	3	160	BH2 (2.0-2.4)
Lead	13	10	5	63	BH2 (2.0-2.4)
Mercury	13	1	0.1		WS10 (0.15-0.3)
Nickel	13	13	2.7	37	BH2 (6.5-6.9)
Salanium	12	2	1	C.	BH2 (6.5-6.9)
Selemum	15	2	1		WS11 (0.2-0.45)
Zinc	13	13	9	125	BH2 (2.0-2.4)
Benzo(a)pyrene	13	6	0.10	9.60	WS5 (0.1-0.35)
Dibenzo(ah)anthracene	13	4	0.06	1.06	WS5 (0.1-0.35)
Naphthalene	13	3	0.29	1.81	WS5 (0.1-0.35)
PAH (Total of 16)	13	6	0.8	94.1	WS5 (0.1-0.35)
Total TPH	9	2	165	409	BH2 (2.0-2.4)
MTBE	9	0			
Benzene	9	0		;	-
Toluene	9	1	0.006 BH2 (2.0-2.		BH2 (2.0-2.4)
Ethylbenzene	9	0			
Xylenes	9	0	5		
PCB's	3	0	8		
ACM (mass %)	13	0	-		
<u>Notes</u> : - Co TPH To	ontaminant not identi otal Petroleum Hydro	ified above MDL ocarbons	PAH Poly MTBE Met	cyclic Aromatic H nyl Tertiary Butyl	Hydrocarbons I Ether

The key results of laboratory testing on environmental soil samples are summarised below.

PCB

ACM

Asbestos Containing Material

Total Petroleum Hydrocarbons **Polychlorinated Biphenyls**

- Low concentrations of the majority of heavy metals were identified within all of the shallow soil samples obtained from across the site, with the greatest concentrations often recorded within samples of made ground recovered from WS5 (0.1-0.35m), WS12 (0.1-0.5m), BH2 (2.0-2.4m), WS10 (0.15-0.3m) and WS11 (0.2-0.45m).
- Benzo(a)pyrene was identified within six shallow soil samples, with the highest concentration (9.60mg/kg) recorded within made ground at WS5 (0.1-0.35m).
- Detectable concentrations of TPH (total aliphatic and aromatic fractions) were analysed within two of nine soil samples, again being recorded within made ground at BH2 (2.0-2.4m) and WS10 (0.15-0.3m). Interpretative comments from the laboratory suggest that this could be due to the presence of possible PAH's, lubricating oil and degraded diesel.
- ACM was not detected in any of the shallow soil samples.

5.5 Waste Classification

Waste classification (i.e. hazardous or non-hazardous) was undertaken on samples of made ground and natural soils recovered from beneath the site; which included total concentrations of metals and hydrocarbons, using computer software provided by HazWaste OnlineTM.

Waste Acceptance Criteria (WAC) testing was subsequently undertaken on one sample of made ground and each of the superficial (Lowestoft Formation) and bedrock (Lewes Nodular & Seaford Chalk Formation) materials. The results of the WAC analysis are included within Appendix H and the outputs from the software are included in a Waste Classification Report in Appendix I.

These results, together with those of the waste classification above, are summarised in the following table:

Waste Stream	Typical Depth (m bgl) and Description	Is it Hazardous?	Waste Code	Waste Acceptance Criteria	Appropriate Landfill
Made Ground	GL-4.3m - Made ground associated with former ground workings composed of dark grey silty clay/ gravel with construction debris, but excluding asphalt surfacing.	No	17 05 04	Passed Criteria for Inert Landfill	INERT*
Lowestoft Formation	1.0-12.5m - Yellowish brown, gravelly silty clay and silty gravel.	No	17 05 04	Passed Criteria for Inert Landfill	INERT
Lewes Nodular & Seaford Chalk Formation	12.5->25.0m – Structureless chalk, recovered as <10% intact gravel in a white, clayey, sandy, silty matrix.	No	17 05 04	Passed Criteria for Inert Landfill	INERT

*The results of WAC testing indicate that made ground associated with former ground workings composed of dark grey silty clay/ gravel with construction debris (but excluding asphalt surfacing) that was encountered in selected boreholes, has a Total Organic Carbon (TOC) level greater than the Inert Waste limit of 3%. However, 'Waste Sampling and Testing for Disposal to Landfill (2013)' states that "in the case of soils, a higher TOC Limit Value may be permitted by the Environment Agency at an inert waste landfill, provided the DOC value of 500mg/kg is achieved at L/S 10 1/kg, either at the soils own pH or at a pH value between 7.5 and 8.0." In this scenario, the DOC value of 40mg/kg falls significantly below this threshold and on this basis has therefore been classified as Inert for the purpose of disposal.

Furthermore, natural soils considered representative of superficial Lowestoft Formation and underlying bedrock of the Lewes Nodular & Seaford Chalk Formation can be classified as **Inert** for the purposes of off-site disposal.

Although the soil sampling process did not identify Asbestos Containing Material (ACM) within the soil, it must be acknowledged that the material may exist within areas which were not sampled or accessible during the investigation. Any visually identifiable fragments of ACM can invalidate any non-hazardous waste classification, as such, the above waste classifications are made on the proviso that any visually identifiable fragments of ACM are removed from the material prior to its disposal off-site. The subsequent ACM must then be disposed of in accordance with the *Control of Asbestos Regulations 2012*.

The classification of the made ground does not include the existing asphalt surfacing or the sub-base materials comprising silty gravel/ sand found in the majority of locations beneath the existing car park; but to a limited depth. These materials should be segregated and analysed for any future off-site disposal requirements.

5.6 Soil Gas and Organic Vapour Results

Ground gas and organic vapour monitoring has been conducted on four occasions following the initial intrusive investigation, between the 11th October and 1st November 2021, on an approximate weekly basis.

Results of the monitoring are summarised below and presented in full in Table 3, along with calculated gas screening values, set out in CIRIA guidance 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'.

Borehole	CH₄ Range of Detections (%v/v)	CO ₂ Range of Detections (%v/v)	O ₂ Range of Detections (%v/v)	Organic Vapour Range of Detections (ppmV)
BH1	<0.1	<0.1	20.0-20.5	<0.1-0.1
BH2	<0.1	<0.1	20.3-20.6	<0.1
BH3	<0.1	<0.1	20.3-20.6	<0.1
WS1	<0.1	<0.1-3.8	16.6-20.5	<0.1-0.1
WS3	<0.1	<0.1-0.2	20.3-20.6	<0.1
WS6	<0.1	<0.1-0.2	20.3-20.6	<0.1-0.1
WS12	<0.1	<0.1-3.3	17.6-20.6	< 0.1-0.1
Notes	; CH4 Methane	CO ₂	Carbon Dioxide	O ₂ Oxygen

Flow rates (positive or negative) were not encountered in any of the monitoring installations during the four return visits, which were completed under varying atmospheric pressures and conditions.

Overall, limited concentrations of carbon dioxide and organic vapours were identified within the seven monitoring installations with methane not detected above MDL (<0.1% v/v) in any of the positions throughout the programme.

5.7 Geotechnical Testing

5.7.1 In-Situ Geotechnical Testing

The results of in-situ geotechnical testing, are summarised in the graph below.

As can be seen from the above summary, there is a general trend of the recorded 'N' values (and therefore, soil strength) increasing with depth throughout the profile of the Lowestoft Formation and underlying Lewes Nodular & Seaford Chalk Formation. The data returned from the superficial unit is variable, which is expected due to the granular and cohesive nature of the soils encountered.

The interface between the superficial soils and bedrock is evident around 10m bgl, with the in-situ strength reducing notably within the chalk, albeit this material is still considered to be quite consistent and competent. Furthermore, no particularly low strength layers were encountered within the profile of the bedrock, which may have otherwise been an indication of the presence of potential voiding, as a result of dissolution features which have been noted in the local area.

5.7.2 Laboratory Geotechnical Testing

	Range of Parameters					
Strata	Moisture Content (%)		Plasticity Index (%)		Undrained Shear Strength (kPa)	
	Min	Max	Min	Max	Min	Max
Lowestoft Formation (cohesive)	11.4	21.8	12 (8)	35	106	166
Lewes Nodular & Seaford Chalk Formation	31.9	32.9	9 (7)	11 (10)	-	

The results of geotechnical laboratory testing are summarised in the table below.

Notes:

Indicates plasticity adjusted for granular content

	Soil Fraction (%)					
Strata	Gravel		Sand		Silt/Clay	
	Min	Max	Min	Max	Min	Max
Lowestoft Formation (granular)	55	67	25	36	2	13

The water content, liquid and plastic limits and plasticity and liquidity indexes were established for twelve samples of predominantly cohesive soils, tested in line with BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3 and 5.4.

Particle Size Distribution (PSD) tests were carried out on four samples of granular soils in accordance with the test BS1377: Part2: 1990: 9.2.

Triaxial tests (single stage) were completed for five samples of predominantly cohesive soils in accordance with BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 multi-stage loading.

The determination of saturation moisture content and intact dry density was carried out on one sample according to BS1377: Part 2: 1990: 3.3.

Sulphate contents and pH values determinations were carried out by the environmental laboratory for natural soils, the results of which are summarised in Section 6.6.

A geotechnical laboratory analysis testing schedule is presented as Table 2 and all geotechnical sample results obtained from the laboratory are included as Appendix J.

6 GEOTECHNICAL APPRAISAL

The ground conditions have been found to comprise made ground up to around 1.0m thick in the majority of locations, although deposits in excess of roughly 2.5m have been encountered in a limited number of boreholes towards the northern and eastern boundaries. Natural soils beneath have been confirmed as competent superficial Lowestoft Formation (which vary between clay based and granular materials) and progress to around 10.0m bgl, with Lewes Nodular & Seaford Chalk Formation bedrock present at depth.

It should be noted that a significant thickness of infilled soils can be expected beneath the existing garage/ parking structure, and may also be present in other areas of the site which haven't been investigated as part of the intrusive survey.

Geotechnical Category (BS EN 1997- 1:2004)	Definition		
GC1	Geotechnical Category 1 (GC1) should only include small and relatively simple structures for which it is possible to ensure that the fundamental requirements will be satisfied on the basis of experience and qualitative geotechnical investigations with negligible risk in terms of overall stability or ground movements and in ground conditions which are known.		
GC2	Geotechnical Category 2 (GC2) should include conventional types of structure and foundation with no exceptional risk or difficult or loading conditions. Designs for structures in Geotechnical Category 2 should normally include quantitative geotechnical data and analysis.		
GC3	Geotechnical Category 3 (GC3) should include structures or parts of structures, which fall outside the limits of Geotechnical Categories 1 and 2. This may include very large or unusual structures, structures involving abnormal risks, or unusual or exceptionally difficult ground or loading conditions, or structures in areas of probable site instability or persistent ground movements that require separate investigation or special measures.		

6.1 Geotechnical Category

At the time of writing, it is anticipated the proposed redevelopment will include the construction of several new multi-storey buildings that include parking facilities on the ground floor with residential apartments above. External works are anticipated to include areas of communal soft landscaping and hardstanding. Therefore, the below assessment has been undertaken in accordance with Geotechnical Category 2 (GC2), including conventional types of structure and foundation with no exceptional risk or difficult ground or loading conditions, as defined by BS EN 1997-1:2004.

6.2 Structural Foundations

6.2.1 Spread Foundations

As detailed above, the development is anticipated to comprise several new multi-storey buildings that include parking facilities on the ground floor with residential apartments above. The foundation assessment has therefore been undertaken in accordance with BS EN 1997-1:2004, to take in to account;

- Bearing Pressure (Ultimate Limit State)
- Settlement (Serviceability Limit State)

The ground conditions are considered suitable for the use of conventional spread foundations, either strip footings or pad foundations, bearing upon the Lowestoft Formation (either granular or cohesive), recorded across the proposed development area.

Allowable bearing capacities for strip and pad footings as applicable to the granular or cohesive soils of the Lowestoft Formation are summarised in the table below. The allowable bearing capacity is the permissible increase in vertical stress at the level of the underside of the foundation, above existing overburden pressure, which may be calculated on the basis of a soil density of 19kN/m^3 .

Foundation Depth	Allowable Bearing Capacity (kN/m²)			
(m bgl)	Strip footings	Pad footings		
1.0	85	110		
1.5	100	125		
2.0	110	135		
2.5	135	170		

At the above allowable bearing capacities, total settlements are considered unlikely to exceed roughly 20-25mm in cohesive soils, but may be limited to 10-15mm where granular soils are encountered at formation level. Settlements in cohesive soils will likely comprise a small amount of immediate settlement and a larger proportion of consolidation settlement, which will occur over a long period of time, whilst settlements in granular soils will occur rapidly as loadings increase. Where foundations cross a change in strata, from cohesive to granular, it would be prudent to incorporate nominal reinforcement to control the effects of differential settlements.

A minimum foundation depth of 0.9m, below existing or proposed ground level is considered suitable for any new buildings, subject to the following provisos:

- a) All foundations should fully penetrate any disturbed or made ground and extend a minimum of 150mm into undisturbed natural strata. The same also applies for any shallow natural deposits which are of slightly lower strength (soft/ loose) such as those recorded in WS7 and WS9; positioned towards the south eastern corner of the site. It is recognised a notable thickness of infill material is anticipated beneath the existing garage and car park structure, and locally deeper made ground materials (>2.5m) have already been identified in a few boreholes located towards the northern and eastern boundaries respectively.
- b) The cohesive soil (clays) will be subject to volume change, (subsidence and / or heave) due to the presence of trees. Foundation design will therefore need to take into account the presence of trees, both those to remain and those to be planted as well as to be removed from site. The cohesive Lowestoft Formation should be considered as having a 'medium volume change potential' in accordance with NHBC Standards Chapter 4.2 'Building Near Trees'.
- c) Furthermore, it is recommended that the presence of potential dissolution features is further assessed in the vicinity of the proposed structures. This could be completed by forming a series of dynamic probe boreholes to confirm the strength of the chalk bedrock in these sections of the property, and discount the presence of any voiding, which must be considered further in the context of the proposed foundation solution. Dynamic probes should progress to approximately 20.0m bgl.

Where foundation depths exceed 1.5m due to the presence of trees, full anti-heave precautions will be required.

6.2.2 Piles

Given the anticipated loads associated with the proposed structures, as well as the local presence of shallow clay soils (which will be subject to volume change) and a significant thickness of made ground in certain areas, a deeper foundation solution such as piles may well offer the most appropriate solution for the proposed development.

Piles are considered likely to terminate in the underlying Lewes Nodular & Seaford Chalk Formation and carry their loads in a combination of end bearing and skin friction. It would be unwise to assume any positive contribution to skin friction within any made ground materials or low strength superficial soils.

The ground conditions are considered suitable for the use of bored or driven piles. However, the use of driven piles may cause noise and vibration nuisance to site neighbours/ structures and may ordinarily negate their use.

Piles will need to be designed in full accordance with NHBC Standards and should incorporate reinforcement and full anti-heave precautions where required.

In view of the wide variety of piles sizes available, and the range of installation plant and techniques, the design of the piles should be carried out by, and should remain the responsibility of the specialist piling contractor, who will reflect their own methods, experience and design procedures within their proposals.

6.2.3 Chalk Dissolution

Chalk bedrock was encountered in each of the deep boreholes, from around 10-12m depth. No areas of voiding or particularly low strength soils were identified throughout the bedrock, with insitu strength testing confirming a general increase in strength with depth throughout its profile. However, the potential for dissolution features is classified as 'moderate' within the Envirocheck data report, with some solution features recorded locally (albeit none on site), which if present could impact overlying soils and therefore proposed structures. As a result, the existence of subsurface voiding cannot be completely discounted.

Therefore, foundation design should take all due regard of the potential for areas of low strength material or voiding to exist in the subsurface, either currently or in the future. Measures to protect shallow foundations (if they are adopted) from such features may include, but are not limited to, reinforcement of foundations and the extension of 'cruciform type' foundations, beyond the building line.

Furthermore, it is also recommended that Local Authority Building Control are consulted to see if they have any other specific requirements for the design of foundations (shallow and/ or deep) to account for the presence of dissolution features within this area. It should be noted that extensive in-situ strength testing completed across the property did not identify any areas of particularly low strength material, to a maximum depth of 25.0mbgl.

6.3 Ground Floor Construction

Given that made ground is present across the site and the near surface soils being likely to be susceptible to volume change, suspended ground floor slabs are recommended for any new buildings, incorporating a sub-floor void suitable for a 'medium volume change potential' soil.

The floor slab design will also need to take in to account the presence of trees/vegetation and should be designed to accommodate any heave/ shrinkage that will be generated.

6.4 Drainage

Falling head infiltration tests were undertaken at four shallow borehole locations across the site, to give an initial indication of the permeability of the underlying soils.

Infiltration rates are summarised in the table below, but should only be treated as a guide/ indicative at this stage:

Borehole Location & Depth (m bgl)	Approximate Infiltration Rate (m/s)	Comments
WS2 (4.0m)	6.2x10 ⁻⁰⁷	Notable profile of made ground in this borehole location.
WS5 (4.0m)	Not calculable	No discernible change in water levels over testing period, cohesive soils recovered from borehole.

Borehole Location & Depth (m bgl)	Approximate Infiltration Rate (m/s)	Comments
WS8 (3.0m)	2.7x10 ⁻⁰⁶	Granular and cohesive soils recovered from borehole
WS11 (2.0m)	Not calculable	No discernible change in water levels over testing period, cohesive soils recovered from borehole.

The results of the infiltration testing indicate that the clay soils beneath the site are generally not suitable for the adoption of infiltration drainage, with negligible change in water levels throughout the testing periods in WS5 and WS11. This is not unexpected as these soils are typically low permeability.

The calculated rate from the data recovered from WS8 suggests a 'low to medium permeability' soil, which is likely to be the result of higher proportion of granular materials within this position. Therefore, where a greater thickness of granular soils are present within the profile of the Lowestoft Formation (in the south eastern section) for example, they might be suitable for the adoption of soakaways or other sustainable drainage systems. However, this would be subject to formal soakaway testing aligned with the requirements of BRE Digest 365 to inform design.

It should be noted that due to the presence of relatively low density chalk bedrock beneath the site, with a moderate dissolution risk, any soakaway drainage systems would likely need to be located at least 20m away from any existing or proposed structures, to mitigate against the moderate risk of potential chalk dissolution.

6.5 Groundworks

Shallow excavations formed within the underlying clay soils may be stable for short periods, but should not be relied upon over extended periods, particularly where a notable proportion of granular soils are encountered. Given the variability of the shallow soils, it is recommended that temporary shoring of all but the shallowest excavations is undertaken during the groundworks phase. The stability of any made ground or disturbed ground arising from removal of any below ground structures (such as existing building foundations) should not be relied upon in unsupported excavations.

Heavy plant and stockpiles of materials should not be permitted close to the edges of unsupported excavations. Further reference may be made to CIRIA Report No. 97 '*Trenching Practice*' 1992.

Based on the findings of the ground investigation, groundwater ingress is not anticipated within any on-site excavations.

6.6 Concrete Grade

Sulphate contents and pH value determinations were carried out by the environmental laboratory and the results of this testing are summarised in the below table as well as being presented within Appendix H.

Strata	Water Sulpha (n	∙Soluble te 2:1 SO₄ ng/l)	рН		
	Min	Max	Min	Max	
Lowestoft Formation	21.9	186.7	4.97	8.04	
Lewes Nodular & Seaford Chalk Formation	14.4	43.8	8.60	8.92	

In accordance with Part 1 of the BRE Special Digest 1 'Concrete in Aggressive Ground' 2005, a design sulphate class of DS1 is considered suitable for concrete in direct contact with the superficial Lowestoft Formation and underlying Lewes Nodular & Seaford Chalk Formation, with an aggressive chemical environment for concrete (ACEC) of AC-1s.

7 ENVIRONMENTAL APPRAISAL

The following section outlines the approach applied to assessing the risks posed to human health and groundwater through a Generic Quantitative Risk Assessment, then identifies any sample results found by this investigation which warrant further consideration.

7.1 Human Health

7.1.1 Land Use Setting & Generic Screening Criteria

In order to screen laboratory data for concentrations of contaminants in soil with potential to cause harm to human health, a Public Open Space – Residential (POS_{RESI}) land use setting has been adopted as it is considered the most representative of the anticipated setting and also aligns with the conclusions of the Phase I desk study.

The technical framework used to derive the assessment criteria and the documents in which they are published are summarised as follows:

- EA Science Reports (SC050021/SR2, SC050021/SR3, and SC050021/SR7)
- EA Soil Guideline Value Science Reports
- Suitable For Use Levels (S4ULs) for Human Health Risk Assessment LQM and CIEH (2015)
- Soil Generic Assessment Criteria for Human Health Risk Assessment EIC/AGS/CL:AIRE (2010)
- Development of Category 4 Screening Levels for assessment of land affected by contamination SP1010 DEFRA (2013)

Category 4 Screening Levels (C4SLs) provide generic suitable for use screening values for common contaminants in a variety of land uses and are also utilised as appropriate generic screening criteria. For concentrations of Arsenic, Lead and BaP in soil, EPS has used DEFRAs C4SL as an appropriate guide for professional judgement with respect to reasonable 'low risk' levels in the context of this site and its suitability for use.

It is considered reasonable to utilise Benzo(a)pyrene (BaP) as a risk driver or marker representative of genotoxic PAHs (i.e. including dibenzo(ah)anthracene and benzo(b)fluoranthene) given the absence of any 'low risk' (C4SL) equivalent screening values for these compounds.

A summary of the screening criteria and the methodology used to derive them is included in Appendix K.

7.1.2 Assessment of Soil Results

The results of the screening process for on-site human receptors showed that adopted criteria, representative of suitability limits to future site users were not exceeded for any contaminant at any location.

7.2 Controlled Waters

7.2.1 Generic Screening

In addition to screening the recorded concentrations of contaminants to pose risks to human health, EPS has also screened the concentrations for potential to cause harm to water resources. The criteria used for this process were derived by EPS using the following technical guidance:

• Environment Agency Remedial Targets Methodology: Hydrogeological Risk Assessment for Land Contamination.

Resource Sensitivity of Area	Basis of Tier 1 Criteria		
High Groundwater Resource Potential (HGwRP) - Principal Aquifers	UK Drinking Water Standards (UKDWS)		
Low Groundwater Resource Potential (LGwRP) - Secondary Aquifers not being abstracted and Unproductive groundwater strata	UK Environmental Quality Standards (EQS)		

Screening criteria for High Groundwater Resource Potential (HGwRP) have been adopted for this site due to the underlying bedrock (chalk) being classified as a Principal Aquifer as well as the site's location within a SPZ.

7.2.2 Assessment of Soil Results – Controlled Waters

The results of the screening process for controlled waters show that screening values for High Groundwater Resource Potential (HGwRP) have been exceeded on a number of occasions, as summarised in the table below.

Contaminant	Screening Criteria (mg/kg)	No. of Exceedances	Highest Exceedance (mg/kg) & Sampling Location (m bgl)
Benzo(a)pyrene	1.44	1	9.60 at WS5 (0.1-0.35) in made ground
Naphthalene	0.02	3	1.81 at WS5 (0.1-0.35) in made ground
TPH CWG Aromatics (C10-C12)	2.76	1	6.3 at BH2 (2.0-2.4) in made ground
TPH CWG Aromatics (C12-C16)	5.5	1	14 at BH2 (2.0-2.4) in made ground
TPH CWG Aromatics (C16-C21)	17.4	2	51 at BH2 (2.0-2.4) in made ground
TPH CWG Aromatics (C21-C35)	138	1	188 at BH2 (2.0-2.4) in made ground

Although the above exceedances of screening criteria protective of controlled waters has been detected in a limited number of the soil samples, that does not necessarily mean an unacceptable risk to controlled waters, primarily groundwater, exists. The generic screening values are by their very nature, extremely conservative and in the first instance an exceedance should lead to qualitative consideration of the risks that may be posed given the context of a specific site.

Whilst BaP and Naphthalene were detected above respective screening criteria on a few occasions, these contaminants are generally known to exhibit low mobility within the environment. In addition, the source of these impacts is anticipated to be asphalt surfacing which has been broken up and inadvertently included with the samples of made ground submitted to the laboratory.

Although several fractions of aromatic TPH have also been analysed at BH2 (2.0-2.4m), in the order of 2-3x the adopted screening criteria, it should be recognised that two further samples were obtained from this same borehole location at 6.5-6.9m and 17.8-18.2m respectively; both of which didn't include any detectable concentrations of similar contaminants of concern. This was supported by the absence of any visual and olfactory contamination during the field works and it should be noted that groundwater has been proven to lie at least 25m below existing surface levels beneath the study area. Furthermore, a significant profile of superficial soils, in the order of 10m thick (a notable proportion of which are cohesive/ low permeability) is also present across the site and above the chalk bedrock. This is anticipated to create a further obstruction/ barrier for any isolated pockets of residual contamination within the made ground (from historic railway infrastructure for example), from impacting the sensitive chalk aquifer at depth. Therefore, no unacceptable risks to controlled waters are considered to have been identified as part of this risk assessment.

7.3 Ground Gas and Organic Vapour Monitoring

7.3.1 Generic Screening

An assessment of the risks posed by ground gas and organic vapour generation has been undertaken through consideration of a conservative maximum individual Gas Screening Value (GSV) or site characteristic hazardous gas flow rate, in accordance with the following guidance:

- CIRIA 665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'.
- NHBC 'Guidance on Evaluation of Development Proposals on Sites Where Methane and Carbon Dioxide are Present' (March 2007).
- British Standard BS8485:2015 'Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings'.

7.3.2 Assessment of Ground Gas Results

Results of soil gas monitoring undertaken after the initial intrusive investigation are presented in Table 3, along with the calculated GSVs.

Due to the anticipated nature of the proposed development, (construction of several new multistorey buildings that include parking facilities on the ground floor with residential apartments above), the '*Modified Wilson and Card Classification System*' has been used to assess the risks from ground gases, (in accordance with CIRIA C665).

The maximum individual GSV is calculated by multiplying the maximum borehole flow rate (l/hr) by the maximum gas concentration (%). For example, monitoring data reporting a maximum flow rate of 3.5l/hr and a maximum concentration of 4% methane would have a GSV of 0.14 (4/100 x 3.5).

No 'borehole flow' has been measured within any of the monitoring points, during four return visits, all undertaken during periods of falling atmospheric pressure. The maximum GSVs have been calculated as <0.00011/hr for methane and <0.00381/hr for carbon dioxide. The calculated GSVs would typically be considered to be representative of characteristic situation 1 (CS1) conditions, which denotes a 'very low risk' from ground gases to be present at the site.

Furthermore, only negligible concentrations of organic vapours were detected within a few of the monitoring points during one of the return visits on the 25^{th} October 2021 (maximum of 0.1ppmV), and therefore do not warrant further consideration or control measures.

7.4 Summary of Findings

Through consideration of the site's history and environmental setting, the Phase I Desk Study established that a number of plausible contaminant linkages have the potential either to be currently active, or to become active as a result of the proposed development.

These contaminant linkages primarily comprise of human health risks associated with exposure of construction workers and future site users to made ground and potentially contaminated shallow soils due to the anticipated presence of made ground from the existing car park facility as well as more localised impacts from former (on-site) and neighbouring railway infrastructure. Furthermore, potential risks relating to the generation and migration of ground gas from both on-site (historic ground workings) and off-site (local areas of landfilling/ infilling) sources was also established, as well as risks posed to controlled waters.

Intrusive investigations comprised the formation of 15 boreholes to a maximum depth of 25m. The ground conditions were found to comprise a generally limited thickness of made ground although deeper deposits were found in two locations which are anticipated to align with former on-site ground workings and/ or railways embankments, to a maximum depth of 4.3m bgl. Below the infill, a significant thickness of superficial Lowestoft Formation comprising both cohesive and granular soils were encountered to roughly 10m bgl, with chalk bedrock proven beyond the maximum depth of the deep boreholes. Importantly, groundwater wasn't encountered in any of the borehole locations, to 25m bgl.

Despite the presence of made ground, no signs of contamination were recorded in the field, which was largely supported by the findings of the laboratory analysis, with all samples being screened as chemically suitable for use in the anticipated land use/ setting (POS_{RESI}). It should be noted that the above classification is subject to adjustment should finalised development plans reveal more sensitive areas of landscaping then currently anticipated, such as enclosed or private garden areas, albeit this is considered unlikely at this stage.

Potential risks to controlled waters were also highlighted as a result of some limited concentrations of aromatic TPH and selected PAH compounds within a few made ground samples. Although the chalk bedrock is a sensitive receptor, potential risks were discounted on the basis of the nature of the ground profile, depth of the groundwater table and a number of other factors outlined in Section 7.2.2.

Waste classification analysis has identified that the made ground (associated with former ground workings) and natural soils considered representative of superficial Lowestoft Formation and underlying bedrock of the Lewes Nodular & Seaford Chalk Formation can be classified as **Inert** for the purposes of off-site disposal.

Ground gases were also previously identified as a potential risk to any future development and therefore a robust ground gas monitoring programme was undertaken as part of the intrusive works. No significant levels of ground gas / organic vapours were recorded across the four return visits (under falling atmospheric conditions), representative of 'very low risk'/ CS1 scenario conditions, whereby no ground gas protection measures are considered necessary for the new buildings.

7.5 Recommendations

In the context of potentially unacceptable or acceptable risks as outlined within the Environment Agency's *Land Contamination: Risk Management guidance* (LC:RM, 2020), the risks identified by this work will not require further assessment, providing the following control measures are adhered to at the appropriate stage in the redevelopment process:

a) Although the soils in place have been found to be suitable for use in a (POS_{RESI}) setting in terms of chemical quality, given the presence of made ground beneath the surface of the site, it would be prudent to install a simple cover system of **100mm** certified clean imported soils. This would represent an appropriate measure for any areas which are intended as soft landscaping, in order to provide an appropriate growing medium and conform to NHBC standards. It should be noted that this recommendation is made only for soft landscaped areas and there is no such requirement for areas beneath any proposed hardstanding/ building footprints.

All imported topsoil/ subsoil for use within the cover system should be accompanied by appropriate laboratory analysis to demonstrate its chemical and physical suitability for use and ensure it meets the requirements of the checklist included in Appendix L. Details of the imported material and photographs of the installation should be provided to the local authority as evidence of completion of the measures. It should be noted that this recommendation is made only for areas of soft landscaping, and there is no such requirement for areas beneath any proposed hardstanding or building footprints.

- b) All construction workers operating at the site should be advised of the potential for contact with made ground material within shallow soils. Appropriate health and safety precautions should be adopted during any excavation works to avoid exposure to soils. Reference should be made to relevant health & safety guidance including the following CIRIA document: *R132 Guide to Safe Working on Contaminated Sites*. Consideration should also be given to the potential for dust generation during excavation of the made ground materials and the need for damping down / dust suppression measures.
- c) Should any palpable evidence of unexpected contamination be encountered during the redevelopment work, which significantly varies from the conditions described above, it should be reported to EPS so that an inspection can be made and appropriate sampling and assessment work carried out. A method statement for encountering any unexpected contamination is included as Appendix M of this report.

It is also recommended that a copy of this report be provided to the Environmental Health Department of Welwyn Hatfield Council for inclusion in their land quality records.

FIGURES

- Approximate Site Boundary

Crown Copyright. All rights reserved. Licence Number: 100054115

s	Title:	Current Site Layout Plan			
	Project	North Campus Fast Car Park	Scale NTS		
		110,000	Welwyn Garden City, AL8 6UN	Drawn By SC	Approved By BV
		5	Job No UK2	1 5579	
		Fig No:	2	Dwg No Her	fordshire/1121/02
		0		Date Nov	ember 2021

- Approximate Site Boundary

Crown Copyright. All rights reserved. Licence Number: 100054115

Ņ

- Approximate Site Boundary

- + Approximate Shell & Auger Borehole Location
- + Approximate Window Sample Borehole Location

Crown Copyright. All rights reserved. Licence Number: 100054115

	Title:	Borehole Location Plan			
S	Project:	North Campus Fast Car Park	Scale NTS		
		Welwyn Garden City, AL8 6UN	Drawn By SC	Approved By BV	
		5 5.	Job No UK2	1 5579	
	Fig No:	4	Dwg No Hert	fordshire/1021/04	
	-		Date Octo	ber 2021	

TABLES

Sample ID	Sample ID Sample (m bgl)		EPS Mini Suite	EPS TPH Suite	pH & Sulphates	
BH1	5.45	-	275		1	
BH2	6.5-6.9	1	2-0	-	(H)	
BH1	10.3	-	276		1	
BH1	10.5	127	546	223	1	
BH2	17.8-18.2	1	870			
BH2	2.0-2.4	1	6 <u>1</u> 1	1921	8 <u>1</u> 2	
BH2	4.7	()	2 - 3		1	
BH2	15.0	121	-	-	1	
BH3	1.65		5 — 3	5 - 2	1	
BH3	3.45		255	151	1	
BH3	22.5	1=3	820	320	1	
WS1	0.1-0.45		1	1	2-0	
WS1	1.6-1.8	820	(<u></u>)	1	828	
WS3	0.1-0.6	(=)	1	1	85	
WS4	0.1-0.45	-	1	-	-	
WS5	0.1-0.35	()	1	(-)	8-6	
WS6	0.1-0.6	-	1		1. 1.	
WS7	0.1-0.6	1-1	1	1	(-)	
WS8	0.7-0.9		170	1	-	
WS9	0.15-0.5	1=3	1	32	12	
WS10	0.15-0.3		1	1		
WS11	0.2-0.45	820	1	12	825	
WS12	0.1-0.5	-	1	(-)	ile:	

Table 1 – Environmental Laboratory Testing Schedule

<u>Notes</u>: m bgl

meters below ground level Sample Taken Sample Not Analysed EPS Mini Suite EPS Waste Suite EPS TPH Suite Organic Matter, Cyanide, Metals, PAH's, Phenols and Asbestos Screen Waste Characterisation Suite Total Petroleum Hydrocarbons, BTEX compounds and MTBE

1

Sample ID	Sample Depth (m bgl)	Atterberg Limits	Moisture Content	PSD	Triaxial	Saturation Moisture Content
BH1	3.0	1	1		1	6 5 10
BH1	5.0	1	1	823	1	2L
BH1	8.0	1	1	1 1	1	-
BH1	11.7	123	720	1		2. ¹
BH1	13.3	1	1	3 9 5	н	
BH2	8.0	1771)	1.50 1.50	1		
BH2	23.8	140	194	-	T.	1
BH3	1.2	1	1	870	1	
BH3	3.0	1	1	8 4 0	1	2
BH3	4.0	1 	100	1	-	2 2
BH3	6.5	123	740	1		2
BH3	16.4	1	1	19 9 6	H	-
WS2	1.8-2.0	1	1	-	1	í.
WS3	1.6-1.8	1	1		-	1
WS4	1.6-1.8	1	1	870	~	
WS6	0.8-1.0	1	1	840	2	-
WS7	0.6-0.8	1	1	-		

Table 2 – Geotechnical Laboratory Testing Schedule

<u>Notes</u>: m bgl 1

2

PSD

meters below ground level

Sample Taken

Sample Not Analysed

Particle Size Distribution

BH ID	Flow	CH₄ (%v/v)	CO ₂	(%v/v)	O ₂ (°	‰v/v)	H ₂ S (ppm)	VOC	Gas Screening Value (1/hr)	Gas Screening Value (1/hr)
	(17 m)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	(bbm a)	(CH ₄)	(CO ₂)
BH1	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	< 0.1	<0.1	< 0.0001	< 0.0001
BH2	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	<0.1	<0.1	< 0.0001	<0.0001
BH3	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	< 0.1	<0.1	< 0.0001	< 0.0001
WS1	<0.1	<0.1	<0.1	3.8	3.8	16.6	16.6	< 0.1	<0.1	< 0.0001	<0.0038
WS3	<0.1	<0.1	<0.1	0.2	0.2	20.4	20.4	<0.1	<0.1	<0.0001	< 0.0002
WS6	<0.1	<0.1	< 0.1	0.2	0.2	20.5	20.5	<0.1	<0.1	< 0.0001	< 0.0002
WS12	<0.1	<0.1	<0.1	3.3	3.3	17.6	17.6	<0.1	<0.1	<0.0001	<0.0033

Table 3 – Ground Gas Monitoring Well Analysis

Readings collected at an atmospheric pressure of 1018mbar (falling) to 1017mbar on the 11th October 2021

BH ID	Flow	CH4 (%v/v)		CO ₂ (%v/v)		O ₂ (%v/v)		H ₂ S (ppm)	VOC	Gas Screening Value (1/hr)	Gas Screening Value (1/hr)
	(17 hr)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	(ppmv)	(CH ₄)	(CO ₂)
BH1	<0.1	<0.1	<0.1	<0.1	<0.1	20.3	20.3	<0.1	<0.1	< 0.0001	< 0.0001
BH2	<0.1	<0.1	<0.1	<0.1	<0.1	20.6	20.6	<0.1	<0.1	< 0.0001	< 0.0001
BH3	<0.1	<0.1	<0.1	<0.1	<0.1	20.6	20.6	<0.1	<0.1	< 0.0001	<0.0001
WS1	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	<0.1	<0.1	< 0.0001	< 0.0001
WS3	<0.1	<0.1	<0.1	<0.1	<0.1	20.6	20.6	<0.1	<0.1	<0.0001	<0.0001
WS6	<0.1	<0.1	<0.1	<0.1	<0.1	20.6	20.6	<0.1	<0.1	<0.0001	<0.0001
WS12	<0.1	<0.1	<0.1	<0.1	<0.1	20.6	20.6	<0.1	<0.1	<0.0001	<0.0001

Readings collected at an atmospheric pressure of 1005mbar (falling) to 1003mbar on the 18th October 2021

BH ID	Flow	CH4 (%v/v)		CO ₂ (%v/v)		O ₂ (%v/v)		H ₂ S (ppm)	VOC	Gas Screening Value (1/hr)	Gas Screening Value (1/hr)
	(17 mr)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	(ppmv)	(CH ₄)	(CO ₂)
BH1	<0.1	<0.1	<0.1	<0.1	<0.1	20.3	20.3	< 0.1	0.1	< 0.0001	< 0.0001
BH2	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	<0.1	<0.1	< 0.0001	< 0.0001
BH3	<0.1	<0.1	<0.1	<0.1	<0.1	20.4	20.4	<0.1	<0.1	< 0.0001	< 0.0001
WS1	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	<0.1	0.1	< 0.0001	<0.0001
WS3	<0.1	<0.1	<0.1	<0.1	<0.1	20.5	20.5	<0.1	< 0.1	<0.0001	< 0.0001
WS6	<0.1	<0.1	<0.1	<0.1	<0.1	20.4	20.4	<0.1	0.1	< 0.0001	< 0.0001
WS12	<0.1	<0.1	<0.1	<0.1	<0.1	20.4	20.4	<0.1	0.1	<0.0001	<0.0001

Readings collected at an atmospheric pressure of 1002mbar (falling) to 1001mbar on the 25th October 2021

BH ID H	Flow	CH4 (%v/v)		CO ₂ (%v/v)		O ₂ (%v/v)		H ₂ S (ppm)	VOC	Gas Screening Value (1/hr)	Gas Screening Value (1/hr)
	(17 hr)	Peak	Steady	Peak	Steady	Peak	Steady	Peak	(ppmv)	(CH4)	(CO ₂)
BH1	<0.1	<0.1	<0.1	<0.1	<0.1	20.0	20.0	<0.1	<0.1	< 0.0001	< 0.0001
BH2	<0.1	<0.1	<0.1	<0.1	<0.1	20.3	20.3	<0.1	<0.1	< 0.0001	<0.0001
BH3	<0.1	<0.1	<0.1	<0.1	<0.1	20.3	20.3	<0.1	<0.1	< 0.0001	< 0.0001
WS1	<0.1	<0.1	<0.1	<0.1	< 0.1	20.2	20.2	<0.1	<0.1	< 0.0001	< 0.0001
WS3	<0.1	<0.1	<0.1	<0.1	<0.1	20.3	20.3	<0.1	<0.1	<0.0001	<0.0001
WS6	<0.1	<0.1	<0.1	<0.1	<0.1	20.3	20.3	<0.1	<0.1	<0.0001	<0.0001
WS12	<0.1	<0.1	<0.1	<0.1	<0.1	20.3	20.3	< 0.1	<0.1	<0.0001	<0.0001

Readings collected at an atmospheric pressure of 981mbar (falling) to 980mbar on the 1[#] November 2021

APPENDICES

APPENDIX A

Selected Site Photographs

_	Approximate Site Boundary	
1	Approximate Photo Location	

eps

Crown Copyright. All rights reserved. Licence Number: 100054115

]	Title:	Photo Location Plan			
	Project	North Campus Fast Car Park	Scale	NTS	
	riojece.	Welwyn Garden City, AL8 6UN	Drawn By	SC	Approved By BV
	Appendix:	x: A	Job No Dwg No Date	UK21 Hertfe Nove	5579 ordshire/1121/A mber 2021

APPENDIX B

Indicative Proposed Development Plan

EXTENT OF MANSARD/DORMER ACCOMMODATION

AFFORDABLE TENURE LOCATIONS

DENOTES M4(3) ACCOMMODATION (GF)

×

UNITAREA		UNIT AREA BLOCK											TOTAL AREA		
	TYPE	jsqmģ	(sqit)	A	В	c	D	E	F	G	H	IOTAL	(sam)	(sqft)	MIX
	1.1	50.2	540.2	32	8	0	0	8	0	0	0	48	2409.6	25927	
8	1.2	51.6	555.2	10	0	0	0	0	0	0	0	10	516.0	5552	20.21
8	1.3	50.2	540.2	0	11	7	7	0	0	9	11	45	2259.0	24307	24307 2436
	1.4	56.6	609.0	0	4	0	0	0	0	0	0	4	226.4	2436	
	2.1	73.2	787.6	16	10	0	0	7	0	0	0	33	2415.6	25992	
	2.2	71.2	766.1	20	5	o	0	4	ρ	0	0	29	2064.8	22217	
	2.3	61.4	660.7	7	4	0	0	4	0	0	0	15	921.0	9910	910
est.	2.4	71.4	768.3	10	0	0	0	0	0	0	0	10	714.0	7683 4332 57.9% 41835 3366 3099	
2000	2.5	67.1	722,0	6	0	0	0	0	0	0	0	6	402.6		
	2.6	72.0	774.7	0	12	7	7	0	8	9	11	54	3888.0		
	2.7	78.2	841.4	0	4	0	0	0	0	0	0	4	312.8		
	2.8	72.0	774.7	0	0	1	1	0	0	1	1	4	288.0		
	2. 9	72.2	776.9	0	4	0	0	0	3	Ø	O	7	505.4	5438	
	3.1	91.2	981.3	7	0	0	0	0	0	0	0	7	638.4	6869	19%
ñ	3.2	85.1	915.7	0	4	0	0	0	0	0	0	4	340.4	3663	2.20
		BLC	CK TOTALS:	108	66	15	15	23	11	19	23		280	TOTAL UN	ITS
		BLO	CK GIA (m²):	10215.0	4968.2	1211.6	1211.5	1892.0	1211.6	1353.0	1817.4		23880.4	TOTAL GIA	(m²)
			(ft²):	109,913	53,458	13,037	13,037	20,358	13,037	14,558	19,555		256,953	:(ft²)	
													211	TOTAL PAR	RING
														in Strike i Pa	

UNDERCROFT PARKING PLAN **BLOCK B**

UNDERCROFT PARKING PLAN **BLOCK A**

saundersarchitects.com | 01707 385300 | London | Manchester | Bristol | Welwyn

Drawing Number 8375/SK103

Revision

-

Drawn RC/MB

@A1 DEC 2020

Checked RC/MB

PROPOSED SITE LAYOUT

CAMPUS EAST WELWYN GARDEN CITY

PROPOSED DEVELOPMENT

Project

Title

Scale 1:500

-REV DATE NOTE IN

PRELIMINARY

No Dimensions to be scaled from this drawing. All stated dimensions to be verified on site and the Architect notified of any discrepancies.

This drawing to be read in accordance with the specification/Bills of

NOTES

Quantities and related drawings.

Scale bar 100mm at 1:1

APPENDIX C

Surrounding Land Use

General

Site Sensitivity Map - Segment A13

Order Details

284848351_1_1 UK21.5579 e: 523990, 213320 A 2.07 100

Site Details

North Campus East Car Park, College Way, Welwyn Garden City, AL8 7PH

0844 844 9952 0844 844 9951 www.envirocheck co uk

APPENDIX D

Geological Context

Geology 1:50,000 Maps Legends

Superficial Geology

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age
	ALV	Alluvium	Clay, Silt, Sand and Gravel	Not Supplied - Holocene
LOFT	Lowestoft Formation	Diamicton	Not Supplied - Anglian	
	KGCA	Kesgrave Catchment Subgroup	Sand and Gravel	Not Supplied - Pleistocene

Bedrock and Faults

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age		
	LC	London Clay Formation	Clay, Silt and Sand	Not Supplied - Ypresian		
LMBE Lar		Lambeth Group	mbeth Group Clay, Silt and Sand			
	LESE	Lewes Nodular Chalk Formation and Seaford Chalk Formation (Undifferentiated)	Chalk	Not Supplied - Turonian		

Geology 1:50,000 Maps

This report contains geological map extracts taken from the BGS Digital Geological map of Great Britain at 1:50,000 scale and is designed for users carrying out preliminary site assessments who require geological maps for the area around the site. This mapping may be more up to date than previously published paper maps.

The various geological layers - artificial and landslip deposits, superficial geology and solid (bedrock) geology are displayed in separate maps, bu superimposed on the final 'Combined Surface Geology' map. All map legends feature on this page. Not all layers have complete nationwide coverage, so availability of data for relevant map sheets is indicated below.

Geology 1:50,000 Maps Coverage

Map ID:	1	
Map Sheet No:	239	
Map Name:	Hertford	
Map Date:	1923	
Bedrock Geology:	Available	
Superficial Geology:	Available	
Artificial Geology:	Available	
Faults:	Not Supplied	
Landslip:	Not Available	
Rock Segments:	Not Supplied	

Geology 1:50,000 Maps - Slice A

v15.0 14-Sep-2021

Artificial Ground and Landslip

Artificial ground is a term used by BGS for those areas where the ground surface has been significantly modified by human activity. Information about previously developed ground is especially important, as it is often engineering conditions and unstable ground.

Artificial ground includes:

- Made ground man-made deposits such as embankments and spoil
- Heaps on the natural ground surface.
 Worked ground areas where the ground has been cut away such as quarries and road cuttings.

- Infilled ground - areas where the ground has been cut away then wholly or partially backfilled.

 Landscaped ground - areas where the surface has been reshaped.
 Disturbed ground - areas of ill-defined shallow or near surface mineral workings where it is impracticable to map made and worked ground separately.

Mass movement (landslip) deposits on BGS geological maps are primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground. The dataset also includes foundered strata, where the ground has collapsed due to subsidence.

Page 3 of 5

Bedrock and Faults

Bedrock geology is a term used for the main mass of rocks forming the Earth and are present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

The bedrock has formed over vast lengths of geological time ranging from ancient and highly altered rocks of the Proterozoic, some 2500 million years ago, or older, up to the relatively young Pliocene, 1.8 million years ago.

The bedrock geology includes many lithologies, often classified into three types based on origin: igneous, metamorphic and sedimentary.

The BGS Faults and Rock Segments dataset includes geological faults (e.g. normal, thrust), and thin beds mapped as lines (e.g. coal seam, gypsum bed). Some of these are linked to other particular 1 50,000 Geology datasets, for example, coal seams are part of the bedrock sequence, most faults and mineral veins primarily affect the bedrock but cut across the strata and post date its deposition.

Order Details: Order Number: 284848351_1_1 Customer Reference: UK21.5579 National Grid Reference: 523990, 213320 Slice: A Site Area (Ha): 2 07 Search Buffer (m): 1000 Site Details: North Campus East Car Park, College Way, Welwyn Garden City, AL8 7PH

 Landmark
 Tex Web
 0844 84 9951 8044 84 9951 www.em/incheck.co.uk

 v15.0
 14-Sep-2021
 Page 4 of 5

Combined Surface Geology

The Combined Surface Geology map combines all the previous maps inb one combined geological overview of your site.

Please consult the legends to the previous maps to interpret the Combined "Surface Geology" map.

Additional Information

More information on 1:50,000 Geological mapping and explanations of rock classifications can be found on the BGS website. Using the LEX Codes in this report, further descriptions of rock types can be obtained by interrogating the 'BGS Lexicon of Named Rock Units'. This database can be accessed by following the 'Information and Data' link on the BGS website.

Contact

British Geological Survey Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Telephone: 0115 936 3143 Fax: 0115 936 3276 email: enquiries@bgs.ac.uk website: www.bgs.ac.uk

Combined Geology Map - Slice A

Order Details: Order Number: 284848351_1_1 Customer Reference: UK21.5579 National Grid Reference: 523990, 213320 Silice: A Site Area (Ha): 2 07 Search Buffer (m): 1000 Site Details: North Campus East Car Park, College Way, Welwyn Garden City, AL8

 Landmark
 Tel Fax Web
 0544 844 9952 0644 844 9951 www.env/irocheck.co.uk

 v15.0
 14-Sep-2021
 Page 5 of 5
 Page 1 | Borehole TL21SW14 | Borehole Logs

Version 2.0.6.3

BGS ID: 533324 : BGS Reference: TL21SW14 British National Grid (27700) : 523730,213070 Report an issue with this borehole

<< < Prev Page 1 of 3
 Next > >>

T. E. Extension BOREHOLE LOG Screenbals No Screenbals No T. 2 271:3:30th April & 3nd-Gth Mey Description of Shimita Extension Course (Oth) resting on brick rubic (m) Standpipe installed to 25 Cm Standpipe installed to 25 Cm St	is No	Appendix Sineat No	No. /336	rgotion FGI	Invasi	ng"on	Condin	I PORTMENT OF THE ENVIRON	
BOREHOLE LOG T. 434 T. 81 SW 2873 H 2000 Lavel eppron 89.3 m A.O.D. T. 2713 "30th April & 3nd - 6th May Description of 3theta Standard Lavel eppron 99.3 m A.O.D. T. 2713 "30th April & 3nd - 6th May Description of 3theta Standard Lavel eppron 99.3 m A.O.D. T. 2713 "30th April & 3nd - 6th May 172 Description of 3theta Standard Lavel eppron 99.3 m A.O.D. T. 2713 "30th April & 3nd - 6th May 173 Description of 3theta Standard Lavel eppron 99.3 m A.O.D. T. 2713 "30th April & 3nd - 6th May 173 Description of 3theta Standard Lavel epines and services Chay, sing, very sandy in places, are not 1.3 m past. 3.3 and Contains and patheta of clays and Contains and patheta of clays and Contains and patheta of clays Standard Contains and patheta of	V C	RDEN	N GA	LWY	WE		es fores	T. E. Extension	tuos
200-zhoiz No 1 Nofe:- Standpipe installed to 25 Cm 210-und Lavel eperton 8 3nd - 01 Moy 1000 1000 1000 21:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:	W/14 1927	2 234 2 21 SW	- +		LOG	IOLE	BOREH	e	1
CLAY, sliry, very sandy in places, and pather below or of structures (other source) and brown to analyse brown is moletine finite using the source of the office of the source of the source of the office of the source of the source of the source of the office of the source of the source of the source of the source of the office of the source of the so	m dep	to 25 0m	nstalled	Idpipe	- Star	Note:		Senshelz No.	
Description of Streta Legend Sample Depth O.D. Remarks (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)				4.05			Mey	ture 27th 30th April & 3nd - Gin	1
Fill: Termac (01m) resting on brick rubbe (Prom pringe description) GRAVEL, vondby daysy sandy brown to analyse brown , notative Sints upto Gamm. Becomes sander balaw pr. of 1 3m apple. CLAY, biny, vary sandy in places, arange brown with atomic, chak Pragments and public daysy sand Containe same Rink upto 125mm Staves, and containe solations of alog as a sand Containe some Rink upto 125mm Staves, and containe solations of alog as a Staves, and containe solations of alog and containe solations of alog as a Staves, and containes of alog as a Staves, and containes of alog and containes of alog as a Staves, and containes and proteins upto Staves, and containes of alog as a Staves, and containes of alog as a Staves, and containes of alog as a Staves, and containes and proteins upto Staves, and containes and proteins and p	-Ha	Ramo-K		о.р. (~~)	Dapin (m)	Somple	Lagend	Description of Strate	
CLAY, slify, very sandy in places, arange brown with stores, chak Regenter and patches of arange brown with stores, chak Regenter and patches of claysy brown to prange brown, with scassioned patches of along about a store finits upto SCAP (1) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (2) (2) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3) (4) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4				- 09 3	0		1000		+
CLAY, pilly, very sandy in places, arange brown with promes, chak Magmente and patches of clays sand Contine same finds upto 125mm with occasional solates of clays includes finds upto BD mm.		0	3	- 68-9	0.4	т		(Prom prilem description)	1
CLAY, Billy, very sandy in places, orange brown with prones, chak Programste and patches of clayey sand Containe some Rive upb 125mm With accessional satelines of clay ; includes Flinis upto BO mm			Alti Singel	-	1.2 -	1 (29)	2015-2015-2015-2015-2015-2015-2015-2015-	GRAVEL, vomoby alayey, zandy brown to anamae brown; incluses finte lots bit mm. Becomes condier below	n bisi
CLAY, silvy, very sandy in places, drange brown with stones, chak Pragmente and patches of clayey sand Continue some fints upb (25mm Brown to prange brown, with occasional patches of clay; includes fints upb BD min.		$e^{i\theta}$	ð (1		13 -	Ĭ	1000	er un l'âm dante.	
CLAY, siry, very sandy in places, arange brown with prones, chak Pragmente and patches of clayey sand Containe same finits upto 125mm brown to anange brown, with occasional patches of clay; includes finits upto BO min.	÷.,			- 86-3	27	F@_	10000 10000 10000		-
Stard Contoine some filme upto Istern Stard Contoine some filme upto Istern brown to onange prown, with occasional potates of clay; includes films upto BD mm. 5:2 6:7 - 82:6 # 2PT-33 blows for books fo					3.5	T		CLAY, billy, very sandy in places, arange brown with alones,chak. Programs and patches of clayey	
BRAVEL, Bandy, silly, silghtly clayay brown to phange prown, with preasional solates of clay, includes films upta BD mm. 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.				88-4	39 40	Å,	Sec.	sand Contoine same finte upo 25mm	t
5-2 						İ		SRAVEL, Bandy, silfy, silghtly clayay brown to onange brown, with occasional potates of clay, includes flints upto 20 mm	
BOOR - BRO # SPT-38 blows for		+)			5.2	F@]			-
1946 1939 G-7 - 82 & # 2PT- 38 blows for						ц			
GRAVEL, Bandy, light pranae brown ; (1997) occessionally includes Plate (1997) upto 200 mm.	on 180 a with atlan	blows for 50 blows in penetral	BPT-38 Hen Runne	- 88 a 3	6.7	Gi	100	GRAVEL, Bandy, light orange brown; occessionally includes Plate upto 200 mm.	
and exception into these Research in the interventions					1			epcifica intel ince	ni da

Report an issue with this borehole $<<$ $<$ PrevPage 2 of 3 \checkmark Next >>>								
•	Department of the Environ	 oment Cardir	Ingrain	loves	igation F (> No. ∋E/33@	Appendir Sheet No	А З
litus	T. E. Extension			WE	LWY	'N GA	RDEN	CIT
	B	OREH	OLE	LOG				
	Bonchols No. 1 sente Ground Level		Nota:				1" 239 FL 21 SKI 2373 1907	(14
18	Description of Strate	Legend	Sample	Dapth (m)	0.0 (TT)		Remarks	2
	GRAVEL, SUNTU From Sheet 2	रतम्ब अस्ति स्ति	I	10 0			•	
1 Marco	CHALK, clayer, Prioble and rubbly, vellower built, with Rint Progresss [Reworked]		ł	10.0 -	- 7# 7	ji dat Sempig		
й. Д	CLAY, Sky, dark brown with chaik and Finit Freqments, pathies, of gond & carbon, abs contains freqmesh of still brown play. (************************************		•@_]	#+5 -	- 77 8	** Clay	Programmente "	- 3845(2
	JRAVIL, with some cholky silt.		1	12-2 -	- 74-9	dariv	ed from Lor	idon Cie
	(from drillere description)			15-0 .	- 74 - 2	4		
•	white with additioned fint Fregmenta		Į		4			
	Reworked] his lead			14-2 -		¥ 3РТ - E. under 14-0	quipment ea ' ewn weig ' 16 14 8m	nk ght fra daptn
1							1	
- 1								
1			Ţ					Ω

10/26/21.	12:39 PM
IUIZUIZI,	12.001 111

Page 3 | Borehole TL21SW14 | Borehole Logs

Version 2.0.6.3

BGS ID: 533324 : BGS Reference: TL21SW14 British National Grid (27700) : 523730,213070 Report an issue with this borehole

<< < Prev Page 3 of 3 v Next > >>

APPENDIX E

Groundwater Vulnerability and Flood Maps

General

🔼 Specified Site C Specified Buffer(s)

X Bearing Reference Point

Agency and Hydrological (Flood)

Extreme Flooding from Rivers or Sea without Defences (Zone 2)

Flooding from Rivers or Sea without Defences (Zone 3)

Area Benefiting from Flood Defence

Flood Water Storage Areas

--- Flood Defence

Flood Map - Slice A

Order Details

 Order Number:
 284848351_1_1

 Customer Ref:
 UK21.5579

 National Grid Reference:
 523990, 213320
 Slice: Site Area (Ha): Search Buffer (m):

А 2.07 1000

Site Details

North Campus East Car Park, College Way, Welwyn Garden City, AL8 7PH

Tel: Fax: Web:

0844 844 9952 0844 844 9951 www.envirocheck co uk

APPENDIX F

A Selection of Historic Maps

Hertfordshire

Published 1878

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	284848351_1_1
Customer Ref:	UK21.5579
National Grid Reference:	523990, 213320
Slice:	A
Site Area (Ha):	2.07
Search Buffer (m):	100

Site Details

North Campus East Car Park, College Way, Welwyn Garden City, AL8 7PH

0844 844 9952 0844 844 9951 www.envirocheck co uk

Hertfordshire

Published 1923

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	284848351_1_1
Customer Ref:	UK21.5579
National Grid Reference:	523990, 213320
Slice:	A
Site Area (Ha):	2.07
Search Buffer (m):	100

Site Details

North Campus East Car Park, College Way, Welwyn Garden City, AL8 7PH

Tel: Fax: Web:

0844 844 9952 0844 844 9951 www.envirocheck co uk

A Landmark Information Group Service v50.0 14-Sep-2021 Page 4 of 14

Hertfordshire

Published 1938

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	284848351_1_1
Customer Ref:	UK21.5579
National Grid Reference:	523990, 213320
Slice:	A
Site Area (Ha):	2.07
Search Buffer (m):	100

Site Details

North Campus East Car Park, College Way, Welwyn Garden City, AL8 7PH

_1

0844 844 9952 0844 844 9951 www.envirocheck co uk

A Landmark Information Group Service v50.0 14-Sep-2021 Page 5 of 14

Additional SIMs

Published 1961 - 1986

Source map scale - 1:1,250

The SIM cards (Ordnance Survey's `Survey of Information on Microfilm') are further, minor editions of mapping which were produced and published in between the main editions as an area was updated. They date from 1947 to 1994, and contain detailed information on buildings, roads and land-use. These maps were produced at both 1:2,500 and 1:1,250 scales.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number:	284848351_1_1
Customer Ref:	UK21.5579
National Grid Reference:	523990, 213320
Slice:	Α
Site Area (Ha):	2.07
Search Buffer (m):	100

Site Details

North Campus East Car Park, College Way, Welwyn Garden City, AL8 7PH

0844 844 9952 0844 844 9951 www.envirocheck co uk

APPENDIX G

Site Specific Borehole Logs

(eps					Borehole N BH1	No.			
	J								Sheet 1 of	f 1
Projec	t Name:	North Can Welwyn G	npus E arden	ast Car Park, City	Project No. UK21.5579		Co-ords:	-22593.18 - 6765048.78	Hole Type CP	e
Locati	0.01	Collogo M		rtfordobiro ALQ GI	IN		Lovel	02.00	Scale	
LUCau	UII.	College W	ay, ne	Tuorushire, ALO O			Level.	95.00	1:125	
Client	t	Ardent Co	nsultin	g			Dates:	04/10/2021 - 04/10/2021	Logged B Shaun Cal	3y bill
	Water	Sample	s and	In Situ Testing	Depth	Level				T
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	1	
		0.40 0.90 1.20 1.70 2.00 2.00 3.00 3.45 4.00 5.00 5.45 6.00 6.50 6.50 7.50 8.00 8.45 9.00 9.50 9.50 10.50 11.00 12.50 13.10 13.30 14.00 15.50 15.50 16.50 16.50 10.50 15.00 15.00 10.50 1	D D D D D D D D D D D D D D D D D D D	N=13 (3,3/3,3,3,4) N=19 (3,4/4,4,5,6) N=22 (4,4/5,5,6,6) N=26 (4,5/6,6,7,7) N=6 (2,1/2,2,1,1) N=10 (6,7/3,3,2,2) N=10 (6,7/3,3,2,2) N=8 (1,1/2,2,2,2) N=9 (1,2/3,2,2,2) N=9 (1,2/3,2,2,2) N=12 (2,2/2,3,4,3) N=16 (2,2/4,4,4,4) N=20 (3,4/4,5,5,6) N=22 (4,4/5,5,5,7)	0.10 0.35 0.90) 9.40) 9.40	92.90 92.65 92.10 83.60 80.30		ASPHALT MADE GROUND: Yellowish brown sandy silty GRAVEL MADE GROUND: Yellowish red slig sandy silty CLAY Firm to stiff yellowish brown and re gravelly sandy silty CLAY with light mottling, occasional black staining silt pockets. Gravel is fine to coarse with pockets. Gravel is fine to coarse yellowish brown (LOFT) Structureless CHALK recovered as gravel in a white slightly clayey san representative of a Dm (matrix dom material (LESE)	slightly clayey ghtly gravelly d slightly bluish grey and fine sand/ e chert (LOFT) ite angular to chert and h and <10% intact dy silty matrix iinated) grade	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
		23.00 23.80 24.50	B	№=28 (4,3/6,6,8,8						24
DNA)		24.50	1.17521111	N=27 (4,4/5,7,7,8)	25.00	68.00	To be to	End of borebole at 25.00 n		25

LESE = Lewes Nodular & Seaford Cha k Formation Groundwater not encountered AGS

1	eps					Ro	reho		Borehole N BH2	No.
						00		JE LUY	Cheat 4 -	£ 4
		North Car		ast Car Park P	roject No				Hole Type	
rojec	t Name:	Welwyn G	arden	City U	K21.5579		Co-ords:	-22522.27 - 6764916.63	CP	
ocati	on:	College W	av He	offordshire AL8.6U	N		Level.	91.00	Scale	
Juan	on.	concyc W	uy, no				LOVCI.	51.00	1:125	
lient		Ardent Co	nsultin	g			Dates:	05/10/2021 - 06/10/2021	Logged B Shaun Cal	3y hill
83	Wator	Samples	s and	In Situ Testing	Depth	Lovol	8 8 		ondur ou	T
Vell	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	1	
		0.40	D		0.10	90.90 90.70		ASPHALT MADE GROUND: Yellowish brown	slightly clavey	1
		0.90	D		0.00	00.10		sandy silty GRAVEL		1
E:		1.20	D	N=7 (2,1/2,2,1,2)				sandy silty CLAY with asphalt and b	rick	
Ξ		2.00	B	N=6 (1,1/1,2,1,2)				fragments		2
Ξ		3.00	в		2.90	88.10		MADE GROUND: Dark grov slightly	(clavey	- 3
H.		3.00	0.50	N=6 (2,2/1,2,1,2)				sandy silty GRAVEL with asphalt ar	d brick	
		4.00	В	N-E2 (4 6/0 0 47 40)	4 30	86 70		fragments		4
H.		4.00	D	N-52 (4,6/8,8,17,19)	F.00	00.70		Firm to stiff yellowish brown and rec gravelly sandy silty CI AY with light	d slightly bluish arev	Ι.
		5.00	В	36 (18 24/36 for	5.00	86.00	· · · · · ·	mottling, occasional black staining a	and fine sand/	1
		0.00		75mm)			میں بنی ہے۔ بنی میں جب ہو	Medium dense black brown and wh	ite angular to	1
		6.50	В	04 (04 00/04 5			وینی× بینی بر محرب	rounded slightly clayey sandy silty of quartzite GRAVEL Sand is orangis	chert and	
		6.50		31 (21,23/31 for 75mm)			د می از می در می بر می	yellowish brown (LOFT)	dila	1
		8.00	B	1972-1991-1991-1991-1991-1991-1991-1991-						
		8.00		N=30 (7,9/8,8,6,8)			میں۔ بر ہے۔ ب			
										5
$\exists :$		9.50	В	N-28 (5 7/7 5 8 8)	9.70	81.30		Structuralocs CHALK recovered as	<10% intact	-
		10.30	D	N-20 (3,111,3,0,0)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.415.1013444-1		gravel in a white slightly clayey san	dy silty matrix	10
E: :		11.00	D					representative of a Dm (matrix dom material (LESE)	inated) grade	11
B		11.00		N=8 (2,1/2,1,2,3)						
		11.80	в							12
		12.50 12.50	D	N=6 (1,2/1,1,2,2)						13
		13.50	D							
		14.00	D							14
		14.00		N=7 (1,2/1,2,2,2)						
		15.00 15.50	D							15
		15.50	2	N=7 (1,2/2,1,1,3)						16
		16.50	D							
		17.00	D	N=8 (1 2/2 2 2 2)						17
		17.80	В	11-0 (1,2/2,2,2,2)						18
		18.50	D							
		18.50		N=9 (2,2/2,2,3,2)			<u>h h</u>			19
		19.50	D							
Ż		20.00	D	N=8 (3,4/2,2,2,2)						20
Q		21.00	D	nasona derutoria (18						21
Ŵ		21.50	D							
Ŵ		21.50	D	N=9 (2,3/2,3,2,2)						22
X		22.50	D							22
		23.00		N=10 (5,3/2,2,3,3)						
X)		23.80	В							24
S		24.50 24.50	D	N=12 (3 2/3 2 3 4)	25.00	66.00				
arth	1	21.00		1 12 (0,210,2,0,4)	25.00	00.00	1000	End of borehole at 25 00 m		125

LESE = Lewes Nodular & Seaford Cha k Formation Groundwater not encountered AGS

						24-07-	15	227 D	Borehole N	No.
	eps					BH3				
_							1	10000000	Sheet 1 of	f1
Projec	t Name:	North Can Welwyn G	npus E arden	ast Car Park, F City L	Project No. JK21.5579		Co-ords:	-22717.64 - 6764814.02	Hole Type CP	e
locati	on.	College W	av He	rtfordshire Al 8 6L	IN		evel:	90.00	Scale	
Locat	UII.	College W	uy, no				LOVCI.	50.00	1:125	
Client	5	Ardent Co	nsultin	g			Dates:	07/10/2021 - 07/10/2021	Logged B Shaun Cal	3y hill
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description		
TION	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona	MADE CROLIND: Vallowish brown	olighthy	
		0.50	D		0.40	89.60		gravelly sandy silty CLAY	signuy	
1 II.	5	0.80	D				×	Firm to stiff yellowish brown and re-	d slightly	1 -
		1.65	D					mottling, occasional black staining	and fine sand/	-
i.∏.		2.10	D				× ×	silt pockets. Gravel is fine to coarse	e chert (LOFT)	2 -
		2.10	-	N=34 (4,5/8,8,9,9)			×			
		3.00	U		0.50	00.50	X			3 -
		3.40	D		3.50	86.50	- x	Dense black brown and white angu	lar to rounded	
E E	0	4.00	в	N=64			- x	slightly clayey sandy silty chert and GRAVEL Sand is orangish and vel	quartzite	4 -
		Coloreda		(9,11/12,16,18,18)			میں	(LOFT)	IOWISH DIOWI	E
		5.00	В	N-22 (6 7/7 0 9 0)						b -
		5.00		N-33 (0,111,3,0,3)			• <u> </u>			6 -
	•	6.50	в							0
		6.50		N=49						7 -
				(8,9/12,12,14,11)			في ، <u>م</u> ف بر م رفي لا يف			
\Box		8.00	В				- x			8 -
E E	•	8.00		N=53			- x			
				(7,6/11,11,15,16)			نې د <u>مې</u> د مې مې د مېک د م			9 -
		9.50	В							
		9.50		N=27 (6,4/5,6,8,8)	10.20	70.00	• X			10 -
		10.20	D		10.20	79.80		Structureless CHALK recovered as	<10% intact	-
	•	11.00	D					representative of a Dm (matrix dom	inated) grade	11 -
		11.00	D	N=13 (2,2/3,3,3,4)				material (LESE)	, 3	
		11.70	D							12 -
E E		12.50	D							
		12.50	10000	N=13 (2,2/3,4,3,3)						13 -
		13.50	D							
		14.00	D	N-11 (2 2/2 2 2 2)						14 -
		14.00	1.000	N=11 (2,212,3,3,3)			h h h			15
		15.10	D							15 -
		15.50	D	N=12 (3.2/2.3.4.3)						16
		16.40	В							10
H		17.00	D							17 -
· F		17.00	0	N=13 (2,2/3,3,3,4)						1 4 90-5
		17.90	D	267763 345763 19980						18 -
		18.50	D							
		18.50	0.0052111	N=13 (2,3/2,3,4,4)						19 -
		19 60	D				h h h			2010
		20.00	D							20 -
		20.00		N=37 (3,2/8,9,9,11)						
		21.00	D							21 -
- A		21.50	D							
		21.50		N=13 (3,2/3,3,3,4)						22 -
		22.50	D				<u>h h h</u>			
		23.00	D	N-45 (2 2/4 2 4 4)						23 -
÷H:		23.00	В	N-10 (3,3/4,3,4,4)						
		0.1.50	-							24 -
Ц.	•	24.50	U	N=15 (3.4/3.4.4.4)	25.00	65.00				05
D		CONSIGNATION OF			25.00	05.00		End of borehole at 25 00 n	1	25
Rema		toff Formatio	n							
	- LOwe:	Store i ormatio								

LESE = Lewes Nodular & Seaford Cha k Formation Groundwater not encountered AGS

Ĩ				· · ·		94 - 19 1 -	25	1142MA 80	Borehole N	lo.
(eps)				Bo	reho	ole Log	WS1	
		Marth Con		t Ora Dark	Drainat No.		1		Sheet 1 of	1
Projec	t Name:	Welwyn G	arden	ast Car Park, City	UK21.5579		Co-ords:	-22505.13 - 6765027.53	WLS	9
Locati	on:	College M	av He	ortfordebiro AL 8.6			Lovel	01.00	Scale	
LUCau	OH.	College	ay, no				Level.	91.00	1:20	
Client:	•	Ardent Co	nsultin	g			Dates:	04/10/2021 - 04/10/2021	Logged B Shaun Cat	y hill
Well	Water Strikes	Samples Depth (m)	s and Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
				Den Statistick Statistic Statistics				ASPHALT		-
		0.10 - 0.45	ES		0.10	90.55		MADE GROUND: Yellowish brown sandy silty GRAVEL Firm to stiff yellowish brown and red gravelly sandy silty CLAY with light mottling, occasional black staining s	slightly clayey d slightly bluish grey and fine sand/	
		1.00		N=20 (3,3/4,5,5,6)			silt pockets. Gravel is fine to coarse	: chert (LOFT)	1-
		1.60 - 1.80	D							2-
		2.60 - 2.80	D							3 -
		3.60 - 3.80	D		4.00	87.00		End of borehole at 4.00 m		4-
Rema LOFT Groun	rks = Lowes idwater i	stoft Formatio not encounter	in red			1	<u>.</u>]		AGS	5

									Borehole N	No.
	eps					Bo	reho	ble Log	WS2	
								0	Sheet 1 of	f 1
Projec	t Name:	North Can Welwyn G	npus Ea arden (ast Car Park, City	Project No. UK21.5579		Co-ords:	-22529.95 - 6764980.37	Hole Type WLS	е
Locati	on:	College W	/av, Hei	rtfordshire, AL8 6	5UN		Level:	92.00	Scale	
		0	,						1:20	3v
Client	:	Ardent Co	nsultin	g		1	Dates:	04/10/2021 - 04/10/2021	Shaun Cal	hill
Well	Water	Sample	s and I	n Situ Testing	Depth	Level	Legend	Stratum Description	ı	
	Otines	Depth (m)	Туре	Results		(11)		ASPHALT		
		0.10 - 0.50	ES		0.10	91.90		MADE GROUND: Yellowish brown sandy silty GRAVEL	slightly clayey	
					0.50	91.50		MADE GROUND: Yellowish brown	slightly sional dark	
								grey organic pockets and rare deca	yed roots.	
		0.80 - 1.00	D					subangular chert and rare brick frag	jments	
										1 -
										-
		1.80 - 2.00	D							
										2 -
										-
					2.30	89.70		Firm to stiff yellowish brown and red	d slightly	
							×	mottling, occasional black staining a	and fine sand/	
							××	silt pockets. Gravel is fine to coarse	chert (LOFT)	
							× × ~			
		2.80 - 3.00	D				××			
							×			
							×			3 -
							××			
							× - × - ×			-
							×			-
										-
										-
		3.80 / 00					X - X			-
		5.00 - 4.00					×			-
) XXXXX					4.00	88.00	XX-	End of borehole at 4.00 m		4 -
Rema LOFT Groun	rks = Lowes dwater i	stoft Formatic not encounter	on red						AGS	S

Ĩ						125	25		Borehole N	lo.
(eps					Bo	reho	ole Log	WS3	
								120004	Sheet 1 of	1
Projec	t Name:	North Can Welwyn G	npus Earden	ast Car Park, City	Project No. UK21.5579		Co-ords:	-22505.13 - 6764961.10	Hole Type WLS	9
Locati	ion:	College W	ay, He	ertfordshire, AL8 6	SUN		Level:	91.00	Scale	
10			250				-		Logged B	V
Client	1	Ardent Co	nsultin	g			Dates:	04/10/2021 - 04/10/2021	Shaun Cal	nill
Well	Water Strikes	Sample: Depth (m)	s and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
			50	Contractionsons	C 40	00.00		ASPHALT		-
		0.10 - 0.60	ES		0.10	90.90 90.40		MADE GROUND: Yellowish brown sandy silty GRAVEL Firm yellowish brown slightly grave	slightly clayey Ily sandy silty	
		1.00		N=7 (1,1/2,1,2,2)			CLAY with occasional dark grey mo is fine and medium angular and sub and chalk (LOFT)	ttling. Gravel vangular chert	1
	6	1.60 - 1.80	D							
		2.00		N=9 (2,2/2,2,2,3)) 2.00	89.00		Stiff yellowish brown and red slight sandy silty CLAY with light bluish gr occasional black staining and fine s pockets. Gravel is fine to coarse ch	y gravelly ey mottling, and/silt ert (LOFT)	2-
	- 0	2.60 - 2.80 3.00	D	N=21 (4,6/4,5,5,7	7)					3-
		3.60 - 3.80 4.00	D	N=26 (4.4/5,6,7,1	8) 4.00	87.00				4
Rema	rks	1.00		11 20 (1, 10,0), 1	//	01.00		End of borenole at 4.00 m		1
LOFT Groun	= Lowes	stoft Formatio not encounter	n red						AGS	5

									Borehole N	lo.
	eps					Bo	reho	ble Log	WS4	
								0	Sheet 1 of	1
Projec	t Name:	North Can Welwyn G	npus E arden	ast Car Park, City	Project No. UK21.5579		Co-ords:	-22565.13 - 6764951.02	Hole Type WLS	Ð
Locati	on:	College W	/av. He	rtfordshire. AL8 6	JN		Level:	91.00	Scale	
		- 5	, ,	,					1:20	
Client	:	Ardent Co	nsultin	g		1	Dates:	04/10/2021 - 04/10/2021	Shaun Cah	y nill
Well	Water Strikes	Sample:	s and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
			50	rtoouto	0.40			ASPHALT		-
		0.10 - 0.45	ES		0.10	90.90		MADE GROUND: Yellowish brown sandy silty GRAVEL	slightly clayey	
										-
					0.45	90.55				
							×××××××	Firm olive slightly gravelly sandy sil rare recently active roots. Gravel is	ty CLAY with fine to coarse	-
		0.60 - 0.80					× ····×	subangular and subrounded chalk (LOFI)	-
										-
										-
							× ····×			1 -
							× ····×			-
										-
							XX			-
							×××××××××			-
		1.60 - 1.80	D							-
										-
							XX			-
							× ···×			2 -
							× ····×			-
							××			-
							×			-
					2.40	88.60	XX	Stiff yellowish brown and red slight	y gravelly	-
		2.60 - 2.80	D				×	occasional black staining and fine s	and/silt	-
							× × ~			-
							× ····×			-
										-
		3.00		N=15 (2,3/3,4,4,4)		×			3 -
							× × ×			-
							× ····×			-
							×			-
							×			-
		3.60 - 3.80	D				×			-
							× · · · ×			-
							X - X - X - X - X - X - X - X - X - X -			-
		4.00		N=20 (2,3/4,5,5,6) 4.00	87.00	X X -	End of borehole at 4.00 m		4 -
Rema LOFT Groun	rks = Lowes dwater i	stoft Formatic not encounter	on red						AGS	S

	eos				Borehole No.					
						DU	Ienc	he Luy	VV35	
		North Com		aat Car Bark	Project No				Sheet 1 of Hole Type	i 1
Projec	t Name:	Welwyn G	arden	City	JK21.5579		Co-ords:	-22633.14 - 6764932.66	WLS	C
Locati	on:	College W	av, He	rtfordshire, AL8 6l	JN		Level:	91.00	Scale	
									1:20	۹.
Client	:	Ardent Co	nsultin	g		1	Dates:	05/10/2021 - 05/10/2021	Shaun Cal	hill
Well	Water	Samples	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	ı	
	Ounces	Depth (m)	Туре	Results		(11)		ASPHALT		
		0.10 - 0.35	ES		0.10	90.90		MADE GROUND: Yellowish brown	slightly clayey	1
XX								sandy silty GRAVEL		
					0.35	90.65		Firm to stiff vellowish brown and red	d slightly	-
		0 50 - 0 70					X	gravelly sandy silty CLAY with light	bluish grey	
		0.00 0.70					$\times \times \times$	silt pockets. Gravel is fine to coarse	chert (LOFT)	
							× × ×			
							× × · · ×			
		1.00		N=16 (7,7/1,5,4,6)			×			1
							××			
							$\times \times \times$			
		1.50 - 1.70	D				× ×			
							X X			
							× ····× ···			
							X X			
		2.00		N=8 (1,2/2,2,2,2)			X X			2
							$\times \times \times$			
							× ×			
							× × ×			
XX		2.50 - 2.70	D				× · · · · · · · · · · · · · · · · · · ·			
							X X			
							X X			
							$\times \times \times$			
		3 00		N=25 (3 3/6 7 5 7)						3.
		0.000			,		× × ×			
							× × · · ×			
							×			
							××			
		3.50 - 3.70	D				×			
							× × ×			
		4.00		N=20 (3 3/5 5 5 5	1 00	87.00	× × · · · ×			
		4.00		IN-20 (3,3/5,5,5,5)	4.00	07.00		End of borehole at 4.00 m		4

ject Name ation:	North Car				DIE LOG	Borehole No. WS6 Sheet 1 of 1						
ation:	vveiwvn G	npus Ea	ast Car Park, F City I	roject No.		Co-ords:	-22581.83 - 6764916.99	Hole Type				
	College W	ay, He	rtfordshire, AL8 6U	N		Level:	90.00	Scale				
ent:	Ardent Co	nsultin	g			Dates:	Logged By					
Water	Samples	s and I	n Situ Testing	Depth	Level	Logond	Shaun Cah					
Strikes	Depth (m)	Туре	Results	(m)	(m)							
	0.10 - 0.60 ES			0.10	89.90		MADE GROUND: Yellowish brown slightly clayes sandy silty GRAVEL					
	0.80 - 1.00 D				0 89.40		Firm yellowish brown slightly gravel CLAY. Gravel is fine to coarse angu subrounded chert (LOFT)	ly sandy silty lar to				
	1.00		N=35 (5,7/8,10,8,9)	1.00	89.00		Dense black brown and white angu slightly clayey sandy silty chert and GRAVEL. Sand is orangish and yel (LOFT)	lar to rounded quartzite lowish brown				
1.50 - 1.		D										
	2.00		N=56 (10,15/17,15,14,10)	2.00	88.00		End of borehole at 2.00 m					
marks FT = Lowe	stoft Formatio	n .	l	3	1	<u>_</u>						

								Borehole No.
ep	S				Bo	reho	ble Log	WS7
							•	Sheet 1 of 1
Project Nar	me: North Can Welwvn G	npus E arden	ast Car Park, P Citv U	roject No. K21.5579		Co-ords:	-22552.44 - 6764876.67	Hole Type WI S
Location:	College W	av He	ortfordshire AI 8 6I II	N		l evel:	91.00	Scale
	College W	ay, 110		•			51.00	1:20
Client:	Ardent Co	nsultin	g	1		Dates:	05/10/2021 - 05/10/2021	Shaun Cahill
Well Wat	ter Samples	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	
	Depth (m)	Туре	Results	(11)	(11)		ASPHALT	
	0.10 - 0.60	ES		0.10	90.90		MADE GROUND: Yellowish brown	slightly clayey
							sandy silty GRAVEL	
								-
				0.50	90.50			-
	0.60 - 0.80	D					Soft yellowish brown slightly gravell CLAY with occasional bluish grey m	y sandy silty _ ottling and _
						××-	rare decayed roots. Gravel is fine a angular to subrounded chalk and ch	nd medium - hert (LOFT) ⁻
						×		-
						× ·····		-
	1.00		N=4 (1,1/1,1,1,1)	1.00	90.00	× × ×	Firm yellowish brown slightly gravel CLAY. Gravel is fine to coarse angu	ly sandy silty
						× · · ×	subrounded chert (LOFT)	
						×		-
						× ·····×		-
						××		-
	1.60 - 1.80	D				× · · ×		-
						×		-
						×		-
	2.00		N=34 (8,10/9,8,8,9)	2.00	89.00		Stiff yellowish brown and red slight	y gravelly 2
						× × · · · ×	sandy silty CLAY with light bluish gr occasional black staining and fine s	ey mottling, _ and/silt _
						X - X - X - X - X - X - X - X - X - X -	pockets. Gravel is fine to coarse ch	ert (LOFT)
						×		-
						× × ×		-
	2.60 - 2.80	D				××		-
						×		-
						×		-
	3.00		N=57	3.00	88.00	×	End of borehole at 3.00 m	3
			(14,11/14,15,16,12)					-
								-
								-
								-
								-
								-
							-	
							4 -	
Remarks			1	1				
Groundwat	er not encounter	red	to rofugal at 2.0m					AGS
	enninated at 3.0r	n due	to relusar at 3.0m					

								Borehole No.	
eps					Bo	reho	ble Log	WS8	
						1		Sheet 1 of 1	
Project Name	North Can Welwyn G	npus E arden	East Car Park, Pi City	roject No. K21 5579		Co-ords:	-22562.90 - 6764850.56	Hole Type WI S	
Location:		lav He	artfordshire AI 8 611	N			91.00	Scale	
	College V	ay, ne	aniorusmie, ALO OOI	N		Level.	91.00	1:20	
Client:	Ardent Co	nsultir	ng			Dates:	05/10/2021 - 05/10/2021	Logged By Shaun Cahill	
Well Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description		
Surkes	Depth (m)	Туре	Results	(11)	(11)		ΔΩΡΗΔΙΤ		
	0.10 - 0.55	ES		0.10	90.90		MADE GROUND: Yellowish brown	slightly	
							gravelly SAND		
								-	
								-	
				0.55	90.45		Firm yellowish brown slightly gravel	ly sandy silty	
	0.70 - 0.90	D				× × ×	CLAY. Gravel is fine to coarse angu subrounded chert (LOFT)	lar to	
						×		-	
						××		-	
	1.00		N=31 (3,4/5,8,9,9)			×		1	
						××		-	
						×		-	
				1.40	89.60	××	Dense black brown and white angul	ar to rounded	
						· · · · · · · · · · · · · · · · · · ·	slightly clayey sandy silty chert and GRAVEL. Sand is orangish and vell	quartzite owish brown	
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(LOFT)	-	
	1.70 - 1.90					×		-	
						× • • • • • • • • • • • • • • • • • • •		-	
	2.00		N=38 (6,8/8,8,10,12)			· · · · · · · · · · · · · · · · · · ·		2 -	
								-	
						× • • • •		-	
						× • • • • •		-	
				2.50	88.50		Firm to stiff vellowish brown and rec	- Leliabtly	
						××	gravelly sandy silty CLAY with light	bluish grey	
	2.70 - 2.90	D				×	silt pockets. Gravel is fine to coarse	chert (LOFT)	
						×		-	
	3.00		N=57	3.00	88.00	× ····	End of borehole at 3.00 m		
			(9,16/15,17,15,10)					-	
								-	
								-	
								-	
								-	
								-	
								-	
Remarks								4	
LOFT = Lowe Groundwater	stoft Formatic not encounter	on red						AGS	
Borehole term	ninated at 3.0r	n due	to refusal at 3.0m					ACO	

									Borehole No.	
	eps					Bo	reho	ole Log	WS9	
		No atha		a at O an D ank	Project No.				Sheet 1 of 1	
Projec	t Name:	Welwyn G	npus ⊨ arden	ast Car Park, City	UK21.5579		Co-ords:	-22571.36 - 6764820.68	WLS	
Locati	on:	College W	av, He	rtfordshire, AL8 6	UN		Level:	90.00	Scale	
		- 5	<b>,</b>	,					1:20	
Client	:	Ardent Co	nsultin	g		1	Dates:	06/10/2021 - 06/10/2021	Shaun Cahill	
Well	Water Strikes	Samples Depth (m)	s and I	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
								ASPHALT		
		0.15 - 0.50	ES		0.15	89.85		slightly		
		0.70 - 0.90	D		0.50	89.50		Loose black brown and white angul slightly clayey sandy silty chert and GRAVEL. Sand is orangish and yel (LOFT)	ar to rounded quartzite lowish brown	
		1.00	D N=5 (1,2/1,1,1,2)							
		1.70 - 1.90 2.00	D	N=5 (2,1/1,1,1,2	)				2 -	
		2.70 - 2.90	D		2.70	87.30		Firm to stiff yellowish brown and red gravelly sandy silty CLAY with light mottling, occasional black staining a	d slightly bluish grey and fine sand/	
		3.00		N=56 (7,9/11,13,15,17	3.00	87.00		silt pockets. Gravel is fine to coarse End of borehole at 3.00 m	e chert (LOFT)	
Rema LOFT	Remarks .OFT = Lowestoft Formation Groundwater not encountered								4 -	
Groun Boreh	idwater i ole term	not encounter inated at 3.0r	red n due t	to refusal at 3.0m	I				AGS	

						_	_		Borehole N	lo.		
	eps					Bo	reho	ole Log	WS10	)		
								-	Sheet 1 of	:1 -		
Projec	t Name:	North Can Welwyn G	າpus E arden	ast Car Park, F City I	Project No. JK21.5579		Co-ords:	-22570.81 - 6764768.65	Hole Type WLS	9		
ocati	on:	College W	av He	rtfordshire. Al 8 6l	JN		l evel:	90.00	Scale			
		g	,						1:20	N N		
Client		Ardent Co	nsultin	g			Dates:	06/10/2021 - 06/10/2021	Shaun Cah	hill		
Well	Water	Samples	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	1			
778×17	Strikes	Depth (m)	Туре	Results	(m)	(m)		CONCRETE		╞		
		0 15 0 20	EQ		0.15	90.95		CONCILETE				
		0.15 - 0.30	E9		0.15	09.00		MADE GROUND: Dark grey slightly sandy silty GRAVEL	/ clayey	]		
					0.30	89.70		Medium dense black brown and wh	ite angular to	-		
Ś							× • • • •	rounded slightly clayey sandy silty o quartzite GRAVEL. Sand is orangis	chert and h and			
S							×	yellowish brown (LOFT)				
S							× • • • •					
S												
X		0.80 - 1.00										
X						×						
X		1.00	1.00 N=20 (5,7/4,5,5,6)							1		
X												
X							× * * * *					
X							×					
X							× • • • •					
X												
							×:					
S		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1.00		× · · ·					
S		1.80 - 2.00			1.80	88.20	××	Firm to stiff yellowish brown and red slightly gravelly sandy silty CLAY with light bluish grey				
S		2.00		N=47			×	mottling, occasional black staining a	and fine sand/			
S		2.00		(8,9/10,12,12,13)			× · · · ×	silt pockets. Gravel is fine to coarse	chert (LOFT)	2		
H							×					
Ŋ							×					
Ŋ							X					
Ì							×					
Ù												
X												
X		2.80 - 3.00	D									
X												
X		3.00		N=20 (8.7/6.4.4.6)			× × ×			3		
Ŵ							× × ×					
Ŵ							×					
Ŵ							××					
S												
S							× · · · · · · · · · · · · · · · · · · ·					
H							×					
S)							× ×					
Y)		3.80 - 4.00	D									
X.							× ×					
Ň		4.00		N=29 (5,5/6,6,8,9)	4.00	86.00		End of borehole at 4.00 m		4		

									Borehole No.
	eps					Bo	reho	ole Log	WS11
							1	-	Sheet 1 of 1
Projec	t Name:	North Can Welwyn G	າpus E arden	ast Car Park,	Vroject No.		Co-ords:	-22632.59 - 6764764.69	Hole Type WLS
Lessti		Cellere M		utfoundabing ALO CL			Level	00.00	Scale
Locali	on:	College W	ау, пе	rtiordshire, AL8 60	JN		Levei:	90.00	1:20
Client	:	Ardent Co	nsultin	g			Dates:	06/10/2021 - 06/10/2021	Logged By Shaun Cahill
Well	Water Strikes	Sample:	s and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1
		Deptil (III)	Type	Results		( )		CONCRETE	
		0.20 - 0.45	ES		0.20	89.80		MADE GROUND: Dark grey slightly	/ gravelly
								sandy silty CLAY	-
					0.45	89.55		Firm to stiff vellowish brown and red	- t slightly
		0.60 0.80					X X	gravelly sandy silty CLAY with light	bluish grey
		0.00 - 0.80					×	silt pockets. Gravel is fine to coarse	chert (LOFT)
									-
							× × ×		-
		1.00		N=25 (8,7/6,6,6,7)			××		1 -
							××		-
							× · · · · · · · · · · · · · · · · · · ·		-
							× ×		-
							×		-
							××-		-
		1.60 - 1.80	D				×		-
							× × ×		-
							× × ×		-
		0.00		N. 55			× × ×		
		2.00		N=55 (10,12/13,13,14,15	) 2.00	88.00		End of borehole at 2.00 m	2
									-
									-
									-
									-
									-
									-
									-
									-
									3 —
									-
									-
									-
									-
1									
1									-
									-
									-
1									4 -
Rema	rks		1						
LOFT Groun	= Lowes	stoft Formatic	n ed						
Boreh	ole term	inated at 2.0r	n due '	to refusal at 2.0m					

22 5				85 	24	<u>91 - 10</u>	8		Borehole No.
	eps					Bo	reho	ole Log	WS12
		North Carr		ast Car Park	Project No				Sheet 1 of 1 Hole Type
Projec	t Name:	Welwyn G	arden	City	UK21.5579		Co-ords:	-22716.08 - 6764873.07	WLS
Locati	on:	College W	ay, He	rtfordshire, AL8 6	UN		Level:	91.00	Scale
Olivert		Anderst Cou					Deter	00/40/2024 00/40/2024	Logged By
Client	8	Ardent Col	nsulun	g	-		Dates.	06/10/2021 - 06/10/2021	Shaun Cahill
Well	Water	Samples	s and	n Situ Testing	Depth	Level (m)	Legend	Stratum Description	1 I
in cara n	ounco	Depth (m)	туре	Results	(,	(11)		MADE GROUND: Yellowish brown	slightly
		0.10 - 0.50	ES					gravelly sandy silty CLAY	
					0.50	90.50			
								Firm to stiff yellowish brown and red gravelly sandy silty CLAY with light	bluish grey -
		0.70 - 0.90	D					mottling, occasional black staining a silt pockets. Gravel is fine to coarse	e chert (LOFT)
									-
		1.00		N=37 (6,10/10,10,9,8)			×		1-
									-
		1.50 - 1.70	.70 D						-
						×		-	
							×		
		2.00		N-47					
		2.00		(6,10/10,10,11,16	5)				2 -
E E									-
							× ×		
		2.50 - 2.70	D						=
							× 		-
	5						×		
							**************************************		-
		3.00		N=55	3.00	88.00	****	End of borehole at 3.00 m	3
				(11,13/12,11,15,1	7)				
									-
									=
									-
				ų					4
Rema LOFT Groun	rks = Lowes dwater i	stoft Formatio	n ed						AGS
Boreh	ole term	inated at 3.0n	n due i	to refusal at 3.0m					



# **APPENDIX H**

# Laboratory Results – Environmental



Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

EPS Ltd	
7B Caxton House	
Broad Street	
Cambridgeshire	110134 Sec. 1
CB23 6JN	
	Hac-MBA (CH)
	4591
	THE EXECUTION AND A STATE
Attention :	Shaun Cahill
Date :	20th October, 2021
Your reference :	UK21.5579
Our reference :	Test Report 21/16025 Batch 1
Location :	North Campus East Car Park Welwyn Garden C
Date samples received :	12th October, 2021
Status :	Final Report
ISSUE .	1

Twelve samples were received for analysis on 12th October, 2021 of which ten were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:



Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name:	EPS I td
Peference:	LIK21 5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill
Contact.	onadir oanin
EMI JOD NO:	21/16025

#### Report : Solid

Solids V=60g VOC jar, J=250g glass jar, T=plastic tub

											-		
EMT Sample No.	1-4	5-8	<mark>9-12</mark>	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
Sample ID	WS1	WS3	WS4	WS5	WS6	WS7	WSP	WS10	WS11	WS12			
Depth	0.10-0.45	0.10-0.60	0.10-0.45	0.10-0.35	0.10-0.60	0.10-0.60	0.15-0.50	0.15-0.30	0.20-0.45	0.10-0.50	Please se	e attached r	notes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJ	VJ	VJ	VJ	VJ	VJ	VJ	VJ	VJ	VJ			
Sample Date	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021			
Sample Date	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021			
Sample Type	Clayey Sand	Clayey Sand	Clayey Sand	Clayey Sand	Clayey Sand	Clayey Sand	Clay	Loamy Sand	Clay	Clay			-
Batch Number	1	1	1	1	1	1	1	1	1	1		Units	Method
Date of Receipt	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021			No.
Arsenic #M	6.2	7.2	6.3	23 2	6.9	8.3	6.2	12 5	169	16 8	<0.5	mg/kg	TM30/PM15
Cadmium #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1	<0.1	0.5	<0.1	mg/kg	TM30/PM15
Chromium #M	10.4	150	27 5	706	12.2	24 6	189	58.4	678	74 5	<0.5	mg/kg	TM30/PM15
Copper #M	6	4	8	16	4	8	5	78	18	26	<1	mg/kg	TM30/PM15
Lead #M	5	<5	<5	16	6	5	7	53	29	51	<5	mg/kg	TM30/PM15
Mercury #M	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Nickel ^{#M}	2.8	3.5	3.5	24 6	3.0	5.9	2.7	33.4	22 3	29 0	<0.7	mg/kg	TM30/PM15
Selenium #M	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	mg/kg	TM30/PM15
Total Sulphate as SO4 ""	450	500	498	1/19	500	487	3//	2442	240	412	<50	mg/kg	TM50/PM29
	9	10	9	60	9	15	10	70	55	86	<5	mg/kg	TM30/PM15
PAH MS													-
Naphthalene #M	<0.04	<0.04	<0.04	1.81	<0.04	<0.04	<0.04	0.29	<0.04	<0.04	<0.04	ma/ka	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	0.14	<0.03	<0.03	<0.03	0.06	<0.03	<0.03	<0.03	ma/ka	TM4/PM8
Acenaphthene #M	<0.05	<0.05	<0.05	1 31	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	ma/ka	TM4/PM8
Fluorene #M	<0.04	<0.04	< 0.04	0 82	< 0.04	< 0.04	< 0.04	<0.04	<0.04	<0.04	< 0.04	mg/kg	TM4/PM8
Phenanthrene #M	<0.03	< 0.03	<0.03	9 03	< 0.03	< 0.03	0 94	0 56	0 03	0 08	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	3 29	<0.04	<0.04	0 33	0 20	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene #M	<0.03	<0.03	<0.03	13.97	0 06	<0.03	1.19	1.10	0.10	0 20	<0.03	mg/kg	TM4/PM8
Pyrene #	<0.03	<0.03	<0.03	10.86	0 06	<0.03	1 03	1.10	0 09	0.19	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06	<0.06	<0.06	7 50	<0.06	<0.06	0 54	0 61	0.11	0.13	<0.06	mg/kg	TM4/PM8
Chrysene #M	<0.02	<0.02	<0.02	7 65	0 03	<0.02	0 52	0 67	0 08	0.14	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #M	<0.07	<0.07	<0.07	16.12	<0.07	<0.07	0 89	1 37	0.17	0 32	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	<0.04	<0.04	<0.04	9 60	<0.04	<0.04	0 55	0.72	0.10	0.19	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #M	<0.04	<0.04	<0.04	5 64	<0.04	<0.04	0 33	0.49	0 07	0.17	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene*	<0.04	<0.04	< 0.04	1 06	<0.04	<0.04	0 06	0.12	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene*	<0.04	<0.04	<0.04	5 29	<0.04	<0.04	0 32	0 51	0 07	0.17	<0.04	mg/kg	TM4/PM8
PAH 16 TOTAL	<0.6	<0.6	<0.6	94.1	<0.0	<0.0	6.7	7.8	0.8	1.6	<0.6	mg/kg	
Benzo(b)iluoranthene	<0.05	<0.05	<0.05	11.01	<0.05	<0.05	0.04	0.39	0.12	0.23	<0.02	mg/kg	
PAH Surrogate % Recovery	91	97	100	93	97	97	98	97	95	95	<0.02	%	TM4/PM8
		1053				8.70	100	<u>19 N</u>	120	1000	1.24	10.0	
TPH CWG													
Aliphatics													
>C5-C6 (HS_1D_AL)#M	<0.1	<0.1	57	270	75	<0.1	57	<0.1 ^{SV}	75	ø	<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#M	<0.1	<0.1	84	9 <b>2</b> 3	20	<0.1	84	<0.1 ^{\$V}	10	12	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	0.2	<0.1	-	-	÷	<0.1	-	<0.1 ^{\$V}	÷	×	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#M	<0.2	<0.2	2	-	75	<0.2	8	<0.2	21		<0 2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL) #M	<4	<4	5	2.00	74	<4	5	<4	74		<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7	<7	-	5 <u>2</u> 5)		<7	~	<7	20	<u> </u>	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7	-	-		<7	-	38		-	<7	mg/kg	TM5/PM8/PM16
rotai aiiphatics C5-35 (EH+HS_CU_1D_AL)	<19	<19	-	-	-	<19	-	38	-	-	<19	mg/kg	MS MOS ME M 2 M 6
		-											· · · · · · · · · · · · · · · · · · ·
													1

Client Name:	EPS I td
Peference:	LIK21 5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill
Contact.	onadir oanin
EMI JOD NO:	21/16025

#### Report : Solid

Solids V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No.	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32	33-36	37-40			
	1000		0.12	10,10			20 20	20 02					
Sample ID	WS1	WS3	WS4	WS5	WS6	WS7	WSP	WS10	WS11	WS12			
Depth	0.10-0.45	0.10-0.60	0.10-0.45	0.10-0.35	0.10-0.60	0.10-0.60	0.15-0.50	0.15-0.30	0.20-0.45	0.10-0.50	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJ	VJ	VJ	VJ	VJ	VJ	VJ	VJ	VJ	VJ			
Sample Date	00/40/2024	00/40/2024	00/40/2024	00/40/2024	00/40/2024	00/40/2024	00/40/2024	00/40/2024	00/40/2024	00/40/2024			
Sample Date	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021			
Sample Type	Clayey Sand	Clayey Sand	Clayey Sand	Clayey Sand	Clayey Sand	Clayey Sand	Clay	Loamy Sand	Clay	Clay			-
Batch Number	1	1	1	1	1	1	1	1	1	1		Unite	Method
Date of Receipt	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	LODILOIN	Offica	No.
TPH CWG													
Aromatics													
>C5-EC7 (HS_1D_AR) [#]	<0.1*	<0.1+	-	140	21	<0.1+	94	<0.1+	22	2	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) [#]	<0.1	<0.1	-	-	en.	<0.1	6-	<0.1 ^{sv}	er.	×	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR) #M	<0.1	<0.1		353	7	<0.1	87	<0.1 ^{\$V}	<b>7</b>		<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)*	<0.2	<0.2	85	253	15	<0.2	87	<0.2	10	ø	<0 2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)*	<4	<4	81	100	20	<4	- 22	<4	<u>1</u> 1	0	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)*	<7	<7	14	343	23	<7	12	19	23	-	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)*	<7	<7			<del>.</del>	<7		108	÷.	-	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 (EH+HS_CU_1D_AR)*	<19	<19		353		<19		127	7	-	<19	mg/kg	NS NOS ME M 2 M 4
Total aliphat cs and a ornat cs(C5-35) (EH HS_CU_10_Total)	<38	<38	87	(1771)	74	<38	87	165	80	Ø	<38	mg/kg	NS NOS MB M 2 M 4
MTBE [#]	<5	<5	-		-	<5	-	<5 ^{SV}	÷	× .	<5	ug/kg	TM36/PM12
Benzene [#]	<5	<5	( <del>-</del>		=1	<5	( <del>-</del>	<5 ^{SV}	÷	н	<5	ug/kg	TM36/PM12
Toluene#	<5	<5	87		-	<5		<5 ^{SV}		-	<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	12	5 <u>2</u> 6)	22	<5	12	<5 ^{SV}	27	2	<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	<5	14	120	28	<5	12	<5 ^{SV}	28	20	<5	ug/kg	TM36/PM12
o-Xylene [#]	<5	<5	1-	(e)	-	<5	( <del>-</del>	<5 ^{\$V}	-	×	<5	ug/kg	TM36/PM12
Total Phenois HPLC	<0.15	<0.15	<0.15	<mark>&lt;</mark> 0.15	<0.15	<0.15	<0.15	<mark>&lt;0.15</mark>	<0.15	<0.15	<0.15	mg/kg	TM26/PM21B
Natural Moisture Content	12 6	10 5	11.4	18 8	11 2	13 6	7.5	17 5	122	18 6	<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3	<03	<0.3	<0.3	<0.3	<03	<0.3	<0.3	<0.3	<03	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #M	0.0074	0.0059	0.0227	0.0129	0.0105	0.0116	0.0278	1.0312	0.0240	0.0226	<0.0015	g/I	TM38/PM20
Chromium III	10.4	15 0	27 5	70 6	122	24 6	18 9	58.4	67 8	74 5	<0.5	mg/kg	NONE/NONE
Total Cyanide #M	<0.5	<0.5	<0 5	<0.5	<0.5	<0.5	<0 5	<0.5	<0.5	<0.5	<0 5	mg/kg	TM89/PM45
Organic Matter	0.2	<0 2	0.2	1.2	0.2	0.3	0.6	15 5	0.9	2.9	<0 2	%	TM21/PM24
pH ^{#M}	8 94	9.15	9 09	8 87	9 09	8 96	9 04	7 97	8 62	8 24	<0.01	pH units	TM73/PM11
Sample Type	Clayey Sand	Clayey Sand	Clayey Sand	Clayey Sand	Clayey Sand	Clayey Sand	Clay	Loamy Sand	Clay	Clay		None	PM13/PM0
Sample Colour	Light Brown	Light Brown	Light Brown	Medium Brown	Light Brown	Light Brown	Light Brown	Medium Brown	Medium Brown	Medium Brown		None	PM13/PM0
Other Items	stones	stones	stones	stones	stones	stones	stones and sand	brick fragment and cinker	stones and clinker	stones and roots		None	PM13/PM0

Matrix : Solid

Client Name:	EPS Ltd
Reference:	UK21.5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
21/16025	1	WS1	0.10-0.45	1-4	No interpretation possible
21/16025	1	WS3	0.10-0.60	5-8	No interpretation possible
21/16025	1	WS7	0.10-0.60	21-24	No interpretation possible
21/16025	1	WS10	0.15-0.30	29-32	PAHs and possible lubricating oil

Client Name:	EPS Ltd
Reference:	UK21.5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill

Note

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
21/16025	1	WS1	0.10-0.45	3	18/10/2021	General Description (Bulk Analysis)	Soil/Stones
					18/10/2021	Asbestos Fibres	NAD
					18/10/2021	Asbestos ACM	NAD
					18/10/2021	Asbestos Type	NAD
					18/10/2021	Asbestos Level Screen	NAD
21/16025	1	WS3	0.10-0 60	7	18/10/2021	General Description (Bulk Analysis)	Soil/Stone
1					18/10/2021	Asbestos Fibres	NAD
					18/10/2021	Asbestos ACM	NAD
					18/10/2021	Asbestos Type	NAD
					18/10/2021	Asbestos Level Screen	NAD
21/16025	1	WS4	0.10-0.45	11	18/10/2021	General Description (Bulk Analysis)	Soil/Stone
					18/10/2021	Asbestos Fibres	NAD
					18/10/2021	Asbestos ACM	NAD
					18/10/2021	Asbestos Type	NAD
					18/10/2021	Asbestos Level Screen	NAD
21/16025	1	WS5	0.10-0 35	15	18/10/2021	General Description (Bulk Analysis)	Soil/Stone
					18/10/2021	Asbestos Fibres	NAD
					18/10/2021	Asbestos ACM	NAD
					18/10/2021	Asbestos Type	NAD
					18/10/2021	Asbestos Level Screen	NAD
21/16025	1	WS6	0.10-0 60	19	18/10/2021	General Description (Bulk Analysis)	Soil/Stones
					18/10/2021	Asbestos Fibres	NAD
					18/10/2021	Asbestos ACM	NAD
					18/10/2021	Asbestos Type	NAD
					18/10/2021	Asbestos Level Screen	NAD
21/16025	1	WS7	0.10-0 60	23	18/10/2021	General Description (Bulk Analysis)	Soil/Stones
					18/10/2021	Asbestos Fibres	NAD
					18/10/2021	Asbestos ACM	NAD
					18/10/2021	Asbestos Type	NAD
					18/10/2021	Asbestos Level Screen	NAD
21/16025	1	WS9	0.15-0 50	27	18/10/2021	General Description (Bulk Analysis)	Soil/Stones
					18/10/2021	Asbestos Fibres	NAD
					18/10/2021	Asbestos ACM	NAD

Client Name:	EPS Ltd
Reference:	UK21.5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
1/16025	1	WS9	0.15-0 50	27	18/10/2021	Asbestos Type	NAD
					18/10/2021	Asbestos Level Screen	NAD
1/16025	1	WS10	0.15-0 30	31	18/10/2021	General Description (Bulk Analysis)	Soil/Stones
					10/10/2021	Asbestos Fibres	
					10/10/2021	Aspestos ACM	NAD
					18/10/2021	Asbestos Type	NAD
					18/10/2021	Asbestos Level Screen	NAD
4/46025		W011	0.00.0.45	25	16/10/2021	Constal Departmention (Bully Applysia)	
1/10025	1	WSTI	0.20-0.45	30	10/10/2021	General Description (Bulk Analysis)	SOIL
					16/10/2021	Asbestos Fibres	NAD
					16/10/2021	Asbestos ACM	NAD
					16/10/2021	Asbestos Type	NAD
					16/10/2021	Asbestos Level Screen	NAD
1/16025	1	WS12	0.10-0 50	39	14/10/2021	General Description (Bulk Analysis)	soil
					14/10/2021	Asbestos Fibres	NAD
					14/10/2021	Asbestos ACM	NAD
					14/10/2021	Asbestos Type	NAD
					14/10/2021	Asbestos Level Screen	NAD

 Client Name:
 EPS Ltd

 Reference:
 UK21.5579

 Location:
 North Campus East Car Park Welwyn Garden City

 Contact:
 Shaun Cahill

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
			7		No deviating sample report results for job 21/16025	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.



Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

EPS Ltd	
7B Caxton House	
Broad Street	
Cambourne	
Cambridgeshire	ACC & Com
CB23 6JN	iter up a
	HEID HEID A
	Kander Mane
	878
	mccerts
Attention :	Shaun Cahill
Date :	19th October, 2021
Your reference :	UK21.5579
Our reference :	Test Report 21/16045 Batch 1 Schedule A
Location :	North Campus East Car Park Welwyn Garden C
Date samples received :	12th October, 2021
Status :	Final Report
Issue :	1

Thirteen samples were received for analysis on 12th October, 2021 of which ten were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:



Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced
Client Name:	EPS Ltd
Reference:	UK21.5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill
EMT Job No:	21/16045

### Report : Solid

											_			
EMT Sample No.	1	2	3	4	5	6	7	8	18-19	20-21				
Sample ID	внз	внз	BH2	BH1	BH1	BH1	BH2	BH3	WS1	WS8				
Depth	1 65	3.45	4.70	5.45	10 5	15 0	10 3	22 5	1.60-1.80	0.70-0.90	Please see attached notes for all			
COC No / misc											abbrevi	ations and a	cronyms	
Containers	в	в	в	в	в	в	в	в	VJ	VJ				
Sample Date	09/10/2021	00/10/2021	09/10/2021	09/10/2021	09/10/2021	09/10/2021	00/10/2021	09/10/2021	09/10/2021	00/10/2021				
Sumple Bute	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021	00/10/2021				
Sample Type	Clay	Clayey Sand	Clay	Clay	Sand	Clay	Clay	Clay	Clay	Clay			-	
Batch Number	1	1	1	1	1	1	1	1	1	1		Units	Method	
Date of Receipt	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	LODILOIN	Ormo	No.	
Sulphur as S	0 03	<0.01	0 02	0 02	<0.01	0 01	0 02	0 02	70	5	<0.01	%	TM30/PM15	
Total Sulphate as SO4 ^{#M}	833	146	301	494	60	250	391	461	10	2	<50	mg/kg	TM50/PM29	
TPH CWG														
Aliphatics														
>C5-C6 (HS_1D_AL)#M	75	5	57	100	75		57	100	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>C6-C8 (HS_1D_AL)#M	22	2	12	3 <u>4</u> 3)	22	2	12	14 <u>1</u> 0	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>C8-C10 (HS_1D_AL)	28	-	12	-	28	2	-	-	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>C10-C12 (EH_CU_1D_AL)#	÷	-	(-		<del>.</del>	-	( <del>-</del>		<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16	
>C12-C16 (EH_CU_1D_AL)#M	=	-	-		=	-			<4	<4	<4	mg/kg	TM5/PM8/PM16	
>C16-C21 (EH_CU_1D_AL)#	75		87	270	75		57	1270	<7	<7	<7	mg/kg	TM5/PM8/PM16	
>C21-C35 (EH_CU_1D_AL) #M	20	-	14	-	20	-	14	-	<7	<7	<7	mg/kg	TM5/PM8/PM16	
Total allphatics C5-35 (EH+HS_CU_1D_AL)	÷	-	-	-	÷	-	-	-	<19	<19	<19	mg/kg	MS MOS MB H 2 M I	
Aromatics													5	
>C5-EC7 (HS_1D_AR)*	<u>76</u>		5	272	<u>76</u>	5	5	070	<0.1*	<0.1	<0.1	mg/kg	TM36/PM12	
>EC7-EC8 (HS_1D_AR)#	22	2	22	120	- 27	2	2	1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>EC8-EC10 (HS_1D_AR)#	27	-	<u>-</u>	-	27	-	<u>~</u>	-	<0.1	<0.1	<0.1	mg/kg	TM36/PM12	
>EC10-EC12 (EH_CU_1D_AR)*	-	-	-	-	-	-	-	-	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16	
>EC12-EC16 (EH_CU_1D_AR)*			. <del>.</del>	3-3		-	-	() <del>-</del> ()	<4	<4	<4	mg/kg	TM5/PM8/PM16	
>EC16-EC21 (EH_CU_1D_AR)*	78		17	-	70		17	-	<7	<7	<7	mg/kg	TM5/PM8/PM16	
>EC21-EC35 (EH_CU_1D_AR)*	-	-	-	-	-	-	-	-	<7	<7	<7	mg/kg	TM5/PM8/PM16	
Total aromatics C5-35 (EH+HS_CU_1D_AR)*		-	-	-		-	-	-	<19	<19	<19	mg/kg	MS MOS ME M 2 M	
Total alphat cs and a orrat cs(CS-35) (EH H5_CU_TD_Total)	-	-	-		-	-	-		<38	<38	<38	mg/kg	MS NOS NE M 2 M	
									-5	-5	-5	ualka	TM26/DM42	
Ponzono #		20 20	55 20	100		0	10	100	<5	<5	<5	ug/kg	TM36/DM12	
Toluono #	-								<5	<5	<5	ug/kg	TM36/PM12	
Ethylbenzene #	-	-	-		-	-	-		<5	<5	<5	ua/ka	TM36/PM12	
m/n-Xvlene [#]	-	-	-	-	-	-	-	-	<5	<5	<5	ua/ka	TM36/PM12	
o-Xylene #	-	j.	57	200	7	ā	57		<5	<5	<5	ug/kg	TM36/PM12	
Natural Moisture Content	2	-	-	( <b>1</b> 4)	-	-	-	( <b>1</b> 47)	12 0	12 8	<0.1	%	PM4/PM0	
Sulphate as SO4 (2:1 Ext)#M	0.1712	0.0653	0.1000	0.1867	0.0219	0.0144	0.0286	0.0438	20	ā	<0.0015	g/l	TM38/PM20	
													2	
pH ^{#M}	4 97	8 04	7.49	7 04	7 94	8 60	8 81	8 92	-	-	<0.01	pH units	TM73/PM11	
Sample Type	Clay	Clayey Sand	Clay	Clay	Sand	Clay	Clay	Clay	Clay	Clay		None	PM13/PM0	
Sample Colour	Light Brown	Light Brown	Light Brown	Light Brown	Light Brown	Light Brown	Light Brown	Light Brown	Light Brown	Light Brown		None	PM13/PM0	
	none	none	ourres and sand	none	none	CHAIK	none	none	siones	ourres and sand		None	PIVIT3/PIVIO	

Matrix : Solid

Client Name:	EPS Ltd
Reference:	UK21.5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
21/16045	1	WS1	1.60-1.80	18-19	No interpretation possible
21/16045	1	WS8	0.70-0.90	20-21	No interpretation possible

 Client Name:
 EPS Ltd

 Reference:
 UK21.5579

 Location:
 North Campus East Car Park Welwyn Garden City

 Contact:
 Shaun Cahill

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 21/16045	
-						
-						

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.



Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

EDS 1 td	
7B Caxton House	
Broad Street	
Cambourne	
Cambridgeshire	ACC MARKED
CB23 6JN	Bac-una (CD)
	Charles and Charles
	///CERT/
	Obere Ochill
Attention :	Snaun Canili
Date :	18th November, 2021
Vous seference :	11/21 5570
four reference :	0K21.5579
Our reference :	Test Report 21/16045 Batch 1 Schedule B
Location :	North Campus East Car Park Welwyn Garden C
Date samples received :	12th October, 2021
Status :	Final Report
issue :	2

Thirteen samples were received for analysis on 12th October, 2021 of which three were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:



Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name:	EPS Ltd
Reference:	UK21.5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill
EMT Job No:	21/16045

### Report : Solid

EMT Sample No.	9-11	12-14	15-17										
Sample ID	BH2	BH2	BH2										
Depth	2.00-2.40	6.50-6.90	17.8-18.2							Please see attached notes for all abbreviations and acronyms			
COC No / misc													
Containers	VJT	VJT	VJT										
Sample Date	08/10/2021	08/10/2021	08/10/2021										
Sample Type	Clay	Clav	Clay										
Botch Number	1	1	1										
Batch Number										LOD/LOR	Units	Method No.	
Date of Receipt	12/10/2021	12/10/2021	12/10/2021										
Arsenic #M	15 6	13.8	0.6							<0.5	mg/kg	TM30/PM15	
Cadmium ***	<0.1	0.2	0.1							<0.1	mg/kg	TM30/PM15	
Copper ^{#M}	160	16	3							<0.5	mg/kg	TM30/PM15	
Lead #M	63	8	<5							<5	ma/ka	TM30/PM15	
Mercury ^{#M}	<0.1	<0.1	<0.1							<0.1	mg/kg	TM30/PM15	
Nickel ^{#M}	19 8	37 0	5.2							<0.7	mg/kg	TM30/PM15	
Selenium ^{#M}	<1	1	<1							<1	mg/kg	TM30/PM15	
Zinc ^{#M}	125	40	11							<5	mg/kg	TM30/PM15	
PAH MS													
Naphthalene #M	0 56	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
Acenaphthylene	0.14	<0.03	<0.03							<0.03	mg/kg	TM4/PM8	
Acenaphthene #M	0 07	<0.05	<0.05							<0.05	mg/kg	TM4/PM8	
Fluorene #M	0 09	<0.04	< 0.04							<0.04	mg/kg	TM4/PM8	
Phenanthrene ""	1 52	< 0.03	< 0.03							< 0.03	mg/kg	TM4/PM8	
Anthracene "	2.06	<0.04	<0.04							<0.04	mg/kg		
Fluoranthene Pyrene [#]	1.57	<0.03	<0.03							<0.03	mg/kg	TM4/PM8	
Benzo(a)anthracene [#]	0 95	<0.06	<0.06							<0.06	ma/ka	TM4/PM8	
Chrysene ^{#M}	1 02	<0.02	<0.02							<0.02	mg/kg	TM4/PM8	
Benzo(bk)fluoranthene ^{#M}	1 85	<0.07	<0.07							<0.07	mg/kg	TM4/PM8	
Benzo(a)pyrene [#]	0 86	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
Indeno(123cd)pyrene #M	0 57	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
Dibenzo(ah)anthracene [#]	0.15	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
Benzo(ghi)perylene [#]	0 56	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
Coronene	0.12	<0.04	<0.04							<0.04	mg/kg	TM4/PM8	
PAH 16 Total	12 5	<0.6	<0.6							<0.6	mg/kg	TM4/PM8	
PAH 17 Total	12.62	<0.64	< 0.64							< 0.64	mg/kg	TM4/PM8	
Benzo(b)fluoranthene	1 33	<0.05	< 0.05							<0.05	mg/kg	TM4/PM8	
Benzo(k)huoranthene	0.52	<0.02	<0.02							<0.02	тд/кд 0/		
PAIT Suffogate // Recovery	57	52	54							~0	70	TIVIH/FIVIO	
Mineral Oil (C10-C40) (EH_CU_1D_AL)	150	<30	<30							<30	ma/ka	TM5/PM8/PM16	
		1	1	1	1	1	1	1		1		1	

Client Name:	EPS Ltd
Reference:	UK21.5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill
EMT Job No:	21/16045

### Report : Solid

EMT Sample No.	9-11	12-14	15-17												
Sample ID	BH2	BH2	BH2												
Depth	2.00-2.40	6.50-6.90	17.8-18.2								Please see attached notes for all				
COC No / misc											abbreviations and acronyms				
Containers	VJT	VJT	VJT												
Sample Date	08/10/2021	08/10/2021	08/10/2021												
Sample Type	Clay	Clay	Clav												
Batak Newbor	oldy (	ondy	onay .												
Batch Number	1	1	1								LOD/LOR	Units	Method No		
Date of Receipt	12/10/2021	12/10/2021	12/10/2021												
TPH CWG															
Aliphatics	SV														
>C5-C6 (HS_1D_AL)***	<0.1 SV	<0.1	<0.1								<0.1	mg/kg	TM36/PM12		
>C6-C8 (HS_1D_AL) ****	<0.1°*	<0.1	<0.1								<0.1	mg/kg	TM36/PM12		
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1								<0.1	mg/kg	TM5/PM8/PM12		
>C12 C16 (EH_CU_1D_AL)	10	<0.2	<0.2								<0.2	mg/kg	TM5/PM8/PM16		
>C16 C21 (EH_CU_1D_AL)	29	<7	<7								<7	mg/kg	TM5/PM8/PM16		
>C21 C25 (EH_CU_1D_AL)	111	<7	<7								<7	mg/kg	TM5/PM8/PM16		
Total aliphatics C5-35 (EH+HS CU 1D AL)	150	<19	<19								<19	ma/ka	M5 M36 M8 M 2 M 6		
Aromatics															
>C5-EC7 (HS 1D AR)#	<0.1+	<0.1	<0.1+								<0.1	mg/kg	TM36/PM12		
>EC7-EC8 (HS 1D AR) [#]	<0.1 ^{sv}	<0.1	<0.1								<0.1	mg/kg	TM36/PM12		
>EC8-EC10 (HS_1D_AR)#	<0.1 ^{sv}	<0.1	<0.1								<0.1	mg/kg	TM36/PM12		
>EC10-EC12 (EH_CU_1D_AR)#	6.3	<0.2	<0.2								<0.2	mg/kg	TM5/PM8/PM16		
>EC12-EC16 (EH_CU_1D_AR)#	14	<4	<4								<4	mg/kg	TM5/PM8/PM16		
>EC16-EC21 (EH_CU_1D_AR)#	51	<7	<7								<7	mg/kg	TM5/PM8/PM16		
>EC21-EC35 (EH_CU_1D_AR)#	188	<7	<7								<7	mg/kg	TM5/PM8/PM16		
Total aromatics C5-35 (EH+HS_CU_1D_AR)*	259	<19	<19								<19	mg/kg	M5 M36 M8 M 2 M 6		
Total aliphat cs and aromat cs(C5-35) (EH HS_CU_1D_Total)	409	<38	<38								<38	mg/kg	M5 M36 M8 M 2 M 6		
MTBE [#]	<5 ^{SV}	<5	<5								<5	ug/kg	TM36/PM12		
Benzene#	<5 ^{5V}	<5	<5								<5	ug/kg	TM36/PM12		
Toluene"	6 SV	<5	<5								<5	ug/kg	TM36/PM12		
Ethylbenzene "	<5 sv	<5	<5								<5	ug/kg	TM36/PM12		
m/p-Xylene "	<5°°	<5	<5								<5	ug/kg	TM36/PM12		
o-xyiene "	<5	<0	<0								<0	ug/kg	11/136/P1/12		
PCB 28 [#]	<5	<5	<5								<5	ua/ka	TM17/PM8		
PCB 52 [#]	<5	<5	<5								<5	ug/kg	TM17/PM8		
PCB 101 #	<5	<5	<5								<5	ua/ka	TM17/PM8		
PCB 118 [#]	<5	<5	<5								<5	ug/kg	TM17/PM8		
PCB 138 [#]	<5	<5	<5								<5	ug/kg	TM17/PM8		
PCB 153 [#]	<5	<5	<5								<5	ug/kg	TM17/PM8		
PCB 180 [#]	<5	<5	<5								<5	ug/kg	TM17/PM8		
Total 7 PCBs [#]	<35	<35	<35								<35	ug/kg	TM17/PM8		
Natural Moisture Content	15 8	10 2	30.7								<0.1	%	PM4/PM0		
Hexavalent Chromium #	<0.3	<0.3	<0.3								<0.3	mg/kg	TM38/PM20		
Chromium III	80 5	83 6	7.4								<0.5	mg/kg	NONE/NONE		
Total Organic Carbon [#]	5 06	0 08	0 04								<0.02	%	TM21/PM24		
1	1	1	1	1	1	1	1	1	1	1	1	1	1		

Client Name:	EPS Ltd
Reference:	UK21.5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill
EMT Job No:	21/16045

### Report : Solid

										-					
EMT Sample No.	9-11	12-14	15-17												
Sample ID	BH2	BH2	BH2												
Depth	2.00-2.40	6.50-6.90	17.8-18.2							Please see attached notes for all					
COC No / misc										abbreviations and acronyms					
Containers	VJT	VJT	VJT							l					
Sample Date	08/10/2021	08/10/2021	08/10/2021							1					
Sample Type	Clay	Clay	Clay							1					
Batch Number	1	1	1												
Date of Receipt	12/10/2021	12/10/2021	12/10/2021							LOD/LOR	Units	Nethod No.			
Loss on Ignition#	4.7	2.4	<1.0							<10	%	TM22/PM0			
nH ^{#M}	4.7 8.08	7 77	8.87							<0.01	⁷⁰ nH units	TM73/PM11			
Sample Type	Clay	Clay	Clay							-0.01	None	PM13/PM0			
Sample Colour	Dark Brown	Medium Brown	White								None	PM13/PM0			
Other Items	chalk stones and roots	stones and sand	chalk								None	PM13/PM0			
		atorica and aand	Clidik								None	FINITS/FINIO			
	1		1	1	1		1	1	1						

### CEN 10:1 LEACHATE RESULTS BS EN 12547-2

Mass of sample taken (kg)	1.7		Moisture Content Ratio (%) =		32.7	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		75.4	
Particle Size <4mm =	>95%					
EMT Job No			21/16045	Landf	ill Waste Ac	ceptance
Sample No			11		Criteria Lin	nits
Client Sample No	d.		BH2		Stable	
Depth/Other			2.00-2.40	Inert	Non-reactive	Hazardous
Sample Date	9		08/10/2021	Waste	Waste in Non-	Waste
Batch No			1	Landfill	Hazardous	Landfill
Solid Waste Analysis					Lanum	
Total Organic Carbon (%)	5.06			3	5	6
Loss on Ignition (%)	4.7			1220	10	10
Sum of BTEX (mg/kg)	<0.025			6	Б	57
Sum of 7 PCBs (mg/kg)	<0.035			1	ж	3
Mineral Oil (mg/kg) (EH_CU_1D_AL)	150			500		2
PAH Sum of 17(mg/kg)	12.62			100	н	5.7
pH (pH Units)	8.08			() <del>-</del> ()	>6	-
ANC to pH 7 (mol/kg)	9			122	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	=				to be evaluated	to be evaluated
Eluate Analysis	10:1 lead	conc ⁿ ched A ₁₀		Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 I/kg		
	mg/l	mg/kg			mg/kg	
Arsenic	< 0.0025	<0.025		0.5	2	25
Barium	0.053	0.53		20	100	300
Cadmium	< 0.0005	< 0.005		0.04	1	5
Chromium	<0.0015	<0.015		0.5	10	70
Copper	0.008	0.08		2	50	100
Mercury	< 0.001	<0.01		0.01	0.2	2
Molybdenum	0.007	0.07		0.5	10	30
Nickel	< 0.002	<0.02		0.4	10	40
Lead	< 0.005	<0.05		0.5	10	50
Antimony	0.003	0.03		0.06	0.7	5
Selenium	< 0.003	< 0.03		0.1	0.5	7
Zinc	< 0.003	< 0.03		4	50	200
Chloride	0.6	6		800	15000	25000
Fluoride	1.0	10		10	150	500
Sulphate as SO4	34.3	343		1000	20000	50000
Total Dissolved Solids	147	1471		4000	60000	100000
Phenol	<0.01	<0.1		1	-	2.4
	1	40		500	800	1000

### CEN 10:1 LEACHATE RESULTS BS EN 12547-2

Mass of sample taken (kg)	5		Moisture Content Ratio (%) =		28.0	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		78.1	
Particle Size <4mm =	>95%					
EMT Job No	68		21/16045	Land	fill Waste Ac	ceptance
Sample No			14		Criteria Lim	nits
Client Sample No			BH2		Stable	
Depth/Other	28 		6.50-6.90	Inert	Non-reactive	Hazardous
Sample Date			08/10/2021	Waste	Hazardous Waste in Non-	Waste
Batch No			1	Landfill	Hazardous	Landfill
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	0.08			3	5	6
Loss on Ignition (%)	2.4			1.127	2	10
Sum of BTEX (mg/kg)	<0.025			6	-	510
Sum of 7 PCBs (mg/kg)	< 0.035			1	÷	-
Mineral Oil (mg/kg) (EH_CU_1D_AL)	<30			500	100 A	242
PAH Sum of 17(mg/kg)	<0.64			100	=	5.00
pH (pH Units)	7.77			3 <b>4</b> )	>6	-
ANC to pH 7 (mol/kg)	4			12	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)				(-)	to be evaluated	to be evaluated
Eluate Analysis	10:1 lead	conc ⁿ ched A ₁₀		Limit le BS EN	Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 l/kg	
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	0.005	0.05		20	100	300
Cadmium	< 0.0005	<0.005		0.04	1	5
Chromium	<0.0015	<0.015		0.5	10	70
Copper	<0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	0.002	0.02		0.5	10	30
Nickel	< 0.002	< 0.02		0.4	10	40
Lead	< 0.005	< 0.05		0.5	10	50
Antimony	< 0.002	< 0.02		0.06	0.7	5
Selenium	< 0.003	< 0.03		0.1	0.5	7
Zinc	<0.003	< 0.03		4	50	200
Chloride	<0.3	<3		800	15000	25000
Fluoride	<0.3	<3		10	150	500
Sulphate as SO4	10.8	108		1000	20000	50000
Total Dissolved Solids	90	900		4000	60000	100000
Phenol	<0.01	<0.1		1	Ξ.	2.4
Dissolved Organic Carbon	<2	<20		500	800	1000

### CEN 10:1 LEACHATE RESULTS BS EN 12547-2

Mass of sample taken (kg)	<b>T</b>		Moisture Content Ratio (%) =		44.6	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		69.1	
Particle Size <4mm =	>95%					
EMT Job No	53 		21/16045	Land	ill Waste Ac	ceptance
Sample No			17		Criteria Lin	its
Client Sample No	cî.		BH2		Stable	
Depth/Other	03		17.8-18.2	Inert	Non-reactive	Hazardous
Sample Date			08/10/2021	Waste	Hazardous Waste in Non-	Waste
Batch No			1	Landfill	Hazardous	Landfill
Solid Waste Analysis					Landilli	
Total Organic Carbon (%)	0.04			3	5	6
Loss on Ignition (%)	<1.0			12	2	10
Sum of BTEX (mg/kg)	<0.025			6	=	57
Sum of 7 PCBs (mg/kg)	<0.035			1	H	3
Mineral Oil (mg/kg) (EH_CU_1D_AL)	<30			500	3	22
PAH Sum of 17(mg/kg)	<0.64			100	=	
pH (pH Units)	8.87			-	>6	(H)
ANC to pH 7 (mol/kg)				12	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)				-	to be evaluated	to be evaluated
Eluate Analysis	10:1 lead	conc ⁿ ched A ₁₀		Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 I/kg		ompliance using JS 10 l/kg
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	< 0.003	< 0.03		20	100	300
Cadmium	< 0.0005	< 0.005		0.04	1	5
Chromium	< 0.0015	<0.015		0.5	10	70
Copper	< 0.007	<0.07		2	50	100
Mercury	< 0.001	<0.01		0.01	0.2	2
Molybdenum	< 0.002	<0.02		0.5	10	30
Nickel	< 0.002	<0.02		0.4	10	40
Lead	< 0.005	<0.05		0.5	10	50
Antimony	< 0.002	<0.02		0.06	0.7	5
Selenium	< 0.003	<0.03		0.1	0.5	7
Zinc	< 0.003	<0.03		4	50	200
Chloride	<0.3	<3		800	15000	25000
Fluoride	<0.3	<3		10	150	500
Sulphate as SO4	6.2	62		1000	20000	50000
Total Dissolved Solids	39	390		4000	60000	100000
Dhanal	110				50	
Phenol	<0.01	<0.1		1	=	2.40

Matrix : Solid

Client Name:	EPS Ltd
Reference:	UK21.5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
21/16045	1	BH2	2.00-2.40	9-11	Trace degraded diesel, lubricating oil and PAHs
21/16045	1	BH2	6.50-6.90	12-14	No interpretation possible
21/16045	1	BH2	17.8-18.2	15-17	No interpretation possible

Client Name:	EPS Ltd
Reference:	UK21.5579
Location:	North Campus East Car Park Welwyn Garden City
Contact:	Shaun Cahill

Note

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result		
21/16045	1	BH2	2.00-2.40	10	16/10/2021	General Description (Bulk Analysis)	soil		
					16/10/2021	Asbestos Fibres	NAD		
					16/10/2021	Asbestos ACM	NAD		
					16/10/2021	Asbestos Type	NAD		
					16/10/2021	Asbestos Level Screen	NAD		
21/16045	1	BH2	6.50-6 90	13	18/10/2021	General Description (Bulk Analysis)	Soil/Stone		
					18/10/2021	Asbestos Fibres	NAD		
					18/10/2021	Asbestos ACM	NAD		
					18/10/2021	Asbestos Type	NAD		
					18/10/2021	Asbestos Level Screen	NAD		
21/16045	1	BH2	17 8-18.2	16	18/10/2021	General Description (Bulk Analysis)	Chalk		
					18/10/2021	Asbestos Fibres	NAD		
					18/10/2021	Asbestos ACM	NAD		
					18/10/2021	Asbestos Type	NAD		
					18/10/2021	Asbestos Level Screen	NAD		

Client Name: EPS Ltd

Reference: UK21.5579

Location: North Campus East Car Park Welwyn Garden City

Contact: Shaun Cahill

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason					
	No deviating sample report results for job 21/16045										
-											
a											

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

### NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

**EMT Job No.:** 21/16045

### SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

### WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

### **DEVIATING SAMPLES**

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

### SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

### DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

### BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

### NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

### **EMT Job No.:** 21/16045

### **REPORTS FROM THE SOUTH AFRICA LABORATORY**

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

### **Measurement Uncertainty**

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

### ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

### HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 21/16045

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5 2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5 2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM4	Modified USEPA 8270D v5 2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCF D. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCF D. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCF D. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCF D. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes	Yes	AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes

EMT Job No: 21/16045

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM13	A visual examination of the solid sample is carried out to ascertain sample make up, colour and any other inclusions. This is not a geotechnical description.	PM0	No preparation is required.			AR	No
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.			AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C- 440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev 2, Dec 1996; Modified BS EN ISO 11885:2009: SO LS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112 5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev 2, Dec 1996; Modified BS EN ISO 11885:2009: SO LS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2 2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-F D. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-F D. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes

EMT Job No: 21/16045

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-F D. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes	Yes	AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365 2 (Rev.2 1993), TON 353.1 (Rev 2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365 2 (Rev.2 1993), TON 353.1 (Rev 2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0 2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1 2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes	Yes	AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	



## **APPENDIX I**

## Waste Classification Report



## HazWasteOnline™

## Waste Classification Report

HazWasteOnline ™ classifies legislation and he rules and of not assessed). It is the respor a) understand the origin of b) select the correct List of of c) confirm that the list of d d) select and justify the ch e) correctly apply moisture f) add the meta data for th g) check that the classification	OEFLG-ONVF4-HVHA8				
To aid the reviewer, the labora	tory results, a	issumptions and	justifications manaç	ged by the classifier are highlighted in <mark>pale yellow</mark> .	
Job name					
North East Campus Car P	ark, Welwy	n Garden City	(4 of 4)		
Description/Comment	t <b>s</b> a site invest	igation. (4 of 4	)		
Project				Site	
UK21.5579				North East Campus Car Park, Welwyn Ga	arden City (4 of 4)
Classified by					
Name: Lee Anderson Date: 03 Nov 2021 09:42 GMT Telephone:	Company: Environm	ental Strategi	es Ltd EPS	HazWasteOnline™ provides a two day, hazardous waste cla of the software and both basic and advanced waste classific be renewed every 3 years. HazWasteOnline™ Certification: Course Hazardous Waste Classification Next 3 year Refresher due by	ssification course that covers the use ation techniques. Certification has to <b>CERTIFIED</b> <b>Date</b> 03 Dec 2020 y Dec 2023
Job summary					
# Sample name		Depth [m]	Classification Res	Hazard properties	Page
1 BH2-08/10/2021-2.00-2	2.40m	2.0-2.40	Non Hazardous		2
3 BH2-08/10/2021-0.50-0	18.2m	17.8-18.2	Non Hazardous		5
Related documents # Name			Descr	iption	
1 EMT-21-16045-Batcl	n-1-Sched-B-2	202110201343.H	WOL .hwol	file used to create the Job	
Report Created by: Lee Anderson				Created dat	e: 03 Nov 2021 09:42 GMT
Appendices					Page
Appendix A: Classifier def	ined and no	n CLP determi	nands		9
Appendix B: Rationale for Appendix C: Version	selection of	metal species			11 11



### Classification of sample: BH2-08/10/2021-2.00-2.40m

### Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.....

_____

### Sample details

Sample name:	LoW Code:
BH2-08/10/2021-2.00-2.40m	Chapter:
Sample Depth:	
2.0-2.40 m	Entry:
Moisture content:	
15.8%	
(dry weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

### Hazard properties

None identified

### Determinands

### Moisture content: 15.8% Dry Weight Moisture Correction applied (MC)

#		Determinand           CLP index number         EC Number         CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<5 µg/kg		<0.005 mg/kg	<0.0000005 %	0. 5	<lod< td=""></lod<>
2		benzene 601-020-00-8 200-753-7 71-43-2	-	<5 µg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
3		toluene 601-021-00-3 203-625-9 108-88-3		6 µg/kg		0.0051 mg/kg	0.000000518 %	1	
4	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<5 µg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
5	*	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		80.5 mg/kg	1.462	101.602 mg/kg	0.0102 %	~	
6	0	polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3	-	<35 µg/kg		<0.035 mg/kg	<0.0000035 %	0	<lod< td=""></lod<>
7	4	arsenic { arsenic } 033-001-00-X 231-148-6 7440-38-2		15.6 mg/kg		13.472 mg/kg	0.00135 %	1	
8	4	cadmium { cadmium compounds, with the exception of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex }	1	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
9	4	048-001-00-5 copper { ^o copper(II) chloride; copper dichloride }         231-210-2         7447-39-4		160 mg/kg	2.116	292.342 mg/kg	0.0292 %	1	
10	4	lead { Plead compounds with the exception of those specified elsewhere in this Annex (worst case) } 082-001-00-6	1	63 mg/kg		54.404 mg/kg	0.00544 %	~	
11	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
12	4	nickel { nickel sulfide } 028-006-00-9 240-841-2 [1] 16812-54-7 [1] 234-349-7 [2] - [3] 11113-75-0 [2] 1314-04-1 [3]		19.8 mg/kg	1.546	26.44 mg/kg	0.00264 %	~	
13	4	selenium { selenium } 034-001-00-2 231-957-4 7782-49-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>

Page 2 of 12



#			Determinand		o Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CF							MC	
14	4	zinc { <mark>zinc oxide</mark> }				125	mg/kg	1.245	134.36	mg/kg	0.0134 %	1	
		030-013-00-7	215-222-5	1314-13-2	_					0.0		·	
15	4	chromium in chrom	ium(VI) compound	s { <mark>chromium(VI)</mark>		~0.3	ma/ka	1 023	<0.577	ma/ka			
15		024-001-00-0	215-607-8	1333-82-0	-	~0.5	шу/ку	1.923	~0.577	шу/ку	~0.0000377 78		LOD
16		naphthalene			1	0.56			0.494		0.0000484.9/	,	
16		601-052-00-2	202-049-5	91-20-3	_	0.56	тд/кд		0.484	mg/kg	0.0000484 %	$\checkmark$	
17	8	acenaphthylene				0 14	ma/ka		0 121	ma/ka	0 0000121 %	./	
			205-917-1	208-96-8								Ŷ	
18		acenaphthene				0.07	ma/ka		0.0604	ma/ka	0.00000604 %	1	
			201-469-6	83-32-9								*	
19	0	fluorene				0.09	mg/kg		0.0777	mg/kg	0.00000777 %	1	
			201-695-5	86-73-7	_								
20	۲	phenanthrene		1	_	1.52	mg/kg		1.313	mg/kg	0.000131 %	$\checkmark$	
			201-581-5	85-01-8	_								
21	۲	anthracene	004.074.4	400.40.7		0.53	mg/kg		0.458	mg/kg	0.0000458 %	$\checkmark$	
		fluin and the second	204-371-1	120-12-7	_								
22	8	nuorantnene	205 012 4	000 44 0	_	2.06	mg/kg		1.779	mg/kg	0.000178 %	$\checkmark$	
		D/ropo	205-912-4	200-44-0									
23		pyrene	204 027 2	120.00.0	_	1.57	mg/kg		1.356	mg/kg	0.000136 %	$\checkmark$	
		bonzo[a]anthracon	204-927-3	129-00-0	+								
24		601-033-00-9	200-280-6	56-55-3	-	0.95	mg/kg		0.82	mg/kg	0.000082 %	$\checkmark$	
-		chrysene	200-200-0	00-00-0	-								
25		601-048-00-0	205-923-4	218-01-9	-	1.02	mg/kg		0.881	mg/kg	0.0000881 %	$\checkmark$	
		benzo[a]pvrene: be	nzoldeflchrvsene	<u></u>									
26		601-032-00-3	200-028-5	50-32-8	-	0.86	mg/kg		0.743	mg/kg	0.0000743 %	$\checkmark$	
07		indeno[123-cd]pyre	ne			0.57			0.400		0.0000.000.0/		
27			205-893-2	193-39-5	-	0.57	mg/kg		0.492	mg/кg	0.0000492 %	$\checkmark$	
20		dibenz[a,h]anthrace	ene			0.15	malka		0.12	malka	0.000012.0/	,	
20		601-041-00-2	200-181-8	53-70-3		0.15	шу/ку		0.13	шу/ку	0.000013 %	~	
20		benzo[ghi]perylene				0.56	ma/ka		0 484	ma/ka	0 0000484 %	/	
23			205-883-8	191-24-2		0.00	ing/kg		0.404	iiig/kg	0.0000404 /0	~	
30		coronene				0.12	ma/ka		0.104	ma/ka	0.0000104 %	J	
			205-881-7	191-07-1								*	
31		benzo[b]fluoranther	ne			1.33	mg/kg		1.149	mg/kg	0.000115 %	$\checkmark$	
		601-034-00-4	205-911-9	205-99-2									
32		benzo[k]fluoranther	ne		_	0.52	mg/kg		0.449	mg/kg	0.0000449 %	$\checkmark$	
		601-036-00-5	205-916-6	207-08-9	+								
33	8	1PH (C6 to C40) pe	etroleum group		_	409	mg/kg		353.195	mg/kg	0.0353 %	$\checkmark$	
<u> </u>	-	-11		IPH	-								
34	8	ры		рн	_	8.08	рН		8.08	pН	8.08 pH		
<u> </u>	-	xylene		μι	+							$\vdash$	
35		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
										Total:	0.0989 %		

Key

0

4

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1  $\,$  Only the metal concentration has been used for classifica ion



### **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Sample is solid and therefore flammability is reduced,

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

toluene: (conc.: 5.18e-07%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0353%)



.....

### Classification of sample: BH2-08/10/2021-6.50-6.90m



Sample details

oumple details		
Sample name: BH2-08/10/2021-6.50-6.90m	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
6.50-6.90 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:	1. A.	03)
10.2% (dry weight correction)		

### Hazard properties

None identified

### Determinands

Moisture content: 10.2% Dry Weight Moisture Correction applied (MC)

#		Determinand	Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP					MC	
1		tert-butyl methyl ether; MTBE; 2-me hoxy-2-methylpropane		<5 µg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4							
2		benzene 601-020-00-8 200-753-7 71-43-2		<5 µg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
3		toluene		<5 ua/ka		<0.005 mg/kg	<0.000005 %		
		601-021-00-3 203-625-9 108-88-3		-o pging		<0.000 mg/ng	0.0000000 78		LOD
4		ethylbenzene 601-023-00-4 202-849-4 100-41-4		<5 µg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
5	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }		83.6 mg/kg	1.462	110.877 mg/kg	0.0111 %	~	
		215-160-9 1308-38-9	4					2	
6		polychiorobiphenyis; PCB		<35 µg/kg		<0.035 mg/kg	<0.0000035 %		<lod< td=""></lod<>
-	8	arcanic (arcanic)	-		á di				
7	4	033-001-00-X 231-148-6 7440-38-2		13.8 mg/kg		12.523 mg/kg	0.00125 %	1	
8	4	cadmium { Cadmium compounds, with the excep ion of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex }	1	0.2 mg/kg		0.181 mg/kg	0.0000181 %	~	
		048-001-00-5	0.					x 2	
9	4	copper { Copper(II) chloride; copper dichloride }	2	16 mg/kg	2.116	30.72 mg/kg	0.00307 %	1	
10	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	8 mg/kg	5	7.26 mg/kg	0.000726 %	~	
	ä	mercury { mercury dichloride }			4.050	0.405	0.0000405.04	÷	
11	~	080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
12	4	nickel { nickel sulfide } 028-006-00-9 240-841-2 [1] 16812-54-7 [1] 234-349-7 [2] - [3] 11113-75-0 [2] 1314-04-1 [3]		37 mg/kg	1.546	51.918 mg/kg	0.00519 %	~	
13	4	selenium { selenium }           034-001-00-2         231-957-4         7782-49-2		1 mg/kg		0.907 mg/kg	0.0000907 %	~	

www.hazwasteonline.com



#		Determinand	CAS Number	P Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	C Applied	Conc. Not Used
			CAS Nulliber	Ч						ž	
14	4	zinc { <mark>zinc oxide</mark> }		_	40	mg/kg	1.245	45.18 mg/	g 0.00452 %	$\checkmark$	
	-	030-013-00-7 215-222-5	1314-13-2	_							
15	4	chromium in chromium(VI) compounds	{ chromium(VI)		<0.3	ma/ka	1 0 2 3	<0.577 mg/	a <0.0000577 %		
10		024-001-00-0 215-607-8	1333-82-0	-	40.0	ing/itg	1.520	-0.077 mg/	g 10.0000011 /0		LOD
		naphthalene	1000 02 0							t-	
16		601-052-00-2 202-049-5	91-20-3	-	<0.04	mg/kg		<0.04 mg/l	g <0.000004 %		<lod< td=""></lod<>
		acenaphthylene			0.00					Ì.	
11	-	205-917-1	208-96-8		< 0.03	mg/kg		<0.03 mg/l	g <0.000003 %		<lod< td=""></lod<>
10		acenaphthene	1		-0.05			10.05		Ì	
10		201-469-6	83-32-9	-	<0.05	тід/кд		<0.05 mg/i	g <0.00005 %		<lod< td=""></lod<>
10		fluorene			<0.04	malka		<0.04 mg/	~ ~0 000001 %		
19		201-695-5	86-73-7		<0.04	шу/ку		~0.04 mg/	g <0.000004 //		LOD
20		phenanthrene			<0.03	ma/ka		<0.03 mg/	a <0.000003 %		<i od<="" td=""></i>
		201-581-5	85-01-8						g		-205
21	۲	anthracene			<0.04	ma/ka		<0.04 ma/	a <0.000004 %		<lod< td=""></lod<>
		204-371-1	120-12-7						5		
22	۲	fluoranthene			<0.03	mg/kg		<0.03 mg/l	g <0.000003 %		<lod< td=""></lod<>
		205-912-4	206-44-0							Ŀ	
23	۲	pyrene			<0.03	mg/kg		<0.03 mg/l	g <0.000003 %		<lod< td=""></lod<>
		204-927-3	129-00-0	_						-	
24					<0.06	mg/kg		<0.06 mg/l	g <0.000006 %		<lod< td=""></lod<>
		601-033-00-9 200-280-6	20-22-3	_						-	
25		601 048 00 0 b05 022 4	b19 01 0	_	<0.02	mg/kg		<0.02 mg/l	g <0.000002 %		<lod< td=""></lod<>
		benzolalpyrene: benzoldefichrysene	210-01-9							-	
26		601-032-00-3 200-028-5	50-32-8	-	<0.04	mg/kg		<0.04 mg/l	g <0.000004 %		<lod< td=""></lod<>
		indeno[123-cd]pvrene	00 02 0							t	
27		205-893-2	193-39-5		<0.04	mg/kg		<0.04 mg/l	g <0.000004 %		<lod< td=""></lod<>
		dibenz[a,h]anthracene			-0.04			.0.04		Ì –	
28		601-041-00-2 200-181-8	53-70-3		<0.04	mg/kg		<0.04 mg/l	g <0.00004 %		<lod< td=""></lod<>
200		benzo[ghi]perylene			-0.04			<0.04 mg/	~ <0.000001.0/	Ì	
29		205-883-8	191-24-2		<0.04	тід/кд		<0.04 mg/i	g <0.00004 %		<lod< td=""></lod<>
30	۲	coronene			<0.04	ma/ka		<0.04 mg/	a <0.000004 %		
		205-881-7	191-07-1		~0.04	ing/kg			g <0.000004 /0		LOD
31		benzo[b]fluoranthene			<0.05	ma/ka		<0.05 ma/	a <0.000005 %		<lod< td=""></lod<>
<u> </u>		601-034-00-4 205-911-9	205-99-2						g 0.000000 /0		
32		benzo[k]fluoranthene			<0.02	mg/kg		<0.02 mg/	a <0.000002 %		<lod< td=""></lod<>
		601-036-00-5 205-916-6	207-08-9								
33	Θ	TPH (C6 to C40) petroleum group	<u></u>		<38	mg/kg		<38 mg/l	g <0.0038 %		<lod< td=""></lod<>
			ГРН	_						<u> </u>	
34	•	рн	DU		7.77	pН		7.77 pH	7.77 pH		
$\vdash$	-	l vulene	ГЦ	+						$\vdash$	
		601_022_00_0 b02_422_2 [4]	05-17-6 [1]	_							
35		203-396-5 [2]	106-42-3 [2]		<0.01	mg/kg	3	<0.01 mg/	ng/kg <0.000001 %		<lod< td=""></lod<>
		203-576-3 [3]	108-38-3 [3]		0.01						
<u> </u>		215-535-7 [4]	1330-20-7 [4]					<b>T</b> _4	L 0.0200.0/	┡	
1								IOU	1. 0.0299 %	1	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) 0

Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4

concentration <LOD Below limit of detection

ND

Not detected

CLP: Note 1  $\,$  Only the metal concentration has been used for classification



### Classification of sample: BH2-08/10/2021-17.8-18.2m



### Sample details

Sample name: BH2-08/10/2021-17.8-18.2m Sample Depth:	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17.8-18.2 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
30.7% (dry weight correction)		

### Hazard properties

None identified

### Determinands

Moisture content: 30.7% Dry Weight Moisture Correction applied (MC)

#		Determinand	Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLP					MC	
1		tert-butyl methyl ether; MTBE; 2-me hoxy-2-methylpropane		<5 µg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4							
2		benzene		<5 µa/ka		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
_		601-020-00-8 200-753-7 71-43-2			a			-	
3		toluene		<5 µg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3					1		
4	۰	ethylbenzene		<5 µg/kg		<0.005 mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4 202-849-4 100-41-4						2.0	C Designation
5	4	chromium in chromium(III) compounds { <pre> chromium(III) cxide (worst case) } </pre>		7.4 mg/kg	1.462	8.275 mg/kg	0.000828 %	~	
		215-160-9 1308-38-9							
6	۲	polychlorobiphenyls; PCB		<35 µg/kg		<0.035 mg/kg	<0.0000035 %		<lod< td=""></lod<>
		602-039-00-4 215-648-1 1336-36-3							M2987394115
7	4	arsenic { arsenic }		0.6 mg/kg		0.459 mg/kg	0.0000459 %	1	
12	_	033-001-00-X 231-148-6 7440-38-2	5		e			5-3	
8	*	cadmium { Cadmium compounds, with the excep ion of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex }	1	0.1 mg/kg		0.0765 mg/kg	0.00000765 %	~	
		048-001-00-5	0		<u>v s</u>			x - 2	
9	4	copper { Copper(II) chloride; copper dichloride } 231-210-2 7447-39-4		3 mg/kg	2.116	4.857 mg/kg	0.000486 %	1	
10	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) } 082-001-00-6	1	<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
	ä	mercury { mercury dichloride }							
11	~	080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
12	4	nickel { nickel sulfide } 028-006-00-9 240-841-2 [1] 16812-54-7 [1] 234-349-7 [2] - [3] 11113-75-0 [2] 1314-04-1 [3]		5.2 mg/kg	1.546	6.152 mg/kg	0.000615 %	~	
13	4	selenium { selenium } 034-001-00-2 231-957-4 7782-49-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>



#		Determinand		P Note	User entered da	ata	Conv. Factor	Compound conc.		Classification value	C Applied	Conc. Not Used	
			CAS Number	5							ž		
14	4	zinc { <mark>zinc oxide</mark> }			11 m	g/kg	1.245	10.476 mg	'kg	0.00105 %	$\checkmark$		
	-	030-013-00-7 215-222-5	1314-13-2	-					_				
15	4	chromium in chromium(VI) compounds	{ cnromium(VI)		<0.3 m	a/ka	1 923	<0.577 mg	ka	<0.0000577 %		<i od<="" td=""></i>	
10		024-001-00-0 215-607-8	1333-82-0	-	-0.0 11	y/ny	1.520	40.011 Hig	Ng	-0.0000077 70		LOD	
		naphthalene	1000 02 0										
16		601-052-00-2 202-049-5	91-20-3	-	<0.04 m	g/kg		<0.04 mg	kg	<0.000004 %		<lod< td=""></lod<>	
		acenaphthylene											
11	-	205-917-1	208-96-8		<0.03 m	g/kg		<0.03 mg	kg	<0.000003 %		<lod< td=""></lod<>	
10		acenaphthene			10.05			10.05		-0.000005.0/	İ		
10		201-469-6	83-32-9	-	<0.05 m	у/ку		<0.05 mg	кg	<0.000005 %		<lod< td=""></lod<>	
10		fluorene			<0.04 m	a/ka		<0.04 mg	ka	<0.00004.9/			
19		201-695-5	86-73-7		<0.04 III	у/ку		<0.04 Ilig	ĸġ	<0.000004 %		<lod< td=""></lod<>	
20		phenanthrene			<0.03 m	a/ka		<0.03 mg	ka	<0.000003 %			
		201-581-5	85-01-8			9/19						-205	
21	۲	anthracene			<0.04 m	a/ka		<0.04 ma	'ka	<0.000004 %		<lod< td=""></lod<>	
		204-371-1	120-12-7	1		5 5		3					
22	۲	fluoranthene			<0.03 m	g/kg		<0.03 mg	'kg	<0.000003 %		<lod< td=""></lod<>	
		205-912-4	206-44-0			0 0			_		_		
23	۲	pyrene			<0.03 m	g/kg		<0.03 mg	'kg	<0.000003 %		<lod< td=""></lod<>	
		204-927-3	129-00-0								<u> </u>		
24		benzolajanthracene			<0.06 m	g/kg		<0.06 mg	'kg	<0.000006 %		<lod< td=""></lod<>	
		601-033-00-9 200-280-6	56-55-3	-					_				
25		cnrysene	219 01 0		<0.02 m	g/kg		<0.02 mg	'kg	<0.000002 %		<lod< td=""></lod<>	
		bonzolalpyrono: bonzoldofichrysono	210-01-9	-					-		-		
26		601-032-00-3 200-028-5	50-32-8	-	<0.04 m	g/kg		<0.04 mg	'kg	<0.000004 %		<lod< td=""></lod<>	
	_	indeno[123-cd]pyrene	00-02-0										
27		205-893-2	193-39-5	-	<0.04 m	g/kg		<0.04 mg	kg	<0.000004 %		<lod< td=""></lod<>	
		dibenz[a.h]anthracene								0.000004.0/	1		
28		601-041-00-2 200-181-8	53-70-3	-	<0.04 m	g/kg		<0.04 mg	kg	<0.000004 %		<lod< td=""></lod<>	
00		benzo[ghi]perylene			10.01			10.01		-0.000004.0/	İ		
29		205-883-8	191-24-2	1	<0.04 m	д/кд		<0.04 mg	кg	<0.000004 %		<lod< td=""></lod<>	
30		coronene			<0.04 m	a/ka		<0.04 mg	ka	<0.00004.%	ĺ		
30		205-881-7	191-07-1		~0.04 III	улу		~0.04 Ilig	ĸу	~0.00004 //		LOD	
31		benzo[b]fluoranthene			<0.05 m	a/ka		<0.05 mg	'ka	<0.000005 %		<i od<="" td=""></i>	
Ľ		601-034-00-4 205-911-9	205-99-2			9/19						-205	
32		benzo[k]fluoranthene			<0.02 m	a/ka		<0.02 ma	'ka	<0.000002 %		<lod< td=""></lod<>	
		601-036-00-5 205-916-6	207-08-9			5 5							
33	Θ	TPH (C6 to C40) petroleum group			<38 m	g/kg		<38 mg	'kg	<0.0038 %		<lod< td=""></lod<>	
┣			TPH	-									
34	۲	рн			8.87 pł	H		8.87 pH		8.87 pH			
<u> </u>	-	lundere.	РН	+							-		
			05 47 6 [4]										
35		203-396-5 [2]	106-42-3 [2]		<0.01 m	g/kg	<0.01	<0.01 mg	/kg <0.000001 %	<0.000001 %		<lod< td=""></lod<>	
		203-576-3 [3]	108-38-3 [3]			тулу				.99			
<u> </u>		215-535-7 [4]	1330-20-7 [4]					-		0.00757.0/			
1								10	al:	0.00/5/ %			

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) 0

Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4

concentration <LOD Below limit of detection

ND Not detected

CLP: Note 1  $\,$  Only the metal concentration has been used for classification



Report created by Lee Anderson on 03 Nov 2021

### Appendix A: Classifier defined and non CLP determinands

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6)

Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H332, Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Resp. Sens. 1 H334, Skin Sens. 1 H317 , Repr. 1B H360FD , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

#### ^o polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans; POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 1A H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

### arsenic (EC Number: 231-148-6, CAS Number: 7440-38-2)

CLP index number: 033-001-00-X

Description/Comments: Worst Case: IARC considers arsenic Group 1; Carcinogenic to humans

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

#### • cadmium compounds, with the exception of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex

CLP index number: 048-001-00-5 Description/Comments: Worst Case: IARC considers cadmium compounds Group 1; Carcinogenic to humans Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP) Additional Hazard Statement(s): Carc. 1A H350 Reason for additional Hazards Statement(s): 29 Sep 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

### • copper(II) chloride; copper dichloride (EC Number: 231-210-2, CAS Number: 7447-39-4)

Description/Comments:

Data source: https://echa.europa.eu/substance-information/-/substanceinfo/100.028.373

Data source date: 03 Nov 2016

Hazard Statements: Skin Irrit. 2 H315 , Acute Tox. 4 H302 , Eye Dam. 1 H318 , Acute Tox. 4 H312 , STOT SE 3 H335 , Eye Irrit. 2 H319 , Acute Tox. 3 H301, Acute Tox. 4 H332, Aqua ic Acute 1 H400, Aquatic Chronic 1 H410

### Iead compounds with the exception of those specified elsewhere in this Annex (worst case)

CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP) Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015



Report created by Lee Anderson on 03 Nov 2021

#### acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H302 , Acute Tox. 1 H330 , Acute Tox. 1 H310 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315

#### acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Aquatic Acute 1 H400 , Aqua ic Chronic 1 H410 , Aquatic Chronic 2 H411

### ^e fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

### • phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Carc. 2 H351, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Skin Irrit. 2 H315

### • anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

### ^e fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4 H302 , Aqua ic Acute 1 H400 , Aquatic Chronic 1 H410

### • pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aqua ic Chronic 1 H410

### ^e indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

### • benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

### ^e coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic. Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2 H371

### • TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3 H226 , Asp. Tox. 1 H304 , STOT RE 2 H373 , Muta. 1B H340 , Carc. 1B H350 , Repr. 2 H361d , Aquatic Chronic 2 H411



### • **pH** (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

### Appendix B: Rationale for selection of metal species

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Standard Aproach

#### arsenic {arsenic}

Standard Approach

cadmium {cadmium compounds, with the exception of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex}

Standard Approach
copper {copper(II) chloride; copper dichloride}
Standard Approach
lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}
Standard Approach
mercury {mercury dichloride}
Standard Approach
nickel {nickel sulfide}
Standard Approach
selenium {selenium}
Standard Approach
zinc {zinc oxide}
Standard Approach
chromium in chromium(VI) compounds {chromium(VI) oxide}
Standard Approach

### Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2021.293.4891.9295 (20 Oct 2021) HazWasteOnline Database: 2021.293.4891.9295 (20 Oct 2021)



Report created by Lee Anderson on 03 Nov 2021

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2019 - UK: 2019 No. 720 of 27th March 2019 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 POPs Regulation 2019 - Regulation (EU) 2019/1021 of 20 June 2019



## HazWasteOnline™

## Waste Classification Report

HazV legisl not a b c; d c f) g	50V76-UIVVE-42E0X								
To aid	the reviewer, the laboratory results,	assumptions and	justifications manaç	ged by the classifier are highlighted in pale yellow.					
Job	name								
UK2	1.5579 North East Campus Car I	Park, Welwyn G	Garden City (3 of	4)					
Des	cription/Comments								
Sam	ples collected during a site inves	tigation.							
Proj	ect			Site					
UK2	1.5579			North East Campus Car Park, Welwyn Gar	rden City (3 of 4)				
Name:     Company:       Lee Anderson     Environmental Strategies Ltd EPS       Date:     03 Nov 2021 09:48 GMT       Telephone:				HazWasteOnline™ provides a two day, hazardous waste classification course that covers the us of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years. HazWasteOnline™ Certification: Course Date Hazardous Waste Classification 03 Dec 2020 Next 3 year Refresher due by Dec 2023					
Job	summary								
#	Sample name	Depth [m]	Classification Res	Hazard properties	Page				
1	WS1-08/10/2021-0.10-0.45m	0.10-0.45	Non Hazardous		2				
2	WS4-08/10/2021-0.10-0.60III	0.10-0.60	Non Hazardous		4				
4	WS5-08/10/2021-0 10-0 35m	0.10-0.45	Non Hazardous		8				
5	WS6-08/10/2021-0 10-0 60m	0 10-0 60	Non Hazardous		10				
6	WS7-08/10/2021-0.10-0.60m	0.10-0.60	Non Hazardous		12				
7	WS9-08/10/2021-0.15-0.50m	0.15-0.50	Non Hazardous		14				
8	WS10-08/10/2021-0.15-0.30m	0.15-0.30	Non Hazardous		16				
9	WS11-08/10/2021-0.20-0.45m	0.20-0.45	Non Hazardous		19				
10	WS12-08/10/2021-0.10-0.50m	0.10-0.15	Non Hazardous		21				
Rela	ted documents								
	# Name		Descr	iption					
	1 EMT-21-16025-Batch-1-2021102	)1342.HWOL	.hwol	file used to create the Job					
Rep Creat	ort ed by: Lee Anderson			Created date	: 03 Nov 2021 09:48 GMT				
-									
Appe	endices		nondo		Page				
Appe	endix A: Classifier defined and no	In CLP determine	nands		23				
Appe	andix C. Version	metal species			20				
, pp					20				



### Classification of sample: WS1-08/10/2021-0.10-0.45m

### Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.....

_____

### Sample details

Sample name:	LoW Code:
WS1-08/10/2021-0.10-0.45m	Chapter:
Sample Depth:	
0.10-0.45 m	Entry:
Moisture content:	
12.6%	
(dry weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

### Hazard properties

None identified

### Determinands

### Moisture content: 12.6% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound co	NC.	Classification value	MC Applied	Conc. Not Used
1		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; /lpropane	1624 04 4		<5	µg/kg		<0.005 r	mg/kg	<0.0000005 %	_	<lod< td=""></lod<>
2		benzene 601-020-00-8	200-753-7	71-43-2	-	<5	µg/kg		<0.005 r	mg/kg	<0.0000005 %		<lod< td=""></lod<>
3		toluene 601-021-00-3	203-625-9	108-88-3	-	<5	µg/kg		<0.005 r	mg/kg	<0.0000005 %		<lod< td=""></lod<>
4	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005 r	mg/kg	<0.0000005 %		<lod< td=""></lod<>
5	4	chromium in chrom oxide (worst case)	ium(III) compounds }	; { [•] chromium(III)		10.4	mg/kg	1.462	13.499 r	mg/kg	0.00135 %	~	
6	4	arsenic { arsenic } 033-001-00-X	231-148-6	7440-38-2		6.2	mg/kg		5.506 r	mg/kg	0.000551 %	~	
7	cadmium { cadmium compounds, with the exception of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex }			1	<0.1	mg/kg		<0.1 r	mg/kg	<0.00001 %		<lod< td=""></lod<>	
8	4	copper { [•] copper	(II) chloride; copper 231-210-2	dichloride }	_	6	mg/kg	2.116	11.274 r	mg/kg	0.00113 %	~	
9	4	lead { [•] lead comp specified elsewher 082-001-00-6	oounds with the exc e in this Annex (wor	eption of those st case) }	1	5	mg/kg		4.44 r	mg/kg	0.000444 %	~	
10	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7	-	<0.1	mg/kg	1.353	<0.135 r	mg/kg	<0.0000135 %		<lod< td=""></lod<>
11	4	nickel { nickel sulfic 028-006-00-9	<mark>le</mark> } 240-841-2 [1] 234-349-7 [2] - [3]	16812-54-7 [1] 11113-75-0 [2] 1314-04-1 [3]		2.8	mg/kg	1.546	3.845 r	mg/kg	0.000385 %	>	
12	*	selenium { nickel selenium { nickel selenium { nickel selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected selected sel	elenate } 239-125-2	15060-62-5	-	<1	mg/kg	2.554	<2.554 r	ng/kg	<0.000255 %		<lod< td=""></lod<>
13	4	zinc { zinc oxide }	215-222-5	1314-13-2		9	mg/kg	1.245	9.949 r	mg/kg	0.000995 %	~	



#		Determinand		Note	User entered dat		Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Num	ber CAS Number	CLP						MC	
14	4	chromium in chromium(VI) com oxide }	pounds { chromium(VI)		<0.3	mg/kg	1.923	<0.577 mg/k	g <0.0000577 %		<lod< td=""></lod<>
		024-001-00-0 215-607-6	1333-82-0	-							
15		601-052-00-2 202-049-5	91-20-3	-	<0.04	mg/kg		<0.04 mg/k	g <0.000004 %		<lod< td=""></lod<>
16	8	acenaphthylene			<0.03	mg/kg		<0.03 mg/k	g <0.000003 %		<lod< td=""></lod<>
		205-917-1	208-96-8	_							
17	8	acenaphthene	_	<0.05	mg/kg		<0.05 mg/k	g <0.000005 %		<lod< td=""></lod<>	
<u> </u>		201-469-6	83-32-9	-						-	
18	•	bot 605 5	96 72 7	_	<0.04	mg/kg		<0.04 mg/k	g <0.000004 %		<lod< td=""></lod<>
-		phenanthrana	00-73-7	-							
19		201-581-5	85-01-8	_	<0.03	mg/kg		<0.03 mg/k	g <0.000003 %		<lod< td=""></lod<>
-	-	anthracene	00-01-0	-							
20		204-371-1	120-12-7	_	<0.04	mg/kg		<0.04 mg/k	g <0.000004 %		<lod< td=""></lod<>
-		fluoranthene	120 12 1								
21		205-912-4	206-44-0	_	<0.03	mg/kg		<0.03 mg/k	g <0.000003 %		<lod< td=""></lod<>
		pyrene									
22		204-927-3	129-00-0	-	<0.03	mg/kg		<0.03 mg/k	g <0.000003 %		<lod< td=""></lod<>
		benzo[a]anthracene									
23		601-033-00-9 200-280-6	56-55-3	-	<0.06	mg/kg		<0.06 mg/k	<0.000006 %		<lod< td=""></lod<>
		chrysene									
24		601-048-00-0 205-923-4	218-01-9	-	<0.02	mg/kg		<0.02 mg/k	g <0.000002 %		<lod< td=""></lod<>
		benzo[a]pyrene; benzo[def]chry	rsene		0.04			0.01 //	0.000004.0/		1.00
25		601-032-00-3 200-028-5 50-32-8			<0.04	mg/kg		<0.04 mg/k	g <0.000004 %		<lod< td=""></lod<>
		indeno[123-cd]pyrene			0.04			0.01	0.000004.0/		1.00
26		205-893-2 193-39-5			<0.04	тід/кд		<0.04 mg/k	<0.000004 %		<lod< td=""></lod<>
07		dibenz[a,h]anthracene			-0.04			.0.04	<0.00004.%		
21		601-041-00-2 200-181-8	53-70-3		<0.04	тід/кд		<0.04 mg/k	g <0.000004 %		
20		benzo[ghi]perylene			<0.04	ma/ka		<0.04 mg/k	<0.000004.%		
20		205-883-8	191-24-2		<0.04	шу/ку		<0.04 mg/k	y <0.000004 /8		
20		benzo[b]fluoranthene			<0.05	ma/ka		<0.05 mg/k	<0.00005.94		
23		601-034-00-4 205-911-9	205-99-2		<0.05	шу/ку		<0.00 mg/k	g <0.000000 /8		
30		benzo[k]fluoranthene			<0.02	ma/ka		<0.02 mg/k	< 0.000002 %		<lod< td=""></lod<>
		601-036-00-5 205-916-6	207-08-9		<b>NO.02</b>	ing/itg		<0.02 mg/k	s		
31	۰	TPH (C6 to C40) petroleum gro	up		~38	ma/ka		~38 ma/k	~0.0038 %		
01			TPH		200	ing/kg			3 <0.0000 /0		
32		рН			8 94	nН		894 pH	8 94 nH		
02			PH	_	0.01	pri			0.01 p11		
33	4	cyanides { salts of hydrogen exception of complex cyanides ferricyanides and mercuric oxyc specified elsewhere in this Anno 006-007-00-5	cyanide with the such as ferrocyanides, yanide and those ex }		<0.5	mg/kg	1.884	<0.942 mg/k	g <0.0000942 %		<lod< td=""></lod<>
<u> </u>	-	xvlene	ļ								
34		601-022-00-9 202-422-2 [1 203-396-5 [2 203-576-3 [2 215-535-7 [4	95-47-6 [1]           2]         106-42-3 [2]           3]         108-38-3 [3]           4]         1330-20-7 [4]		<0.01	mg/kg		<0.01 mg/k	g <0.000001 %		<lod< td=""></lod<>
		· · · · · · · ·	,					Tota	: 0.00915 %		•

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) .

4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

- concentration <LOD
- Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classifica ion



### Classification of sample: WS3-08/10/2021-0.10-0.60m

### Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.....

_____

### Sample details

Sample name:	LoW Code:
WS3-08/10/2021-0.10-0.60m	Chapter:
Sample Depth:	
0.10-0.60 m	Entry:
Moisture content:	
10.5%	
(dry weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

### Hazard properties

None identified

### Determinands

Moisture content: 10.5% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1		tert-butyl methyl ett 2-methoxy-2-methy 603-181-00-X	her; MTBE; /lpropane	1634-04-4		<5	µg/kg	8	<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
2		benzene 601-020-00-8	200-753-7	71-43-2		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
3		toluene 601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
4	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	*	chromium in chrom oxide (worst case)	hium(III) compounds }	{ • chromium(III)		15	mg/kg	1.462	19.84	mg/kg	0.00198 %	~	
6	4	arsenic { arsenic } 033-001-00-X	231-148-6	7440-38-2	-	7.2	mg/kg		6.516	mg/kg	0.000652 %	~	
7	¥	cadmium { cadmium compounds, with the exception of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex }			1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
8	4	copper { [•] copper	(II) chloride; copper	dichloride }		4	mg/kg	2.116	7.659	mg/kg	0.000766 %	~	
9	*	lead { [•] lead comp specified elsewhere 082-001-00-6	pounds with the exce e in this Annex (wor	eption of those st case) }	1	<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
10	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7	-	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
11	*	nickel { nickel sulfic 028-006-00-9	<mark>le</mark> } 240-841-2 [1] 234-349-7 [2] - [3]	16812-54-7 [1] 11113-75-0 [2] 1314-04-1 [3]		3.5	mg/kg	1.546	4.898	mg/kg	0.00049 %	~	
12	<b>\$</b>	selenium { nickel se 028-031-00-5	elenate } 239-125-2	15060-62-5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
13	4	zinc { zinc oxide } 030-013-00-7	215-222-5	1314-13-2	_	10	mg/kg	1.245	11.264	mg/kg	0.00113 %	~	

Page 4 of 26


#		Deterr	minand		Note	User entere	User entered data		Conv. Factor		Classification value	Applied	Conc. Not Used
		CLP index number EC N	umber	CAS Number	CLP							MC	
14	4	chromium in chromium(VI) co oxide }	ompounds	s { chromium(VI)		<0.3	mg/kg	1.923	<0.577 r	ng/kg	<0.0000577 %		<lod< td=""></lod<>
		024-001-00-0 215-007-0	5	1333-62-0								-	
15		601-052-00-2 202-049-5	5	91-20-3	-	<0.04	mg/kg		<0.04 r	ng/kg	<0.000004 %		<lod< td=""></lod<>
16	0	acenaphthylene	-			<0.03	mg/kg		<0.03 r	ng/kg	<0.000003 %		<lod< td=""></lod<>
		205-917-1	1	208-96-8	_							_	
17	۲	acenaphtnene			_	<0.05	mg/kg		<0.05 r	ng/kg	<0.000005 %		<lod< td=""></lod<>
<u> </u>	_	201-469-6	Ď	83-32-9	-							-	
18	•	nuorene	-	06 72 7	_	<0.04	mg/kg		<0.04 r	ng/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>		Phononthrono	)	00-73-7	+							-	
19	•	phenanthrene	-	05 01 0	_	<0.03	mg/kg		<0.03 r	ng/kg	<0.000003 %		<lod< td=""></lod<>
<u> </u>		201-061-0	)	00-01-0								-	
20	۲	animacene	1	120 12 7	_	<0.04	mg/kg		<0.04 r	ng/kg	<0.000004 %		<lod< td=""></lod<>
-		fluoranthana	I	120-12-7	-							-	
21	۲	205-012-/	1	206-44-0	_	<0.03	mg/kg		<0.03 r	ng/kg	<0.000003 %		<lod< td=""></lod<>
	_	nvrene	T	200-44-0								-	
22		204-927-3	2	129-00-0	_	<0.03	mg/kg		<0.03 r	ng/kg	<0.000003 %		<lod< td=""></lod<>
		benzolalanthracene	, ,	120 00 0									
23		601-033-00-9 200-280-f	3	56-55-3	-	<0.06	mg/kg		<0.06 r	ng/kg	<0.000006 %		<lod< td=""></lod<>
		chrysene	, ,	00 00 0	-								
24		601-048-00-0 205-923-4	1	218-01-9	-	<0.02	mg/kg		<0.02 r	ng/kg	<0.000002 %		<lod< td=""></lod<>
		benzolalovrene: benzoldefic	hrvsene	2.00.0									
25		601-032-00-3 200-028-5	5	50-32-8	-	<0.04	mg/kg		<0.04 r	ng/kg	<0.000004 %		<lod< td=""></lod<>
		indeno[123-cd]pvrene	-		1								
26		205-893-2	2	193-39-5	-	<0.04	mg/kg		<0.04 r	ng/kg	<0.000004 %		<lod< td=""></lod<>
07		dibenz[a,h]anthracene				0.04			0.04		<0.00001 %		1.00
21		601-041-00-2 200-181-8	3	53-70-3		<0.04	mg/kg		<0.04 r	ng/kg	<0.000004 %		<lod< td=""></lod<>
20		benzo[ghi]perylene				-0.04	mg/kg		-0.04 mg	~~//~~	-0.000004.0/		
20		205-883-8	3	191-24-2		<0.04			<0.04 1	пу/ку	<0.000004 %		<lod< td=""></lod<>
20		benzo[b]fluoranthene				-0.05	malka		-0.05	na/ka	<0.00005 %		
29		601-034-00-4 205-911-9	9	205-99-2		<0.05	тту/ку		<0.05 1	пу/ку	<0.000005 %		<lod< td=""></lod<>
30		benzo[k]fluoranthene				<0.02	ma/ka		<0.02 r	na/ka			
		601-036-00-5 205-916-0	6	207-08-9		<0.02	ing/kg		<b>NO.02</b>	ng/kg	<0.00002 //		
31	0	TPH (C6 to C40) petroleum	group			~38	ma/ka		~38 r	na/ka	<0.0038 %		
51				TPH		<50	iiig/kg		<50 1	ng/kg	<0.0050 /8		LOD
32	۲	pН				9 15	nН		915 r	ч	9 15 nH		
02				PH		0.10	pri		0.10 p	211	0.10 p11		
33	4	cyanides { salts of hydroge exception of complex cyanide ferricyanides and mercuric or specified elsewhere in this A 006-007-00-5	en cyanide es such as xycyanide nnex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942 r	ng/kg	<0.0000942 %		<lod< td=""></lod<>
<u> </u>	-	xvlene		<u>l</u>									
34		601-022-00-9 202-422-2 203-396-5 203-576-5 215-535-5	2 [1] 5 [2] 3 [3] 7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01 r	ng/kg	<0.000001 %		<lod< td=""></lod<>
		· · · ·								Total:	0.00981 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) .

4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

- concentration <LOD
- Below limit of detection Not detected
- ND

CLP: Note 1 Only the metal concentration has been used for classifica ion



### Classification of sample: WS4-08/10/2021-0.10-0.45m

### Non Hazardous Waste Classified as 17 05 04 in the List of Waste

...........

-----

### Sample details

Sample name:	LoW Code:
WS4-08/10/2021-0.10-0.45m	Chapter:
Sample Depth:	
0.10-0.45 m	Entry:
Moisture content:	
11.4%	
(dry weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

03)

### Hazard properties

None identified

### Determinands

### Moisture content: 11.4% Dry Weight Moisture Correction applied (MC)

1         *         chromium in chromium(iII) compounds { * chromium(III) oxide (worst case) } [215-160-9 [1308-38-9]         27.5         mg/kg         1.462         36.08         mg/kg         0.00361 %           2         *         arsenic { arsenic } p33-001-00-X         p31-148-6         [7440-38-2]         6.3         mg/kg         5.655         mg/kg         0.000566 %           3         arsenic { arsenic } p33-001-00-X         p31-148-6         [7440-38-2]         6.3         mg/kg         5.655         mg/kg         0.000566 %           3         cadmium sulphole with zinc sulphide (xCdS V/SE); naction mass of cadmium sulphole with zinc sulphide (xCdS V/SE); naction mass of cadmium sulphole with zinc sulphide (xCdS V/SE); naction mass of cadmium sulphole with zinc sulphide (xCdS V/SE); naction mass of cadmium sulphole with the exception of those specified etsewhere in this Annex (worst case) }         1         <0.1         mg/kg         0.00152 %           4         *         copper { * copper (II) chloride; copper dichloride } p21-210-2         [7447-39-4]         8         mg/kg         2.116         15.194         mg/kg         0.00152 %           5         *         lead { * lead compounds with the exception of those specified etsewhere in this Annex (worst case) }         1         <5         mg/kg         1.353         <0.135         mg/kg         0.000135 %           6         *	#		Determinand CLP index number EC Number CAS Number		CLT NUE	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
2         # arsenic { arsenic } D33-001-00-X         231-148-6         [7440-38-2]         6.3         mg/kg         5.655         mg/kg         0.000566 %           3         cadmium compounds, with the exception of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole with zinc sulphile (xCd SyZnS), reaction mass of cadmium sulphole (xCd SyZnS), reaction mass of cadmium sulphole (xCd SyZnS), reaction mass of cadmium sulphole (xCd SyZnS), reaction zinc (xCd SyZnS), and the exception of those specified elsewhere in this Annex (worst case) )         8         mg/kg         2.116         15.194         mg/kg         0.00015 %           6         mercury (mercury	1	4	chromium in chromium(III) compounds { Chromium( oxide (worst case) } 215-160-9 1308-38-9	II)		27.5 mg/kg	1.462	36.08 mg/kg	0.00361 %	~	
3         cadmium { cadmium compounds, with the exception of cadmium sulphoselenide (xCdS, yCdSe), reaction mass of cadmium sulphode with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphode with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide (xCdS, yCdSe), reaction mass of cadmium sulphide (xCdS, yCdSe), reaction mass of reaction mass of cadmium sulphide (xCdS, yCdSe), reaction mass of reaction mass of reaction mass of reaction mass of reaction mass of reaction mass of reaction mass of reaction mass of reaction mass of reaction mass of reaction mass of reaction mass of reacting marks (reaction mass of reaction mass), reaction mass of reaction mass of reacting marks (reaction mass of reacting marks (reaction mass of reacting marks (reaction mass of reacting marks), reaction mass of reacting marks (reaction mass of reacting marks (reaction mass of reacting marks (reaction marks), reaction marks (reaction marks (reaction marks), reaction marks (reacting marks), reacting marks (reacting marks), reactin	2	4	arsenic { arsenic } 033-001-00-X 231-148-6 7440-38-2			6.3 mg/kg		5.655 mg/kg	0.000566 %	~	
4       Copper { * copper (II) chloride; copper dichloride } [231-210-2 [7447-39-4]       8       mg/kg       2.116       15.194       mg/kg       0.00152 %         5       *       lead { * lead compounds with the exception of those specified elsewhere in this Annex (worst case) } [082-001-00-6]       1       <5	3	4	cadmium { cadmium compounds, with the exception cadmium sulphoselenide (xCdS.yCdSe), reaction mas of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere this Annex }	i of s	1	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
5       Iead { * lead compounds with the exception of those specified elsewhere in this Annex (worst case) } 082-001-00-6       1       <5	4	4	copper { copper(II) chloride; copper dichloride }			8 mg/kg	2.116	15.194 mg/kg	0.00152 %	~	
6       mercury { mercury dichloride } 080-010-00-X       231-299-8       7487-94-7       <0.1	5	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }		1	<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
0       0       080-010-00-X       231-299-8       7487-94-7       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< td=""><td>6</td><td>4</td><td>mercury { mercury dichloride }</td><td>14)e -</td><td>1</td><td>&lt;0.1 ma/ka</td><td>1 353</td><td>&lt;0.135 ma/ka</td><td>&lt;0.0000135 %</td><td></td><td>&lt;1.0D</td></td<>	6	4	mercury { mercury dichloride }	14)e -	1	<0.1 ma/ka	1 353	<0.135 ma/ka	<0.0000135 %		<1.0D
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>́</u>		080-010-00-X 231-299-8 7487-94-7			Solit ingrag	1.000	so. roo mg/ng	0.0000100 /0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7	4	nickel { nickel sulfide } 028-006-00-9 240-841-2 [1] 16812-54-7 [1] 234-349-7 [2] - [3] 11113-75-0 [2] 1314-04-1 [3]			3.5 mg/kg	1.546	4.858 mg/kg	0.000486 %	~	
9       20-031-00-3       239-123-2       10000-02-3       9       mg/kg       1.245       10.056       mg/kg       0.00101 %         10       20-031-00-7       215-222-5       1314-13-2       -       -       -       -       -       -       -       -       0.00101 %       0.00101 %         10       20-031-00-7       215-222-5       1314-13-2       -       -       -       -       -       -       -       -       -       0.00101 %       0.00101 %       0.00101 %       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	8	4	selenium { nickel selenate }			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
9			zo-usi-uu-s zss-izs-z isubu-62-5		+			anter to the conditioner of the second statistics			-
10       A       chromium in chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compounds { chromium(VI) compo	9	*	030-013-00-7 215-222-5 1314-13-2	_		9 mg/kg	1.245	10.056 mg/kg	0.00101 %	~	
naphthalene <td>10</td> <td>4</td> <td>chromium in chromium(VI) compounds { chromium(VI) oxide }</td> <td></td> <td></td> <td>&lt;0.3 mg/kg</td> <td>1.923</td> <td>&lt;0.577 mg/kg</td> <td>&lt;0.0000577 %</td> <td></td> <td><lod< td=""></lod<></td>	10	4	chromium in chromium(VI) compounds { chromium(VI) oxide }			<0.3 mg/kg	1.923	<0.577 mg/kg	<0.0000577 %		<lod< td=""></lod<>
12         accenaphthylene         <0.03         mg/kg         <0.000003 %	11		naphthalene 601-052-00-2 202-049-5 91-20-3		+	<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
	12	0	acenaphthylene			<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< td=""></lod<>
13         acenaphthene         <0.05         mg/kg         <0.000005 %	13	0	acenaphthene 201-469-6 83-32-9			<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>



#		Determinand CLP index number EC Number	CAS Number		User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
14	0	fluorene			<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
		201-695-5 86	6-73-7							
15	۲	phenanthrene			<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< td=""></lod<>
		201-581-5 85	5-01-8							
16	۲	anthracene			<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
		204-371-1 12	20-12-7							
17	۲	fluoranthene			<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< td=""></lod<>
		205-912-4 20	06-44-0							
18	۲	pyrene bod 007 0	00.00.0		<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< td=""></lod<>
		204-927-3	29-00-0							
19			0.55.0		<0.06 mg/kg		<0.06 mg/kg	<0.000006 %		<lod< td=""></lod<>
		601-033-00-9 200-280-6 56	0-00-3							
20			10.01.0		<0.02 mg/kg		<0.02 mg/kg	<0.000002 %		<lod< td=""></lod<>
<u> </u>		601-046-00-0 205-923-4 2	16-01-9							
21			0.22.0		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>		indepo[122 od]pyropo	0-32-0	+						
22			02 20 5		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>		dibenz[a h]anthracene								
23				-	<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
-	-		0100					<0.000004 %	t	
24		205-883-8	91-24-2		<0.04 mg/kg		<0.04 mg/kg			<lod< td=""></lod<>
		benzo[b]fluoranthene		+						
25		601-034-00-4 205-911-9 20	05-99-2		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranthene		1						
26		601-036-00-5 205-916-6 20	07-08-9		<0.02 mg/kg		<0.02 mg/kg	<0.000002 %		<lod< td=""></lod<>
07		pH			0.00 pll		0.00 all	0.00 ml l		
21		PI	H		9.09 pm		9.09 pm	9.09 pm		
28	4	cyanides { salts of hydrogen cyanide v exception of complex cyanides such as fu ferricyanides and mercuric oxycyanide and specified elsewhere in this Annex } 006-007-00-5	with the errocyanides, nd those		<0.5 mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
							Total:	0.00818 %		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classifica ion



### Classification of sample: WS5-08/10/2021-0.10-0.35m

### Non Hazardous Waste Classified as 17 05 04 in the List of Waste

............

-----

### Sample details

Sample name:	LoW Code:
WS5-08/10/2021-0.10-0.35m	Chapter:
Sample Depth:	
0.10-0.35 m	Entry:
Moisture content:	
18.8%	
(dry weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

### Hazard properties

None identified

### Determinands

### Moisture content: 18.8% Dry Weight Moisture Correction applied (MC)

#		CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) } 215-160-9 1308-38-9		70.6 mg/kg	1.462	86.857 mg/kg	0.00869 %	~	
2	*	arsenic { arsenic } 033-001-00-X 231-148-6 7440-38-2		23.2 mg/kg		19.529 mg/kg	0.00195 %	~	
3	¥	cadmium { cadmium compounds, with the exception of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex }	1	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
4	4	copper { copper (II) chloride; copper dichloride }		16 mg/kg	2.116	28.496 mg/kg	0.00285 %	1	
5	*	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	16 mg/kg		13.468 mg/kg	0.00135 %	~	
	æ	mercury { mercury dichloride }	2		1.050	0.405	0.0000405.00		
ь	~	080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
	2	nickel { <mark>nickel sulfide</mark> }							
7		028-006-00-9 240-841-2 [1] 16812-54-7 [1] 234-349-7 [2] - [3] 11113-75-0 [2] 1314-04-1 [3]		24.6 mg/kg	1.546	32.02 mg/kg	0.0032 %	~	
8	*	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
9	2	zinc { zinc oxide }		60 ma/ka	1 245	62 864 ma/ka	0.00629 %	,	
1		030-013-00-7 215-222-5 1314-13-2			1.240	02.004 119/19	0.00023 78	~	
10	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<0.3 mg/kg	1.923	<0.577 mg/kg	<0.0000577 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0	-						
11		601-052-00-2 202-049-5 91-20-3		1.81 mg/kg		1.524 mg/kg	0.000152 %	~	
12		acenaphthylene		0.14 ma/ka	2	0.118 ma/ka	0 0000118 %	1	
		205-917-1 208-96-8		0.14 Highly		0.110 Highly	0.000110 /0	×	-
13		201-469-6 83-32-9		1.31 mg/kg		1.103 mg/kg	0.00011 %	1	
<u> </u>		A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A	-						



#		Determinand CLP index number EC Number C	CLP Note	User enter	ed data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
14	8	fluorene	Ĭ	0.82	ma/ka		0.69 mg/	a 0.000069 %	5	
		201-695-5 86-73	3-7					<b>3</b>		
15		phenanthrene		9.03	ma/ka		7.601 mg/	a 0.00076 %	1	
		201-581-5 85-0	1-8						•	
16	0	anthracene		3.29	ma/ka		2.769 mg/	a 0.000277 %	1	
		204-371-1 120-	12-7				,		•	
17	0	fluoranthene		13.97	ma/ka		11.759 mg/	a 0.00118 %	1	
		205-912-4 206-	14-0		5.5			<b>3</b>	ľ	
18	۰	pyrene		10.86	mg/kg		9.141 mg/	(g 0.000914 %	1	
		204-927-3 129-	0-00						-	
19		benzo[a]anthracene		7.5	mg/kg		6.313 mg/	(g 0.000631 %	$\checkmark$	
		601-033-00-9 200-280-6 56-5	5-3							
20		chrysene		7.65	mg/kg		6.439 mg/	(g 0.000644 %	$\checkmark$	
		601-048-00-0 205-923-4 218-	01-9					-		
21		benzo[a]pyrene; benzo[def]chrysene		9.6	mg/kg		8.081 mg/	(g 0.000808 %	$\checkmark$	
		601-032-00-3 200-028-5 50-33	2-8						-	
22	۲	indeno[123-cd]pyrene		5.64	mg/kg		4.747 mg/	(g 0.000475 %	$\checkmark$	
		205-893-2 193-3	39-5							
23		dibenz[a,h]anthracene		1.06	mg/kg		0.892 mg/	(g 0.0000892 %	$\checkmark$	
		601-041-00-2 200-181-8 53-7	)-3			<b>J</b>				
24	۲	benzo[ghi]perylene		5.29	mg/kg		4.453 mg/	(g 0.000445 %	$\checkmark$	
		205-883-8 [191-;	24-2						_	
25		benzo[b]fluoranthene		11.61	mg/kg		9.773 mg/	(g 0.000977 %	$\checkmark$	
		601-034-00-4 205-911-9 205-9	99-2						-	
26		benzo[k]fluoranthene		4.51	mg/kg		3.796 mg/	(g 0.00038 %	$\checkmark$	
		601-036-00-5 205-916-6 207-	08-9						-	
27	8	РН		8.87	pН		8.87 pH	8.87 pH		
28	~	cyanides { salts of hydrogen cyanide with exception of complex cyanides such as ferric ferricyanides and mercuric oxycyanide and specified elsewhere in this Annex } 006-007-00-5	the ocyanides, hose	<0.5	mg/kg	1.884	<0.942 mg/	kg <0.0000942 %		<lod< th=""></lod<>

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
۵	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classifica ion



### Classification of sample: WS6-08/10/2021-0.10-0.60m

### Non Hazardous Waste Classified as 17 05 04 in the List of Waste

............

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

### Sample details

LoW Code:
Chapter:
Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

### Hazard properties

None identified

### Determinands

### Moisture content: 11.2% Dry Weight Moisture Correction applied (MC)

#		Determinand           CLP index number         EC Number         CAS Number	mber	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	*	chromium in chromium(III) compounds { Chromio oxide (worst case) } 215-160-9 1308-38-9	um(III)		12.2 mg/kg	1.462	16.035 mg/kg	0.0016 %	~	
2	4	arsenic { arsenic } 033-001-00-X 231-148-6 7440-38-2			6.9 mg/kg		6.205 mg/kg	0.000621 %	~	
3	*	cadmium { cadmium compounds, with the except cadmium sulphoselenide (xCdS.yCdSe), reaction r of cadmium sulphide with zinc sulphide (xCdS.yZn reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewh this Annex }	otion of mass S), here in	1	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
4	4	copper { copper(II) chloride; copper dichloride } 231-210-2 7447-39-4			4 mg/kg	2.116	7.611 mg/kg	0.000761 %	1	
5	*	lead { lead compounds with the exception of tho specified elsewhere in this Annex (worst case) }	se	1	6 mg/kg		5.396 mg/kg	0.00054 %	~	
	æ	mercury { mercury dichloride }		-						
6	~	080-010-00-X 231-299-8 7487-94-7			<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
	æ	nickel { nickel sulfide }			A.					
7		028-006-00-9 240-841-2 [1] 16812-54-7 234-349-7 [2] - [3] 11113-75-0 1314-04-1 [	[1] [2] 3]		3 mg/kg	1.546	4.172 mg/kg	0.000417 %	~	
8	4	selenium { nickel selenate }			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
		220-031-00-3 239-123-2 15060-62-3		-						
9	~	030-013-00-7 215-222-5 1314-13-2			9 mg/kg	1.245	10.074 mg/kg	0.00101 %	~	
10	4	chromium in chromium(VI) compounds { chromium oxide }	n(VI)		<0.3 mg/kg	1.923	<0.577 mg/kg	<0.0000577 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0		-						
11		601-052-00-2 202-049-5 91-20-3			<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
12		acenaphthylene			<0.03 ma/ka	A A	<0.03 mo/kg	<0.00003.%		
12		205-917-1 208-96-8			-0.00 mg/kg		Soloo Ingrig	0.00000 /0		LOD
13	•	acenaphthene 201-469-6 83-32-9			<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
L 3		00 02 0				S. 31				



#		Determinand CLP index number EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
14	8	fluorene			<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< th=""></lod<>
		201-695-5	86-73-7						5.5			_
15	۲	phenanthrene			<0.03	ma/ka		<0.03	ma/ka	<0.000003 %		<lod< th=""></lod<>
		201-581-5	85-01-8						5.5			_
16	۲	anthracene			<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< th=""></lod<>
		204-371-1	120-12-7						5.2			_
17	۲	fluoranthene			0.06	mg/kg		0.054	mg/kg	0.0000054 %	1	
		205-912-4	206-44-0								ľ	
18	۲	pyrene bo t ooz o	400.00.0		0.06	mg/kg		0.054	mg/kg	0.0000054 %	$\checkmark$	
		204-927-3	129-00-0	-								
19				_	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		601-033-00-9 200-280-6	00-00-3	_								
20		601 048 00 0 b05 022 4	010 01 0	_	0.03	mg/kg		0.027	mg/kg	0.0000027 %	$\checkmark$	
		bonzolalpyropa: bonzoldoflebrycopa	210-01-9	-								
21		601.032.00.3 b00.038.5	50 22 8	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	-	indepo[123-cd]pyrepe	50-32-0	+								
22	۲	205-893-2	193-39-5	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		dibenz[a h]anthracene		-								
23		601-041-00-2 200-181-8	53-70-3	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzolahilpervlene	00.00	-		mg/kg						
24	Ŭ	205-883-8	191-24-2	-	<0.04			<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
0.5		benzo[b]fluoranthene		+	0.05			0.05		0.000005.0/	H	1.05
25		601-034-00-4 205-911-9	205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20		benzo[k]fluoranthene			-0.00			-0.02		-0.000002.8/		
26		601-036-00-5 205-916-6	207-08-9	-	<0.02	тg/кg		<0.02	тд/кд	<0.000002 %		<lod< td=""></lod<>
27		pН			0.00	nН		9.09	nН	9 09 pH		
21			PH	_	3.03	рп		3.03	рп	9.09 pm		
28	4	cyanides { salts of hydrogen cyanid exception of complex cyanides such a ferricyanides and mercuric oxycyanide specified elsewhere in this Annex } 006-007-00-5	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< th=""></lod<>
								Total:	0.00545 %			

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classifica ion



### Classification of sample: WS7-08/10/2021-0.10-0.60m

## Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.....

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

### Sample details

Sample name:	LoW Code:
WS7-08/10/2021-0.10-0.60m	Chapter:
Sample Depth:	
0.10-0.60 m	Entry:
Moisture content:	
13.6%	
(dry weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

### Hazard properties

None identified

### Determinands

### Moisture content: 13.6% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound conc	3	Classification value	MC Applied	Conc. Not Used
1		tert-butyl methyl eth 2-methoxy-2-methyl 603-181-00-X	er; MTBE; propane 216-653-1	1634-04-4		<5	µg/kg		<0.005 mg	/kg	<0.0000005 %		<lod< td=""></lod<>
2		benzene 601-020-00-8 2	200-753-7	71-43-2		<5	µg/kg		<0.005 mg	/kg	<0.000005 %		<lod< td=""></lod<>
3		toluene 601-021-00-3 2	203-625-9	108-88-3		<5	µg/kg		<0.005 mg	/kg	<0.0000005 %		<lod< td=""></lod<>
4		ethylbenzene 601-023-00-4 2	202-849-4	100-41-4		<5	µg/kg		<0.005 mg	/kg	<0.0000005 %		<lod< td=""></lod<>
5	*	chromium in chromi oxide (worst case) }	um(III) compounds	{ • chromium(III)		24.6	mg/kg	1.462	31.65 mg	/kg	0.00316 %	~	
6	4	arsenic { arsenic } 033-001-00-X	231-148-6	7440-38-2		8.3	mg/kg		7.306 mg	/kg	0.000731 %	~	
7	*	cadmium { Cadmium cadmium sulphosele of cadmium sulphide reaction mass of car sulphide (xCdS.yHg this Annex } 048-001-00-5	ium compounds, wi enide (xCdS.yCdSe e with zinc sulphide dmium sulphide wit S), and those spec	th the exception of ;), reaction mass ; (xCdS.yZnS), h mercury ified elsewhere in	1	<0.1	mg/kg		<0.1 mg	/kg	<0.00001 %		<lod< td=""></lod<>
8	4	copper { * copper(l	II) chloride; copper	<mark>dichloride</mark> } 7447-39-4		8	mg/kg	2.116	14.9 mg	/kg	0.00149 %	~	
9	4	lead { [®] lead composite of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	ounds with the exce in this Annex (wors	eption of those st case) }	1	5	mg/kg		4.401 mg	/kg	0.00044 %	~	
10	8	mercury { mercury c 080-010-00-X 2	dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135 mg	/ <mark>kg</mark>	<0.0000135 %		<lod< td=""></lod<>
11	4	nickel { nickel sulfide 028-006-00-9 2 2	e } 240-841-2 [1] 234-349-7 [2] - [3]	16812-54-7 [1] 11113-75-0 [2] 1314-04-1 [3]		5.9	mg/kg	1.546	8.031 mg	/kg	0.000803 %	~	
12	4	selenium { nickel se 028-031-00-5	lenate } 239-125-2	15060-62-5		<1	mg/kg	2.554	<2.554 mg	/kg	<0.000255 %		<lod< td=""></lod<>
13	4	zinc { <mark>zinc oxide</mark> } 030-013-00-7   2	215-222-5	1314-13-2		15	mg/kg	<mark>1.24</mark> 5	16.435 mg	/kg	0.00164 %	1	

Page 12 of 26



#		Det	terminand		Note	User entere	User entered data		Conv. Factor		Classification value	Applied	Conc. Not Used
		CLP index number EC	Number	CAS Number	CLP							MC	
14	4	chromium in chromium(VI oxide }	) compounds	s { chromium(VI)		<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< td=""></lod<>
		nanhthalene	07-0	1333-02-0								$\vdash$	
15		601-052-00-2 202-04	19-5	91-20-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
16		acenaphthylene				<0.03	ma/ka		<0.03	ma/ka	<0.000003 %		
		205-91	17-1	208-96-8		<0.00	ing/itg			iiig/kg	<0.000000 /0		
17	۲	acenaphthene			_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
<u> </u>		201-46	69-6	83-32-9	_								
18	۲	fluorene		00.70.7	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>		201-69	95-5	86-73-7									
19	8	phenanthrene	04 5	05.04.0	_	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		201-58	31-5	85-01-8									
20	•	204-37	71_1	120-12-7	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>	_	fluoranthene	1-1	120-12-1								$\vdash$	
21		205-91	2-4	206-44-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		pvrene		200 0									
22		204-92	27-3	129-00-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		benzo[a]anthracene				0.00			0.00		0.000000.0/		
23		601-033-00-9 200-28	30-6	56-55-3		<0.06	mg/kg		<0.06	mg/ĸg	<0.000006 %		<lod< td=""></lod<>
24		chrysene				-0.02	malka		-0.02	malka	-0.000002.9/		
24		601-048-00-0 205-92	23-4	218-01-9		<0.02	тту/ку		<0.02	тту/ку	<0.000002 %		<lod< td=""></lod<>
25		benzo[a]pyrene; benzo[de	ef]chrysene	·		<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		
25		601-032-00-3 200-02	28-5	50-32-8		<0.04	iiig/kg		<0.04	шу/ку	<0.000004 /8		LOD
26		indeno[123-cd]pyrene				<0.04	ma/ka		<0.04	ma/ka	<0 000004 %		<lod< td=""></lod<>
		205-893-2 193-39-5											
27		dibenz[a,h]anthracene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-041-00-2 200-18	31-8	53-70-3	+								
28	۲	benzo[ghi]perylene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		205-88	33-8	191-24-2	_								
29		benzo[b]fluoranthene		bor 00 0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
<u> </u>		001-034-00-4 205-91	11-9	202-99-2								$\square$	
30			16.6	207 08 0	_	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		TPH (C6 to C40) potrolou	m group	207-06-9	-								
31			in group	ТРН	-	<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
		nH											
32		P		PH	-	8.96	рН		8.96	рН	8.96 pH		
33	4	cyanides { salts of hydr exception of complex cyan ferricyanides and mercuri specified elsewhere in this 006-007-00-5	rogen cyanide nides such as c oxycyanide s Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		xylene											
34		601-022-00-9 202-42 203-39 203-57 215-53	22-2 [1] 96-5 [2] 76-3 [3] 35-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
										Total:	0.0126 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) .

4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration <LOD

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classifica ion



### Classification of sample: WS9-08/10/2021-0.15-0.50m

### Non Hazardous Waste Classified as 17 05 04 in the List of Waste

............

_____

### Sample details

LoW Code:
Chapter:
Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

03)

### Hazard properties

None identified

### Determinands

### Moisture content: 7.5% Dry Weight Moisture Correction applied (MC)

#		CLP index number EC Number CAS N	Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	<b>*</b>	chromium in chromium(III) compounds { Chrooxide (worst case) } 215-160-9 1308-38-	mium(III) 9		18.9 mg/kg	1.462	25.696 mg/kg	0.00257 %	~	
2	4	arsenic { arsenic } 033-001-00-X 231-148-6 7440-38-	2		6.2 mg/kg		5.767 mg/kg	0.000577 %	~	
3	**	cadmium { cadmium compounds, with the excadmium sulphoselenide (xCdS.yCdSe), reaction of cadmium sulphide with zinc sulphide (xCdS.y. reaction mass of cadmium sulphide with mercur sulphide (xCdS.yHgS), and those specified else this Annex }	ception of on mass ZnS), y where in	1	0.1 mg/kg		0.093 mg/kg	0.0000093 %	~	
4	4	copper { Copper (II) chloride; copper dichloride	e }	8	5 mg/kg	2.116	9.841 mg/kg	0.000984 %	~	
5	¥	lead { • lead compounds with the exception of t specified elsewhere in this Annex (worst case) }	those	1	7 mg/kg		6.512 mg/kg	0.000651 %	~	
		mercury { mercury dichloride }				2 S				
6	*	080-010-00-X 231-299-8 7487-94-	7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
	æ	nickel { nickel sulfide }								,
7		028-006-00-9 240-841-2 [1] 16812-54 234-349-7 [2] - [3] 11113-75 1314-04-	4-7 [1] 5-0 [2] 1 [3]		2.7 mg/kg	1.546	3.884 mg/kg	0.000388 %	~	
8	*	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62	2-5		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
9	4	zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-	2		10 mg/kg	1.245	11.579 mg/kg	0.00116 %	1	
10	4	chromium in chromium(VI) compounds { chromi oxide } 024-001-00-0 215-607-8 11333-82-	um(∨I)		<0.3 mg/kg	1.923	<0.577 mg/kg	<0.0000577 %		<lod< td=""></lod<>
		naphthalene	-		-0.04		-0.04	-0.000004.8/		1.05
11		601-052-00-2 202-049-5 91-20-3			<0.04 mg/kg		<0.04 mg/kg	<0.00004 %		<lod< td=""></lod<>
12		acenaphthylene 205-917-1 208-96-8			<0.03 mg/kg	2	<0.03 mg/kg	<0.000003 %		<lod< td=""></lod<>
13	0	acenaphthene 201-469-6 83-32-9			<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>



14         Inucrene         Inucrene         Inucrene         Inucrene         Inucrene         Inucrease         Inucrease <thinucrease< th="">         Inucrease         <thinucrease< t<="" th=""><th>#</th><th></th><th>Determina CLP index number EC Numb</th><th>nd er CAS Number</th><th>CLP Note</th><th>User entere</th><th>d data</th><th>Conv. Factor</th><th>Compound</th><th>conc.</th><th>Classification value</th><th>MC Applied</th><th>Conc. Not Used</th></thinucrease<></thinucrease<>	#		Determina CLP index number EC Numb	nd er CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
Image: point of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	14	8	fluorene			<0.04	ma/ka		< 0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
15       phenanthrene       201-581-5       B5-01-8       0.94       mg/kg       0.874       mg/kg       0.0000874 %          16       anthracene       204-371-1       120-12-7       0.33       mg/kg       0.307       mg/kg       0.000037 %          17       fluoranthene       205-912-4       206-44-0       1.19       mg/kg       0.107       mg/kg       0.000111 %          18       prene       204-371-3       129-00-0       1.03       mg/kg       0.958       mg/kg       0.000058 %          19       benzo[a]anthracene       204-927-3       129-00-0       0.52       mg/kg       0.0000502 %          20       chrysene       0.566-55-3       0.52       mg/kg       0.0000502 %          21       benzo[a]anthracene       50-032-8       0.55       mg/kg       0.512       mg/kg       0.0000512 %          22       inden[123-cd]pyrene       200-81-5       50-32-8       0.33       mg/kg       0.307       mg/kg       0.0000512 %          23       dibenz[a,h]anthracene       0.032       mg/kg       0.032       mg/kg       0.0000558 %          24       benzo[b]			201-695-5	86-73-7									
Image: constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	15	0	phenanthrene			0.94	ma/ka		0.874	ma/ka	0.0000874 %	J	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			201-581-5	85-01-8						5.5		ľ	
Image: constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the	16	0	anthracene			0.33	mg/kg		0.307	mg/kg	0.0000307 %	$\checkmark$	
17       •       fluoranthene       1.19       mg/kg       1.107       mg/kg       0.000111 %          18       •       pyrne       205-912-4       206-44-0       1.03       mg/kg       0.958       mg/kg       0.0000958 %          19       benzo[a]anthracene       0.103 00-9       200-280-6       66-55-3       0.54       mg/kg       0.502       mg/kg       0.000052 %          20       chrysene       0.52       mg/kg       0.484       mg/kg       0.0000484 %       \$         21       benzo[a]pyrene; benzo[def]chrysene       0.55       mg/kg       0.512       mg/kg       0.0000512 %       \$         22       •       indeno[123-c0-3       200-28-5       50-32-8       0.55       mg/kg       0.307       mg/kg       0.0000512 %       \$         23       diberz[a,h]anthracene       0.33       mg/kg       0.307       mg/kg       0.00000558 %       \$         24       benzo[gh]perylene       0.06       mg/kg       0.298       mg/kg       0.0000558 %       \$         25       benzo[gh]uberylene       0.32       mg/kg       0.298       mg/kg       0.0000595 %       \$         26       benzo[k]fluo			204-371-1	120-12-7	_							-	
Image: point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point point	17	0	fluoranthene			1.19	mg/kg		1.107	mg/kg	0.000111 %	$\checkmark$	
18       pyrene       1.03       mg/kg       0.958       mg/kg       0.000958 %       1         19       benzo[a]anthracene       0.0000502       0.54       mg/kg       0.502       mg/kg       0.0000502 %       0         20       chrysene       0.01033-00-9       200-280-6       56-55-3       0.52       mg/kg       0.0000502 %       0         20       chrysene       0.054       mg/kg       0.484       mg/kg       0.0000484 %       0         21       benzo[a]pyrene; benzo[def]chrysene       0.55       mg/kg       0.512       mg/kg       0.0000512 %       0         22       indeno[123-cd]pyrene; benzo[def]chrysene       0.33       mg/kg       0.307       mg/kg       0.0000307 %       0         23       dibenz[a,h]anthracene       0.31       mg/kg       0.0558       mg/kg       0.0000258 %       0         24       benzo[b]fluoranthene       53-70-3       0.06       mg/kg       0.298       mg/kg       0.0000298 %       0         25       benzo[b]fluoranthene       53-70-3       0.64       mg/kg       0.298       mg/kg       0.0000298 %       0         26       benzo[k]fluoranthene       0.0.6       mg/kg       0.233	_		205-912-4	206-44-0								-	
Image: Poil and Poil (Poil  18	0	pyrene			1.03	mg/kg		0.958	mg/kg	0.0000958 %	$\checkmark$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			204-927-3	129-00-0									
B01-033-00-9         200-280-6         56-55-3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>19</td> <td></td> <td>benzo[a]anthracene</td> <td></td> <td></td> <td>0.54</td> <td>mg/kg</td> <td></td> <td>0.502</td> <td>mg/kg</td> <td>0.0000502 %</td> <td>$\checkmark$</td> <td></td>	19		benzo[a]anthracene			0.54	mg/kg		0.502	mg/kg	0.0000502 %	$\checkmark$	
20       chrysene       0.52       mg/kg       0.484       mg/kg       0.0000484 %       ,         21       benzo[a]pyrene; benzo[def]chrysene       0.55       mg/kg       0.512       mg/kg       0.0000512 %       ,         22       indeno[123-cd]pyrene       0.000028-5       50-32-8       0.33       mg/kg       0.307       mg/kg       0.0000307 %       ,         23       dibenz[a,h]anthracene       0.0658-893-2       193-39-5       0.06       mg/kg       0.0558       mg/kg       0.00000558 %       ,         24       benzo[ghi]perylene       0.058-893-2       193-39-5       0.06       mg/kg       0.0558       mg/kg       0.00000558 %       ,         25       dibenz[a,h]anthracene       0.0141-00-2       200-181-8       53-70-3       0.64       mg/kg       0.298       mg/kg       0.00000558 %       ,         26       benzo[ghi]perylene       0.32       mg/kg       0.298       mg/kg       0.00000595 %       ,         26       benzo[k]fluoranthene       0.64       mg/kg       0.233       mg/kg       0.0000233 %       ,         27       pH       9.04       pH       9.04       pH       9.04 pH       9.04 pH         28 </td <td></td> <td></td> <td>601-033-00-9 200-280-6</td> <td>56-55-3</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			601-033-00-9 200-280-6	56-55-3	_								
601-048-00-0       205-923-4       218-01-9       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	20		chrysene		_	0.52	mg/kg		0.484	mg/kg	0.0000484 %	$\checkmark$	
21       benzolalpyrene; benzolder/chrysene       0.55       mg/kg       0.512       mg/kg       0.0000512 %       ,         22       indeno[123-cd]pyrene       0.028-5       50-32-8       0.33       mg/kg       0.307       mg/kg       0.0000307 %       ,         23       dibenz[a,h]anthracene       0.06       mg/kg       0.0558       mg/kg       0.0000558 %       ,         24       benzo[ghi]perylene       0.06       mg/kg       0.0558       mg/kg       0.0000558 %       ,         24       benzolpflioranthene       0.32       mg/kg       0.298       mg/kg       0.0000558 %       ,         25       benzolpflioranthene       0.32       mg/kg       0.298       mg/kg       0.0000298 %       ,         26       benzolkjfluoranthene       0.064       mg/kg       0.595       mg/kg       0.0000233 %       ,         27       pH       205-911-9       205-99-2       0.25       mg/kg       0.233       mg/kg       0.0000233 %       ,         28       cyanides { * salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferrocyanides and mercuric oxycyanide and those specified elsewhere in this Annex }       <0.5			601-048-00-0 205-923-4	218-01-9	_								
601-032-00-3       200-028-5       50-32-8       Image: constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	21		benzo[a]pyrene; benzo[def]chrys	ene	_	0.55	mg/kg		0.512	mg/kg	0.0000512 %	$\checkmark$	
22       • indeno[123-cd]pyrene       0.33       mg/kg       0.307       mg/kg       0.0000307 %       ,         23       dibenz[a,h]anthracene       0.06       mg/kg       0.0558       mg/kg       0.00000558 %       ,         24       benzo[ghi]perylene       0.32       mg/kg       0.298       mg/kg       0.0000298 %       ,         25       benzo[b]fluoranthene       0.64       mg/kg       0.595       mg/kg       0.0000558 %       ,         26       benzo[k]fluoranthene       0.64       mg/kg       0.233       mg/kg       0.0000595 %       ,         26       benzo[k]fluoranthene       0.059       mg/kg       0.233       mg/kg       0.0000233 %       ,         26       benzo[k]fluoranthene       0.025       mg/kg       0.233       mg/kg       0.0000233 %       ,         27       PH       9.04       PH       9.04       PH       9.04 pH       9.04 pH       9.04 pH         28       cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }       <0.5	_		601-032-00-3 200-028-5	50-32-8	_							+	
23       dibenz[a,h]anthracene       0.06       mg/kg       0.0558       mg/kg       0.00000558 %       ,         24       benzo[ghi]perylene       0.32       mg/kg       0.298       mg/kg       0.0000298 %       ,         25       benzo[b]fluoranthene       0.064       mg/kg       0.595       mg/kg       0.0000595 %       ,         26       benzo[k]fluoranthene       0.064       mg/kg       0.595       mg/kg       0.0000293 %       ,         26       benzo[k]fluoranthene       0.059       mg/kg       0.233       mg/kg       0.0000233 %       ,         26       benzo[k]fluoranthene       0.059       pH       9.04       pH       9.04       pH       9.04 pH         27       PH       PH       9.04       pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH       9.04 pH	22	8	indeno[123-cd]pyrene			0.33	mg/kg		0.307	mg/kg	0.0000307 %	$\checkmark$	
23       dibenz[a,h]anthracene       0.06       mg/kg       0.0558       mg/kg       0.00000558 %       ,         24       benzo[ghi]perylene       0.32       mg/kg       0.298       mg/kg       0.0000298 %       ,         25       benzo[b]fluoranthene       0.64       mg/kg       0.595       mg/kg       0.0000558 %       ,         26       benzo[k]fluoranthene       0.64       mg/kg       0.595       mg/kg       0.0000293 %       ,         26       benzo[k]fluoranthene       0.64       mg/kg       0.595       mg/kg       0.0000233 %       ,         26       benzo[k]fluoranthene       0.025       mg/kg       0.233       mg/kg       0.0000233 %       ,         27       PH       9.04       PH       9.04       PH       9.04 PH       9.04 PH         28       cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }       <0.5	_	_	205-893-2 193-39-5										
601-041-00-2       200-181-8       53-70-3       0.0000298       0.298       mg/kg       0.0000298 %       0.0000298 %       0.0000298 %       0.0000298 %       0.0000298 %       0.0000298 %       0.0000298 %       0.0000298 %       0.0000298 %       0.00000298 %       0.00000595 %       0.00000595 %       0.00000595 %       0.00000595 %       0.00000595 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000233 %       0.00000223 %       0.00000223 %       0.00000223 %       0.00000223 %       0.00000223 %       0.00000223 %       0.00000223 %       0.00000022 %       0.00000022 %       0.00000022 %       0.000000022 %       0.00000022 %       0.00	23		dibenz[a,h]anthracene			0.06	mg/kg		0.0558	mg/kg	0.00000558 %	$\checkmark$	
24 <ul> <li>benzolghilperylene</li> <li>205-883-8</li> <li>191-24-2</li> <li>0.32</li> <li>mg/kg</li> <li>0.298</li> <li>mg/kg</li> <li>0.0000298 %</li> <li>0.0000595 %</li> <li>0.64</li> <li>mg/kg</li> <li>0.595</li> <li>mg/kg</li> <li>0.0000595 %</li> <li>0.0000233 %</li> <li>0.0000233 %</li> <li>0.0000233 %</li> <li>0.0000233 %</li> <li>0.01-036-00-5</li> <li>205-916-6</li> <li>207-08-9</li> <li>0.25</li> <li>mg/kg</li> <li>0.233</li> <li>mg/kg</li> <li>0.0000233 %</li> <li>0.0000233 %</li> <li>0.0000233 %</li> <li>0.0000233 %</li> <li>0.01-036-00-5</li> <li>205-916-6</li> <li>207-08-9</li> <li>0.25</li> <li>mg/kg</li> <li>0.233</li> <li>mg/kg</li> <li>0.0000233 %</li> <li>0.0000233 %</li> <li>0.0000233 %</li> <li>0.0000233 %</li> <li>0.0000233 %</li> <li>mg/kg</li> <li>0.000004 pH</li> <li>9.04 mg/kg</li> <li>0.00000942 %</li> <li>0.00000942 %</li></ul>	_	_	601-041-00-2 200-181-8	53-70-3	_								
25       benzo[b]fluoranthene       0.64       mg/kg       0.595       mg/kg       0.0000595 %       ,         26       benzo[k]fluoranthene       0.64       mg/kg       0.233       mg/kg       0.0000233 %       ,         27       PH       9.04       PH       9.04       PH       9.04 pH       9.04 pH       9.04 pH         28       cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }       co.5       mg/kg       1.884       <0.942	24	0	benzo[ghi]perylene			0.32	mg/kg		0.298	mg/kg	0.0000298 %	$\checkmark$	
25       benzo[b]fluorantnene       0.64       mg/kg       0.595       mg/kg       0.0000595 %       ,         26       benzo[k]fluoranthene       0.25       mg/kg       0.233       mg/kg       0.0000233 %       ,         27       PH       9.04       PH       9.04       PH       9.04 pH       9.04 pH       9.04 pH         28       cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }       co.5       mg/kg       1.884       <0.942	_	_	205-883-8	191-24-2	_								
26       benzo[k]fluoranthene       0.25       mg/kg       0.233       mg/kg       0.0000233 %       ,         27       PH       9.04       PH       9.04       PH       9.04       PH       9.04       PH         28       cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }       <0.5	25		benzolbjfluorantnene	005.00.0		0.64	mg/kg		0.595	mg/kg	0.0000595 %	$\checkmark$	
26         benzolk fitudranthene         0.25         mg/kg         0.233         mg/kg         0.0000233 %         ,           27         PH         9.04         PH         9.	_	_	601-034-00-4 205-911-9	205-99-2	_								
27 <ul> <li>pH</li> <li>pH</li> <li>pH</li> <li>pH</li> <li>salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }</li> </ul> <ul> <li>control of complex cyanides and mercuric oxycyanide and those specified elsewhere in this Annex }</li> <li>control of complex cyanides and mercuric oxycyanide and those specified elsewhere in this Annex }</li> </ul> specified elsewhere in this Annex }     specified elsewhere in this Annex }     specified elsewhere in this Annex }     specified elsewhere in this Annex }	26			207.08.0	_	0.25	mg/kg		0.233	mg/kg	0.0000233 %	$\checkmark$	
27       •       •       •       •       9.04       pH       9.04       pH       9.04 pH       9.04 pH         28       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •       •<	_		001-030-00-5 <u>205-910-6</u>	207-08-9	_	,							
28       cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }       <0.5	27	0	рп	PH	_	9.04	pН		9.04	pН	9.04 pH		
Total: 0 0074 %	28	2	cyanides { salts of hydrogen c exception of complex cyanides si ferricyanides and mercuric oxycy specified elsewhere in this Annex 006-007-00-5	yanide with the uch as ferrocyanides, anide and those {}		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classifica ion



### Classification of sample: WS10-08/10/2021-0.15-0.30m

## Non Hazardous Waste Classified as 17 05 04 in the List of Waste

-----

.....

### Sample details

LoW Code:
Chapter:
Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

### Hazard properties

None identified

### Determinands

### Moisture content: 17.5% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	i data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	her; MTBE; /Ipropane 216-653-1	1634-04-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
2		benzene 601-020-00-8	200-753-7	71-43-2	-	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
3		toluene 601-021-00-3	203-625-9	108-88-3	_	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
4	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
5	4	chromium in chrom <mark>oxide (worst case)</mark>	ium(III) compounds } 215-160-9	{ • chromium(III)		58.4	mg/kg	1.462	72.642	mg/kg	0.00726 %	~	
6	4	arsenic { arsenic } 033-001-00-X	231-148-6	7440-38-2	4	12.5	mg/kg		10.638	mg/kg	0.00106 %	~	
7	*	cadmium { cadn cadmium sulphose of cadmium sulphic reaction mass of ca sulphide (xCdS.yH this Annex } 048-001-00-5	ium compounds, wi lenide (xCdS.yCdSe le with zinc sulphide admium sulphide wit gS), and those spec	th the exception of e), reaction mass e (xCdS.yZnS), h mercury ified elsewhere in	1	0.1	mg/kg		0.0851	mg/kg	0.00000851 %	~	
8	4	copper {	(II) chloride; copper 231-210-2	dichloride } 7447-39-4		78	mg/kg	2.116	140.455	mg/kg	0.014 %	~	
9	4	lead { ^e lead comp specified elsewhere 082-001-00-6	oounds with the exce e in this Annex (wor	eption of those st case) }	1	53	mg/kg		45.106	mg/kg	0.00451 %	~	
10	*	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.1	mg/kg	1.353	0.115	mg/kg	0.0000115 %	~	
11	*	nickel { nickel sulfic 028-006-00-9	<b>le                                    </b>	16812-54-7 [1] 11113-75-0 [2] 1314-04-1 [3]		33.4	mg/kg	1.546	43.955	mg/kg	0.0044 %	~	
12	4	selenium { nickel se 028-031-00-5	elenate } 239-125-2	15060-62-5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
13	4	zinc { <mark>zinc oxide</mark> } 030-013-00-7	215-222-5	1314-13-2	_	70	mg/kg	1.245	74.153	mg/kg	0.00742 %	~	

Page 16 of 26



#		Determinand	Note	User entere	ed data	Conv. Factor	Conv. Factor Compound conc.		Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS	S Number							ЧС ИС	
14	4	chromium in chromium(VI) compounds { chro oxide }	mium(VI)	<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-8	32-0								
15		601-052-00-2 202-049-5 91-20-	3	0.29	mg/kg		0.247	mg/kg	0.0000247 %	$\checkmark$	
		acenaphthylene	0								
16		205-917-1 208-96	6-8	0.06	mg/kg		0.0511	mg/kg	0.00000511 %	$\checkmark$	
17		acenaphthene		-0.05	malka		-0.05	malka	<0.0000E %		
17		201-469-6 83-32-	9	<0.05	mg/kg		<0.05	тту/ку	<0.000005 %		<lod< td=""></lod<>
18	۲	fluorene		< 0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
		201-695-5 86-73-	7								
19		phenanthrene		0.56	mg/kg		0.477	mg/kg	0.0000477 %	1	
		201-581-5 85-01-	8							Ľ	
20	۲	anthracene		0.2	mg/kg		0.17	mg/kg	0.000017 %	$\checkmark$	
		204-371-1 120-12	2-7								
21	۲	fluorantnene	1.0	1.1	mg/kg		0.936	mg/kg	0.0000936 %	$\checkmark$	
		203-912-4 200-44	+-0							$\square$	
22		204-927-3 129-00	)-0	1.1	mg/kg		0.936	mg/kg	0.0000936 %	$\checkmark$	
		benzo[a]anthracene	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
23		601-033-00-9 200-280-6 56-55-	3	0.61	mg/kg		0.519	mg/kg	0.0000519 %	$\checkmark$	
		chrysene	-								
24		601-048-00-0 205-923-4 218-01	1-9	0.67	mg/kg		0.57	mg/kg	0.000057%	$\checkmark$	
25		benzo[a]pyrene; benzo[def]chrysene		0.72	malka		0.612	malka	0.0000613.9/	,	
25		601-032-00-3 200-028-5 50-32-	8	0.72	mg/kg		0.013	шу/ку	0.0000013 %	~	
26	8	indeno[123-cd]pyrene		0 49	ma/ka		0 417	ma/ka	0 0000417 %	./	
		205-893-2 193-39	9-5							Ň	
27		dibenz[a,h]anthracene		0.12	mg/kg		0.102	mg/kg	0.0000102 %	1	
		601-041-00-2 200-181-8 53-70-	3							Ľ	
28	۲	benzo[ghi]perylene		0.51 mg	mg/kg		0.434 mg/	mg/kg	0.0000434 %	$\checkmark$	
		205-883-8 191-24	1-2								
29		benzolbjfluoranthene		0.99	mg/kg		0.843	mg/kg	0.0000843 %	$\checkmark$	
<u> </u>	-	001-034-00-4 205-911-9 205-99	1-∠								
30		601_036_00_5 205_916_6 207_08	3-0	0.38	mg/kg		0.323	mg/kg	0.0000323 %	$\checkmark$	
		TPH (C6 to C40) petroleum group	5-5								
31				165	mg/kg		140.426	mg/kg	0.014 %	$\checkmark$	
		На									
32		PH		7.97	рН		7.97	рН	7.97 pH		
33	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferroc ferricyanides and mercuric oxycyanide and the specified elsewhere in this Annex }	he cyanides, ose	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		xylene									
34		601-022-00-9 202-422-2 [1] 95-47- 203-396-5 [2] 106-42 203-576-3 [3] 108-38 215-535-7 [4] 1330-2	6 [1] 2-3 [2] 3-3 [3] 20-7 [4]	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		· · · · · · · · · · · · · · · · · · ·						Total:	0.0538 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) .

4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration <LOD

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classifica ion



### **Supplementary Hazardous Property Information**

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Sample is solid and therefore flammability is reduced.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.014%)



### Classification of sample: WS11-08/10/2021-0.20-0.45m



Sample details

Sample name: WS11-08/10/2021-0 20-0 45m	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:	onuptor	from contaminated sites)
0.20-0.45 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
12.2%		
(dry weight correction)		

### Hazard properties

None identified

### Determinands

Moisture content: 12.2% Dry Weight Moisture Correction applied (MC)

#		Determinand	P Note	User entered data	Conv. Factor Compound conc.		Classification value	Applied	Conc. Not Used	
		CLP Index humber EC Number CAS Number	С					MO		
1	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }		67.8 mg/kg	1.462	88.319 mg/kg	0.00883 %	>		
		215-160-9 1308-38-9	8. 1						-	
2	4	arsenic { arsenic }		16.9 mg/kg		15.062 mg/kg	0.00151 %	1		
		U33-001-00-X 231-148-6 7440-38-2								
3	¥	cadmium { Cadmium compounds, with the excep ion of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex }	1	<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
4	4	copper { copper (II) chloride; copper dichloride }		18 mg/kg	2.116	33.944 mg/kg	0.00339 %	>		
5	*	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	29 mg/kg		25.847 mg/kg	0.00258 %	~		
6	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>	
	à	nickel { nickel sulfide }	1					1		
7		028-006-00-9 240-841-2 [1] 16812-54-7 [1] 234-349-7 [2] - [3] 11113-75-0 [2] 1314-04-1 [3]		22.3 mg/kg	1.546	30.733 mg/kg	0.00307 %	1		
•	æ	selenium { nickel selenate }	8	1 ma/ka	0.554	0.076 malka	0.000008.9/	,		
0		028-031-00-5 239-125-2 15060-62-5		т тулу	2.554	2.276 mg/kg	0.000220 %	~		
9	4	zinc { zinc oxide }		55 mg/kg	1.245	61.015 mg/kg	0.0061 %	1		
		030-013-00-7 215-222-5 1314-13-2				50. LT-		100		
10	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<0.3 mg/kg	1.923	<0.577 mg/kg	<0.0000577 %		<lod< td=""></lod<>	
		uz4-uu1-uu-u  210-bu7-b  1333-b2-0	+							
11		601-052-00-2 202-049-5 91-20-3		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>	
10		acenaphthylene	2	<0.03 ma/ka		<0.03 ma/ka	<0.000002.9/		<1.0D	
12		205-917-1 208-96-8				<0.05 mg/kg	<u><u></u></u>		LOD	
13	0	acenaphthene		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>	
		201-403-0 03-32-3						9 0.000000 /0		

www.hazwasteonline.com



#		Determinand CLP index number EC Number CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
14	8	fluorene		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
$\vdash$		201-695-5 86-73-7	_								
15	۲	pnenanthrene bot sot s		0.03	mg/kg		0.0267	mg/kg	0.00000267 %	$\checkmark$	
<u> </u>		201-581-5 85-01-8	_								
16	۲			< 0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
-		204-371-1 120-12-7	_								
17	۲		_	0.1	mg/kg		0.0891	mg/kg	0.00000891 %	$\checkmark$	
-		205-912-4 206-44-0	_								
18	۲		_	0.09	mg/kg		0.0802	mg/kg	0.00000802 %	$\checkmark$	
		bonzo[a]anthracana								$\vdash$	
19		601-033-00-9 200-280-6 56-55-3	_	0.11	mg/kg		0.098	mg/kg	0.0000098 %	$\checkmark$	
		chrysene									
20		601-048-00-0 205-923-4 218-01-9	_	0.08	mg/kg		0.0713	mg/kg	0.00000713 %	$\checkmark$	
21		benzo[a]pvrene: benzo[def]chrvsene									
		601-032-00-3 200-028-5 50-32-8	_	0.1	mg/kg		0.0891	mg/kg	0.00000891 %	$\checkmark$	
		indeno[123-cd]pvrene									
22	-	205-893-2 193-39-5	_	0.07	mg/kg		0.0624	mg/kg	0.00000624 %	$\checkmark$	
		dibenz[a,h]anthracene		0.04			0.04		0.000004.0/		
23		601-041-00-2 200-181-8 53-70-3	_	<0.04	mg/кg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzo[ghi]perylene		0.07	mg/kg		0.0004		0.00000004.0/		
24		205-883-8 191-24-2		0.07			0.0624	тg/кg	0.00000624 %	$\checkmark$	
25		benzo[b]fluoranthene		0.12	ma/ka		0 407	ma/ka	0.000107.9/	,	
25		601-034-00-4 205-911-9 205-99-2		0.12	тід/кд		0.107	тту/ку	0.0000107 %	~	
26		benzo[k]fluoranthene		0.05	ma/ka		0.0446	ma/ka	0.00000446.%	,	
20		601-036-00-5 205-916-6 207-08-9		0.05	mg/kg		0.0440	шу/ку	0.00000440 /8	~	
27		рН		8.62	nН		8.62	nH	8.62 nH		
		PH		0.02			0.02	pri	0.02 pm		
28	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< th=""></lod<>
						1		Total:	0.026 %	1	

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected

CLP: Note 1 Only the metal concentration has been used for classification



### Classification of sample: WS12-08/10/2021-0.10-0.50m



Sample details

Sample name:	LoW Code:	17: Construction and Domolition Wastes (including even and coil
Sample Dopth:	Chapter.	from contaminated cites)
Sample Depui.		nom contaminated sites)
0.10-0.15 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
18.6%		
(dry weight correction)		

### Hazard properties

None identified

### Determinands

Moisture content: 18.6% Dry Weight Moisture Correction applied (MC)

#		Determinand           CLP index number         EC Number         CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	<b>IC Applied</b>	Conc. Not Used
1	*	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) } 215-160-9 1308-38-9	0	74.5 mg/kg	1.462	91.809 mg/kg	0.00918 %	√	
2	4	arsenic { arsenic } 033-001-00-X 231-148-6 7440-38-2		16.8 mg/kg		14.165 mg/kg	0.00142 %	~	
3	¥	cadmium { Cadmium compounds, with the excep ion of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex }	1	0.5 mg/kg		0.422 mg/kg	0.0000422 %	~	
4	*	copper { Copper(II) chloride; copper dichloride } 231-210-2 7447-39-4		26 mg/kg	2.116	46.384 mg/kg	0.00464 %	~	
5	¥	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) } 082-001-00-6	1	51 mg/kg		43.002 mg/kg	0.0043 %	~	
6	4	mercury { mercury dichloride } 080-010-00-X  231-299-8  7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
7	¥	nickel { nickel sulfide } 028-006-00-9 240-841-2 [1] 16812-54-7 [1] 234-349-7 [2] - [3] 11113-75-0 [2] 1314-04-1 [3]		29 mg/kg	1.546	37.81 mg/kg	0.00378 %	~	
8	<b>6</b>	selenium { nickel selenate } 028-031-00-5  239-125-2  15060-62-5		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
9	4	zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2		86 mg/kg	1.245	90.258 mg/kg	0.00903 %	~	
10	4	chromium in chromium(VI) compounds { chromium(VI)           oxide }           024-001-00-0         [215-607-8         [1333-82-0]		<0.3 mg/kg	1.923	<0.577 mg/kg	<0.0000577 %		<lod< td=""></lod<>
11		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
12	0	acenaphthylene 205-917-1 208-96-8		<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< td=""></lod<>
13	0	acenaphthene 201-469-6 83-32-9		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>

www.hazwasteonline.com



#		Determinand CLP index number EC Number CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
14	8	fluorene		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		201-695-5 86-73-7									
15	۲	phenanthrene		0.08	mg/kg		0.0675	mg/kg	0.00000675 %	$\checkmark$	
		201-581-5 85-01-8									
16	۲	anthracene		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		204-371-1  120-12-7									
17	۲	fluoranthene		0.2	mg/kg		0.169	mg/kg	0.0000169 %	$\checkmark$	
		205-912-4 206-44-0									
18	۲	pyrene		0.19	mg/kg		0.16	mg/kg	0.000016 %	$\checkmark$	
		204-927-3  129-00-0									
19		benzo[a]anthracene		0.13	mg/kg		0.11	mg/kg	0.000011 %	$\checkmark$	
		601-033-00-9 200-280-6 56-55-3	_								
20		chrysene		0.14	mg/kg		0.118	mg/kg	0.0000118 %	$\checkmark$	
		601-048-00-0 205-923-4 218-01-9									
21		benzo[a]pyrene; benzo[def]chrysene		0.19	mg/kg		0.16	mg/kg	0.000016 %	$\checkmark$	
- '		601-032-00-3 200-028-5 50-32-8									
22	Θ	indeno[123-cd]pyrene		0.17	mg/kg		0.143	mg/kg	0.0000143 %	$\checkmark$	
		205-893-2 193-39-5								-	
23		dibenz[a,h]anthracene		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-041-00-2 200-181-8 53-70-3									
24	۲	benzo[ghi]perylene		0.17	ma/ka		0.143	mg/kg	0.0000143 %	$\checkmark$	
		205-883-8 191-24-2								-	
25		benzo[b]fluoranthene		0.23	mg/ka		0.194	mg/ka	0.0000194 %	$\checkmark$	
		601-034-00-4 205-911-9 205-99-2								ľ	
26		benzo[k]fluoranthene		0.09	mg/kg		0.0759	mg/kg	0.00000759 %	$\checkmark$	
		601-036-00-5 205-916-6 207-08-9									
27	۲	pH		8.24	pН		8.24	pН	8.24 pH		
		PH						·	·		
28	~	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
								Total:	0.033 %	Ē	

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected

CLP: Note 1 Only the metal concentration has been used for classification



Report created by Lee Anderson on 03 Nov 2021

### Appendix A: Classifier defined and non CLP determinands

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6)

Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

#### • chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H332 , Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Resp. Sens. 1 H334 , Skin Sens. 1 H317 , Repr. 1B H360FD , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

arsenic (EC Number: 231-148-6, CAS Number: 7440-38-2)

CLP index number: 033-001-00-X

Description/Comments: Worst Case: IARC considers arsenic Group 1; Carcinogenic to humans Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP) Additional Hazard Statement(s): Carc. 1A H350 Reason for additional Hazards Statement(s): 29 Sep 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

# • cadmium compounds, with the exception of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex

CLP index number: 048-001-00-5

Description/Comments: Worst Case: IARC considers cadmium compounds Group 1; Carcinogenic to humans Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP) Additional Hazard Statement(s): Carc. 1A H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

### • copper(II) chloride; copper dichloride (EC Number: 231-210-2, CAS Number: 7447-39-4)

Description/Comments:

Data source: https://echa.europa.eu/substance-information/-/substanceinfo/100.028.373

Data source date: 03 Nov 2016

Hazard Statements: Skin Irrit. 2 H315 , Acute Tox. 4 H302 , Eye Dam. 1 H318 , Acute Tox. 4 H312 , STOT SE 3 H335 , Eye Irrit. 2 H319 , Acute Tox. 3 H301 , Acute Tox. 4 H332 , Aqua ic Acute 1 H400 , Aquatic Chronic 1 H410

### Iead compounds with the exception of those specified elsewhere in this Annex (worst case)

CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP) Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

### • acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H302 , Acute Tox. 1 H330 , Acute Tox. 1 H310 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315

### acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Aquatic Chronic 2 H411



## HazWasteOnline[™]

Report created by Lee Anderson on 03 Nov 2021

#### [•] fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

#### • phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Carc. 2 H351, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Skin Irrit. 2 H315

### ^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Skin Sens. 1 H317 , Aguatic Acute 1 H400 , Aguatic Chronic 1 H410

### • fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4 H302, Aqua ic Acute 1 H400, Aquatic Chronic 1 H410

### • pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aqua ic Chronic 1 H410

### • indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

### • benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

### • TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3 H226 , Asp. Tox. 1 H304 , STOT RE 2 H373 , Muta. 1B H340 , Carc. 1B H350 , Repr. 2 H361d , Aquatic Chronic 2 H411

### **pH** (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

### • salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1)

Additional Hazard Statement(s): EUH032 >= 0 2 %

Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2



Report created by Lee Anderson on 03 Nov 2021

### Appendix B: Rationale for selection of metal species

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Standard Aproach

arsenic {arsenic}

Standard Approach

cadmium {cadmium compounds, with the exception of cadmium sulphoselenide (xCdS.yCdSe), reaction mass of cadmium sulphide with zinc sulphide (xCdS.yZnS), reaction mass of cadmium sulphide with mercury sulphide (xCdS.yHgS), and those specified elsewhere in this Annex}

Standard Approach

copper {copper(II) chloride; copper dichloride}

Standard Approach

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

Standard Approach

mercury {mercury dichloride}

Worst case

nickel {nickel sulfide}

Worst case

selenium {nickel selenate}

Worst case

zinc {zinc oxide}

Standard Approach

chromium in chromium(VI) compounds {chromium(VI) oxide}

Standard Approach

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Standard Approach

### **Appendix C: Version**

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2021.293.4891.9295 (20 Oct 2021) HazWasteOnline Database: 2021.293.4891.9295 (20 Oct 2021)



Report created by Lee Anderson on 03 Nov 2021

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2019 - UK: 2019 No. 720 of 27th March 2019 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 POPs Regulation 2019 - Regulation (EU) 2019/1021 of 20 June 2019



## HazWasteOnline™

## Waste Classification Report

HazWasteOnline ™ classifies waste as either hazardous or non-ha legislation and he rules and data defined in the current UK or EU to not assessed). It is the responsibility of the classifier named below a) understand the origin of the waste b) select the correct List of Waste code(s) c) confirm that the list of determinands, results and sampling pl d) select and justify the chosen metal species (Appendix B) e) correctly apply moisture correction and other available correct f) add the meta data for their user-defined substances (Append g) check that the classification engine is suitable with respect to	CHK9N-R98XV-NO6T3			
To aid the reviewer, the laboratory results, assumptions and justifica	ations managed by the classifier are highlighted in pale yellow.			
Job name				
UK 21.5579 North Campus East Car Park, Welwyn Garder	n City (2 of 4)			
Description/Comments				
Samples Collected during site investigation (2 of 4)				
Project	Site			
UK21.5579	North Campus East Car Park, Welwyn Ga	rden City (2 of 4)		
Classified by				
Name: Company: Lee Anderson Environmental Strategies Ltd Date:	HazWasteOnline [™] provides a two day, hazardous waste class of the software and both basic and advanced waste classifica be renewed every 3 years. HazWasteOnline [™] Certification:	sification course that covers the use tion techniques. Certification has to		
03 Nov 2021 09:37 GMT	Course	Date		
Telephone.	Hazardous Waste Classification	03 Dec 2020		
	Next 3 year Refresher due by	Dec 2023		
Job summary				
# Sample name Depth [m] Class	sification Result Hazard properties	Page		
1 WS1-08/10/2021-1.60-1.80m 1.60-1.80 Non	Hazardous	2		
2 W30-00/10/2021-0.70-0.3011 0.70-0.30 Non	1142414045	5		
Related documents				
# Name	Description			
1 EMT-21-16045-Batch-1-Sched-A-202110191159.HWOL	.hwol file used to create the Job			
Report				
Created by: Lee Anderson	Created date	: 03 Nov 2021 09:37 GMT		
Appondiçõe		Daga		
Appendix A: Classifier defined and non CI P determinands	3			
Appendix B: Rationale for selection of metal species	-	4		
Appendix C: Version		4		



## HazWasteOnline[™]

Report created by Lee Anderson on 03 Nov 2021

### Classification of sample: WS1-08/10/2021-1.60-1.80m

### Non Hazardous Waste Classified as 17 05 04 in the List of Waste

..........

----------

### Sample details

Sample name:	LoW Code:	
WS1-08/10/2021-1.60-1.80m	Chapter:	17:
Sample Depth:		fron
1.60-1.80 m	Entry:	17 (
Moisture content:		03)
12%		
(dry weight correction)		

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
 17 05 04 (Soil and stones other than those mentioned in 17 05

### **Hazard properties**

None identified

### Determinands

### Moisture content: 12% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	LP Note	User entered data		Conv. Factor	Conv. Factor Compound conc.		Classification value	C Applied	Conc. Not Used
1	tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		Ū	<5	µg/kg		<0.005	mg/kg	<0.0000005 %	×	<lod< th=""></lod<>		
2		benzene 601-020-00-8	200-753-7	71-43-2	_	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
3		toluene 601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
4	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
5	0	TPH (C6 to C40) p	etroleum group	ТРН	_	<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
6		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
										Total:	0.0038 %		

 Key

 User supplied data

 Determinand values ignored for classification, see column 'Conc. Not Used' for reason

 Determinand defined or amended by HazWasteOnline (see Appendix A)

 <LOD</td>
 Below limit of detection

 ND
 Not detected



### Classification of sample: WS8-08/10/2021-0.70-0.90m



Sample details

LoW Code:	
Chapter:	17: Construction and Demolition Wastes (including excavated soil
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	LoW Code: Chapter: Entry:

### Hazard properties

None identified

### Determinands

Moisture content: 12.8% Dry Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	User entered data		User entered data		User entered data		User entered data		User entered data		User entered data		User entered data		User entered data		User entered data		User entered data		User entered data		Conv. Factor Compound conc.		Classification value	MC Applied	Conc. Not Used
1	tert-butyl methyl ether; MTBE; 2-me hoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4				<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>																					
2		benzene 601-020-00-8	200-753-7	71-43-2	-	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>																				
3		toluene 601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>																				
4	•	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>																				
5	0	TPH (C6 to C40) p	etroleum group	ТРН		<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< th=""></lod<>																				
6		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< th=""></lod<>																				
		Total																															

Key User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) <LOD Below limit of detection ND Not detected



Report created by Lee Anderson on 03 Nov 2021

### Appendix A: Classifier defined and non CLP determinands

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Description/Comments: Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

### • TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3 H226 , Asp. Tox. 1 H304 , STOT RE 2 H373 , Muta. 1B H340 , Carc. 1B H350 , Repr. 2 H361d , Aquatic Chronic 2 H411

### Appendix B: Rationale for selection of metal species

### None used in this classification

### Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2021.293.4891.9295 (20 Oct 2021) HazWasteOnline Database: 2021.293.4891.9295 (20 Oct 2021)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2019 - UK: 2019 No. 720 of 27th March 2019 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 POPs Regulation 2019 - Regulation (EU) 2019/1021 of 20 June 2019



## APPENDIX J

## Laboratory Results - Geotechnical





Contract	11/21 5579 - North Ca	moue F	act Car Dark Welw	un Gardan Citu							
Contract		inipus c	dSt Cal Fair, weiw	yn Garden City							
Serial No.	39534_1										
Client: Environm Ltd Unit 7 Caxton Ho Broad Stre Great Can Cambridg CB23 6JN Samples Submittee	nental Protection Strate	egies	Soil Property Testing Ltd 15, 16, 18 Halcyon Court, St Margaret's Way, Stukeley Meadows, Huntingdon, Cambridgeshire, PE29 6DG Tel: 01480 455579 Email: enquiries@soilpropertytesting.com Website: www.soilpropertytesting.com Approved Signatories:								
Environm Ltd Samples Labelled: UK21.55 Park, We	nental Protection Strate 79 - North Campus East Iwyn Garden City	egies : Car	<ul> <li>J.C. Garner B.Eng (Hons) FGS Technical Director &amp; Quality Manager</li> <li>W. Johnstone Materials Lab Manager</li> <li>D. Sabnis Operations Manager</li> </ul>								
Date Received:	11/10/2021 S	amples	s Tested Between: 11/10/2021 and 25/10/2021								
Remarks: For the a Your Refe Your Ord	ttention of Shaun Cahil erence No: UK21.5579 er No: 27543	Ι									
Notes: 1	All remaining samples or re	emnants	from this contract will b	e disposed of after 21 days from today,							
2 3 4	unless we are notified to the contrary. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. Tests marked "NOT UKAS ACCREDITED" in this test report are not included in the UKAS Accreditation Schedule for this testing laboratory. This test report may not be reproduced other than in full except with the prior written approval of the										
5	The results within this repo	ort only r	elate to the items tested	d or sampled.							



ISSUED BY SOIL PROPERTY TESTING LTD



Contra	act		UK21.5579 - North Campus East Car Park, Welwyn Garden City																			
Serial	No.		39534	1											 	Т	Target Date         25/10/2021					
Sched	uled	Ву	Enviror	ıme	nta	I Pr	ote	ectio	on S	Stra	ateg	gies	Ltd	1								
Sched	ule R	emarks																				
Bore Hole No.	Туре	Sample Ref.	Top Depth	Top Depth (State (State)) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (State) (Sta												Sample Remarks						
BH1	U	2	3.00	1	1		1	Ń		<u></u>												
BH1	U	3	5.00	1	1		1															
BH1	U	4	8.00	1	1		1															
BH1	В	1	11.70		$\square$		$\square$	1														
BH1	В	3	13.30	1	1	1	$\square$															
BH2	В	7	8.00				$\square$	1														
BH2	В	11	23.80				$\square$		1													
BH3	U	1	1.20	1	1	1	1			88 - S 19												
BH3	U	2	3.00	1	1	1	1															
BH3	В	1	4.00		$\square$			1														
BH3	В	3	6.50					1		à												
BH3	В	7	16.40	1	1	1	$\square$															
WS2	D	6	1.80	1	1	1																
WS3	D	10	1.60	1	1	1	$\square$															
WS4	D	14	1.60	1	1	1	$\square$															
WS6	D	21	0.80	1	1	1																
WS7	D	23	0.60	1	1	1	$\square$															
	<u> </u>	Totals	-	12	12	9	5	4	1												End of Schedule	



ISSUED BY SOIL PROPERTY TESTING LTD



Contract	t	UK21.5579 - North Campus East Car Park, Welwyn Garden City												
Serial No	0.	3953	84_1											
	SUMMA	ARY C	OF WATE	R CONT	FENT, I	LIQUID		, PLAS	FIC LIN	1IT, PL/	ASTICIT		DEX AND LIQUIDITY INDEX	
Borehole	Depth	Туре	Ref.	Water	Liquid	Plastic	Plasti- city	Liquid- ity	S	ample Pro Ret'd	eparation Corr'd	Curing	Description	Class
/Pit No.	(m)			(%)	(%)	(%)	Index (%)	Index	Method	0.425mm (%)	W/C <0.425mm	Time (hrs)	Description	Class
BH1	3.00	U	2	18.8	56	21	35	-0.06	From Natural	0 (A)		26	Stiff (high strength) yellowish red CLAY with light bluish grey mottling, rare fine sand/silt pockets and decayed roots	СН
BH1	5.00	U	3	17.6	37	16	21	0.08	From Natural	0 (A)		26	Very stiff (very high strength) mottled very pale brown and yellowish brown silty CLAY with occasional black staining and fine sand/silt pockets	СІ
BH1	8.00	U	4	15.6	31	15	16	0.04	From Natural	0 (A)		27	Very stiff (very high strength) brown silty CLAY with rare pale bluish grey mottling and black staining	CL
BH1	13.30	В	3	32.9	35	24	11	0.81	Wet Sieved	8 (M)	N/R*	22	White structureless CHALK with occasional orange staining, harder intact chalk fragments from fine to coarse gravel size and black flint gravel	CL/CI/ML /MI
BH3	1.20	U	1	11.4	44	17	27	-0.21	Wet Sieved	26 (M)	15.4*	24	Very stiff (very high strength) dark yellowish brown slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium chert	СІ
BH3	3.00	U	2	17.4	57	19	38	-0.04	Wet Sieved	24 (M)	22.9*	24	Very stiff (very high strength) dark yellowish brown slightly gravelly slightly sandy CLAY with bluish grey mottling. Gravel is fine to coarse chert	СН
BH3	16.40	В	7	31.9	32	23	9	0.99	Wet Sieved	20 (M)	N/R*	24	White structureless CHALK with occasional orange staining, harder intact chalk fragments from fine to coarse gravel size and black flint gravel	CL/ML
WS2	1.80 - 2.00	D	6	19.8	40	19	21	0.04	Wet Sieved	17 (M)	23.9*	24	Stiff yellowish brown slightly gravelly slightly sandy silty CLAY with occasional dark grey organic pockets and rare decayed roots. Gravel is fine and medium angular and subangular chert and rare brick fragments	CI
Method Of Method of	Preparation Test:	:	BS EN ISO: BS EN ISO:	17892-1:2 17892-1:2	2014 & B 2014 & B	S 1377: P S 1377: P	art 2:199 art 2:199	0:4.2 0:3.2, 4.4	, 5.3, 5.4					
Type of San	nple Key:		U = Undistu	urbed, B =	Bulk, D =	Disturbe	d, J = Jar,	W = Wat	er, SPT =	Split Spo	on Sampl	e, C = C	ore Cutter 7: Part 2: 1990 Clause 2 Note 1, Wilson	N/D
comments:			corrected v	water cor vater cont	ent is not	t reported	d due to r	naterial t	ype.	is non-po	JIOUS. 500	2 D313/	7, Fait 2; 1990 Gause 3 Note 1, Where	м/к,
Table Notat	Fable Notation:     Ret'd 0.425mm: (A) = Assumed, (M) = Measured													



ISSUED BY SOIL PROPERTY TESTING LTD



Contract	t	UK21.5579 - North Campus East Car Park, Welwyn Garden City												
Serial No	0.	3953	84_1											
	SUMMA	ARY C	OF WATE	R CONT	FENT, I	LIQUID		, PLAST		/IIT, PL/	ASTICIT	Y IN	DEX AND LIQUIDITY INDEX	
Borehole /Pit No.	Depth (m)	Туре	Ref.	Water Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasti- city Index (%)	Liquid- ity Index	S	Ret'd 0.425mm (%)	eparation Corr'd W/C <0.425mm	Curing Time (hrs)	Description	Class
WS3	1.60 - 1.80	D	10	11.8	39	15	24	-0.14	Wet Sieved	22 (M)	15.1*	25	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional dark grey mottling. Gravel is fine and medium angular and subangular chert and chalk	СІ
WS4	1.60 - 1.80	D	14	21.8	33	17	16	0.30	Wet Sieved	35 (M)	33.6*	46	Soft olive slightly gravelly slightly sandy silty CLAY with rare recently active roots. Gravel is fine to coarse subangular and subrounded chalk	CL
WS6	0.80 - 1.00	D	21	15.0	30	18	12	-0.25	Wet Sieved	34 (M)	22.8*	46	Soft yellowish brown slightly gravelly slightly sandy silty CLAY. Gravel is fine to coarse angular to subrounded chert	CL
WS7	0.60 - 0.80	D	23	15.9	45	17	28	-0.04	Wet Sieved	21 (M)	20.1*	24	Very stiff yellowish brown slightly gravelly slightly sandy silty CLAY with occasional bluish grey mottling and rare decayed roots. Gravel is fine and medium angular to subrounded chalk and chert	CI
Method Of Preparation:       BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2         Method of Test:       BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4         Type of Sample Key:       U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter         Comments:       *Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.         Table Notation:       Ret'd 0.425mm: (A) = Assumed, (M) = Measured														



ISSUED BY SOIL PROPERTY TESTING LTD








































ISSUED BY SOIL PROPERTY TESTING LTD







ISSUED BY SOIL PROPERTY TESTING LTD



	Contract UK21.5579 - North Campus East Car Park, Welwyn Garden City												
Serial No.		39534	_1										
DETERMINATION OF WATER CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND													
	-	412-10-10-10-10-	[	DERIVATIO	ON OF PLA	ASTICITY I	NDEX A		JIDITY INDE	x			
Borehole / Pit No.	Depth	n 9	Sample	Wate Conter	ter ent Description Remarks								
	m	Туре	Referen	ce (VV) 9	6		4.9		¥ 8				
WS3	1.60 - 1.80	D	10	11.8	Hard yello occasiona subangula	wish brown sli I dark grey mot ar chert and cha	ghtly grav ttling. Gra alk	velly slightly sa vel is fine and	ndy silty CLAY wi medium angular	th and			
				PREPARA	TION				Liquid Limit				39 %
Method of	f prepa	aration	l A		Wet	sieved ove	r 0.425	imm sieve	Plastic Limit	t			15 %
Sample re	tained	0.425	mm siev	e (Mea	asured)			22 %	Plasticity In	dex			24 %
Corrected	water	conte	nt for ma	aterial pass	ing 0.425r	nm		15.1 %	Liquidity Ind	dex		2	-0.14
Sample re	tained	2mm	sieve	(Mea	asured)			11 %	NHBC Modi	fied (l'p)	) 19 %		
Curing time 25 hrs Clay Co				Content	Not analysed Derived Activity			ivity	Not analysed				
	<u> </u>	70									-		
C=CLAY	6	60		CL	CI	СН		cv	CE				al
		50										High	e Potenti
Plasticity I %	Index	40										۶	ne Chang
(lp)		30			×					-		Mediur	HBC Volui
		20 -								-		Ň	z
		10										Ľ	
M=SILT	ta Î			ML	MI	МН		MV	ME				
		0	10	20 30	40	50 60	70	80	90 100	110 12	0 L	iquid L	imit %
								Plastici	ty Chart BS5930:	2015: Figure 8	8		
Method of	Prepara Tost:	ation:	BS EN IS	0: 17892-1	L: 2014 & I	3S 1377: Pa	art 2: 19	990: 4.2	1 5 3 5 1				
Method of Test: BS EN ISU: 1/892-1: 2014 & BS 13//: Part 2: 1990: 3.2, 4.4, 5.3, 5.4 Type of Sample Key: H=Undisturbed B=Bulk D=Disturbed I=Jar W=Water SPT=Split Spoon Sample C=Core Cutter													
Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1 Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index Note: Modified Plasticity Index I'p = Ip x (% less than 425microns/100)													









Contract UK21.5579 - North Campus East Car Park, Welwyn Garden City												
Serial No.		39534	_1									
		DET	ERMINAT	ION OF W	ATER CO	ONTENT, LI		AND PLASTIC LIM	IT AND			
Borehole / Pit No.	Depth	n :	Sample	Water Content	Water Content Description Remarks							
WS6	m 0.80 - 1.00	D	21	15.0	Soft yellowi fine to coar	Soft yellowish brown slightly gravelly slightly sandy silty CLAY. Gravel is fine to coarse angular to subrounded chert						
			F	REPARATI	ON			Liquid Limit			30 %	
Method o	f prepa	aration	l		Wet s	ieved over	0.425mm sieve	Plastic Limit			<b>18</b> %	
Sample re	tained	0.425	mm sieve	(Measu	ured)		34 %	Plasticity Index			12 %	
Corrected	water	conte	nt for mate	erial passing	g 0.425m	m	22.8 %	Liquidity Index		-0	.25	
Sample re	tained	2mm	sieve	(Measu	ured)		27 %	NHBC Modified (I'p) 8 9			8 %	
Curing tim	e		46	hrs	Clay Content Not analysed			Derived Activity Not analysed			ysed	
C=CLAY Plasticity % (Ip) M=SILT	Index	70 60 50 40 30 20 10 0 0	10	CL	CI MI 40	CH MH 50 60	CV CV MV 70 80 Plastic	CE CE ME 90 100 110 ity Chart BS5930: 2015: Fi	120 gure 8	Lidin High	NHBC Volume Change Potential	
Method of Method of Type of Sar Comments	Prepara Test: nple Ke	ation: y:	BS EN ISO BS EN ISO U=Undistur Corrected w Volume Char Note: Modifi	17892-1: 2 17892-1: 2 bed, B=Bulk ater content a nge Potential ed Plasticity I	2014 & B 2014 & B 5, D=Distur assume mat NHBC Stan ndex I'p = Ij	5 1377: Part 5 1377: Part bed, J=Jar, W cerial greater t dards Chapter o x (% less tha	: 2: 1990: 4.2 : 2: 1990: 3.2, 4 /=Water, SPT=Sp han 0.425mm nor - 4.2 Unmodified F n 425microns/100	1.4, 5.3, 5.4 Ilit Spoon Sample, C= I-porous. See BS1377: F Plasticity Index )	Core Cutt Part2: 1990	er ) Clause 3 N	ote 1	



ISSUED BY SOIL PROPERTY TESTING LTD



Contract		UK21.5579 - North Campus East Car Park, Welwyn Garden City											
Serial No.		39534	I_1										
		DET	ERIVINATI		ATER CO	NIENI, LI				AND			
Borehole	rehole Donth Sample Water												
/ Pit No.	m	Type	Deference	Content			Descriptio	n		Remarks			
	III	туре	Kererence	(VV) /0	Variatiff und		- ^u - babu grouellu	-l'abel					
WS7	0.60 - 0.80	D	23	15.9	occasional bl and medium	luish grey mot	tling and rare de brounded chalk	ecayed and cl	d roots. Gravel is fine hert				
			P	REPARATI	ON				Liquid Limit			45	%
Method of	f prepa	aratior	1		Wet si	eved over	0.425mm s	ieve	Plastic Limit			17	%
Sample re	tained	0.425	mm sieve	(Measu	ured)		21 9	%	Plasticity Index			28	%
Corrected	water	conte	nt for mate	rial passing	g <mark>0.425m</mark> r	n	20.1 9	%	Liquidity Index	-0.04			
Sample re	tained	2mm	sieve	(Measu	ured)		15 9	NHBC Modified (I'p) 23			22	%	
Curing tim	ie		24	hrs	Clay Content Not analysed			Derived Activity		Not ana	lysed		
	ī												
C-CLAV	e	70											
C=CLAT		60		CL	CI	Сн	CV		CE /			_	
											igh	entia	
		50								_	т	Pote	
								/				nge	
Plasticity I	Index	40			-					_		Cha	
70											Ę	amu	
(Ip)		30			×					_	Medit	3C Volt	
		20								_		NHE	
											NO		
		10								_	_		
M=SILT	12	-											
THE DETAILS A		0		ML	MI	MH	MIN	/	ME				
		0	10 2	0 30	40 5	50 60	70 80	<u> </u>	90 100 110	120	Liquid Li	mit %	
							Р	lasticit	ty Chart BS5930: 2015: Figu	ire 8			
Method of	Prepara	ation:	BS EN ISO:	17892-1:2	2014 & BS	1377: Part	t 2: 1990: 4	.2					
Method of	Test:		BS EN ISO:	17892-1:2	2014 & BS	1377: Part	t 2: 1990: 3	.2, 4 T. Cal	.4, 5.3, 5.4	Cut			
Type of Sam	nple Ke	y:	U=Undisture	oed, B=Buik,	, D=Disturb	)ed, J=Jar, W	V=Water, SP	I=Spi	it Spoon Sample, C=Co	ore Cut	ter	Note 1	
Comments:			Volume Chan	ge Potential:	NHBC Stan	dards Chapte	r 4.2 Unmodif	fied Pl	lasticity Index	NZ. 1950	U Clause 5 1	NOTE T	
			Note: Modifie	ed Plasticity In	ndex I'p = Ip	x (% less tha	n 425microns	/100)					



ISSUED BY SOIL PROPERTY TESTING LTD







ISSUED BY SOIL PROPERTY TESTING LTD



Contract UK21.5579 - North Campus East Car Park, Welwyn Garden City												
Serial N	0.	39534	4_1									
	DETERN	IINAT	ION OF D	ENSITY	, WAT	er con 'Ithou	NTENT A		DRAINI	ED SHE ORE PR	AR STR ESSUR	ENGTH IN TRIAXIAL E
Borehole /Pit No.	Depth	Туре	Reference	Water Content	Bulk Density	Dry Density	Lateral Pressure	Deviator Stress	Shear Stress	Mohrs Ana	Circle lysis	Description
BH1	3.06	U	2	18.8	2.05	1.73	60	212	106		for degrees	Stiff (high strength) yellowish red CLAY with light bluish grey mottling, rare fine sand/silt pockets and decayed roots
BH1	5.07	U	3	17.6	2.05	1.74	101	321	161			Very stiff (very high strength) mottled very pale brown and yellowish brown silty CLAY with occasional black staining and fine sand/silt pockets
BH1	8.04	U	4	15.6	2.09	1.81	162	323	162			Very stiff (very high strength) brown silty CLAY with rare pale bluish grey mottling and black staining
BH3	1.30	U	1	11.4	2.12	1.90	28 55 79	546 586 623	273 293 312	166	24.1	Very stiff (very high strength) dark yellowish brown slightly gravelly slightly sandy silty CLAY. Gravel is fine and medium chert
внз	3.04	U	2	17.4	2.07	1.76	63 123 182	409 452 474	205 226 237	159	11.6	Very stiff (very high strength) dark yellowish brown slightly gravelly slightly sandy CLAY with bluish grey mottling. Gravel is fine to coarse chert
Method of Preparation: BS 1377: Part 1: 1990: 7.4.2 & 8, Part 2: 1990: 7.2, Part 7: 1990: 8.3   Method of Test: BS 1377: Part 2: 1990:3 Determination of Moisture Content, Part2: 1990:7 Determination of Density, Part 7: 1990: 8 Undrained Strenth, 9 Multistage Loading   Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter						ty, Part 7: 1990: 8 Undrained Shear						
Remarks to	Include:		Sample distu drying temp	irbance, los erature if n	ss of moist ot 105-11	ure, variat 0°C	ion from te	st procedure	e, location	and origin	of test spe	cimen within original sample, oven



ISSUED BY SOIL PROPERTY TESTING LTD







ISSUED BY SOIL PROPERTY TESTING LTD



Contract		UK21.5579 - North Campus East Car Park, Welwyn Garden City									
Serial No		3953	9534_1								
	DE	TERM	IINATION	OF SAT	URATIO	N MOIS	TURE CON	TENT AND INTACT DRY DEN	ISITY		
Borehole /Pit No.	Depth (m)	S Type	Sample Reference	Water Content (%)	Bulk Density (Mg/m ³ )	Dry Density (Mg/m ³ )	Saturation Moisture Content(%)	Description	Remarks		
BH2	23.8	В	11	31.7	Spe 1.92 Spe 1.97	2010 2010 2010 2010 2010 2010 2010 2010	31 28	White intact CHALK fragments of coarse gravel size with occasional orange staining	Volume of test specimen less than the required 300ml.		
Method of Preparation: BS137 Method of Test: BS137 Type of Sample Key: U = U Comments:		BS1377: Part BS1377: Part U = Undisturb	BS1377: Part 1: 2016: 8 BS1377: Part 2: 1990: 3.3 U = Undisturbed, B = Bulk, D = Disturbed, J - Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter								
Remarks to Ir	nclude:		Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample. Oven drying temperature if not 105-110°C.								



# APPENDIX K

# **Summary of Screening Criteria**



### **EPS Generic Quantitative Risk Assessment**

### Generic Screening Criteria (C4SLs) - All Land Uses

	Soil Targets								
Contaminant	Resi	Allotments	Commercial	Public Open Spaces					
	With Home Grown Produce	Without Home Grown Produce			Residential	Parks			
Unit				mg/kg					
Arsenic	37	40	49	640	79	168			
Benzene	0.87	3.3	0.18	98	140	230			
Benzo(a)pyrene	5	5.3	5.7	76	10	21			
Cadmium	26	149	4.9	410	220	880			
Chromium (VI)	21	21	170	49	23	250			
Lead	200	310	80	2330	630	1300			
Chloroethene (Vinyl Chloride)	0.017	0.029	0.0058	2.2	7.8	19			
Trichloroethene (TCE)	0.043	0.045	0.16	3.4	79	69			
Tetrachloroethene (PCE)	1.6	1.6	11	130	3400	2500			

#### Notes:

Targets for Human Health have been taken from the publicly available Category 4 Screening Levels (C4SLs) for assessment of land affected by contamination issued by DEFRA/CL:AIRE in December 2013 and May 2021.

Within the modelling for C4SLs, a Soil Organic Matter content of 6% has been used. Reference to site-specific data should be made where possible.

The C4SLs for the contaminant benzene along with the three chlorinated solvents are the most susceptable to changes in SOM.



#### EPS Generic Quantitative Risk Assessment - Public Open Space (Residential)

		Tier 1 Soil Targets	Γ	Tier 1 Groundwater Targets			
Contaminant	Human Hoalth	Controlle	ed Waters		Controlle	ed Waters	
Containmant	Tuman nearm	LGwRP	HGwRP		LGwRP	HGwRP	
Unit		mg/kg		ug/l			
Arsenic	See C4SL	n/c	n/c		50	10	
Cadmium	See C4SL	n/c	n/c		5	5	
Chromium III	1500	n/c	n/c		250	50	
Chromium VI	See C4SL	n/c	n/c		n/c	n/c	
Copper	12000	n/c	n/c		28	28	
Mercury (elemental)	16	n/c	n/c	_	1	1	
Nickel	230	n/c	n/c	_	200	50	
Lead	See C4SL	n/c	n/c	_	250	10	
Selenium	1100	n/c	n/c	_	10	10	
Zinc	81000	n/c	n/c	_	500	500	
Benzene	See C4SL	0.252	0.008		30	1	
Toluene	56000	1.17	1.17		50	50	
Ethylbenzene	24000	15.0	10.0		300	200	
Xylene (para)	41000	0.885	0.885		30	30	
MTBE#	73	0.138	0.0276		75	15	
Benzo(a)Pyrene	See C4SL	10	1.44		0.7	0.1	
Naphthalene	4900f	0.934	0.02		10	0.1	
Dibenz(ah)anthracene	0.57	n/c	n/c		n/c	n/c	
Aliphatic C5-C6	570000(304)**	5.27	1.05		50	10	
Aliphatic C6-C8	600000	23.2	4.64		50	10	
Aliphatic C8-C10	13000	175	35.1		50	10	
Aliphatic C10-C12	13000	1380	276		50	10	
Aliphatic C12-C16	13000	27500	5490		50	10	
Aliphatic C16-C35	250000f	3.46E+06	6.91E+05		50	10	
Aromatic C8-C10	5000	8.74	1.75		50	10	
Aromatic C10-C12	5000	13.8	2.76		50	10	
Aromatic C12-C16	5100	27.5	5.5		50	10	
Aromatic C16-C21	3800f	86.9	17.4		50	10	
Aromatic C21-C35	3800f	690	138		50	10	

#### Notes:

LGwRP - Low Groundwater Resource Potential

f = Oral, dermal and inhalation exposure compared with oral HCV N/C = Not Calculated

* = S4UL exceeds vapour saturation limit (in brackets) ** = S4UL exceeds solubility saturation limit (in brackets)

#### Soil Targets

Targets for Human Health have been taken from S4ULs 'Suitable For Use Levels for Human Health Risk Assessment' – LQM and CIEH (2014) derived using standard sandy loam soil with 1% SOM, except (#) = EIC/AGS/CL:AIRE GAC 'Soil Generic Assessment Criteria' (2010). For sites where ground conditions differ significantly from sandy loam or site-specific SOM and pH are available, the generic human health targets may be revised.

HGwRP - High Groundwater Resource Potential

Targets for Controlled waters have been derived using EA Remedial Targets Worksheet (v3.1) - using standard Sandy Loam ground conditions as described in Science Report SC050021/SR3, assuming no degradation for a 10m compliance distance with criteria of EQS or UKDWS for LGwRP and HGwRP respectively (see notes for GW targets).

#### Groundwater Targets

For LGwRP, targets have been taken as Freshwater EQS where available. For Ethylbenzene and BaP the WHO Health limit has been used and for MTBE and individual TPH fractions a 5 times multiplier of taste threshold and UKDWS has been taken repectively.

For HGwRP, targets have been taken as UKDWS where available, with the exception of Copper and Zinc where the EQS is lower than the DWS and therefore the EQS has been used as the groundwater target. For Ethlylbenzene the upper WHO ATO limit has been used. For Toluene and Xylene, the WHO ATO limit is higher than the EQS and so the lower value has been taken. For MTBE the taste threshold has been taken.

Work carried out to calculate generic screening criteria for concentrations of contaminant in groundwater with respect of risks to Human Health has generally found that criteria far exceed (by at least 2 orders of magnitude) those listed for the protection of either LGwRP and HGwRP receptors. On this basis, the above Groundwater criteria are also considered protective of human health and further evaluation of these risks should be considered alongside any detailed quantitative risk assessments carried out for groundwater on a site specific basis.



## **APPENDIX L**

# **Cover Soil Checklist**



### **ADVISORY NOTE**

### SOILS FOR USE IN COVER SYSTEMS

This note applies where there is a need for a control measure in the form of a defined thickness of clean soil to be used in gardens and soft landscaped areas in order to reduce risks from underlying contamination (a 'cover system'). Where a specific thickness has been presented, it is what EPS consider sufficient provided the soil forming the cover system is good quality, as it is assumed that over time this soil will become intermixed with the underlying soils and therefore needs to have the necessary 'dilution' effect. The aim being that an acceptable reduction in exposure to contamination is achieved, rather than absolute prevention.

These simple cover systems are designed in general accordance with the BRE 2004 guidance 'Cover Systems for Land Regeneration, Thickness of Cover Systems for Contaminated Land'. In many cases guidance from a Local Planning Authority or NHBC/Approved Inspector may also apply and need to be taken into account. In most cases, to design the cover system EPS have to assume a certain quality of cover soils in advance. In these circumstances, we utilise what we consider to represent 'good quality soil' in that the soil could never be considered 'contaminated' but is also pragmatic and does not represent an unrealistic or unsustainable objective for much of the soils in the UK. In numerical terms, this standard typically equates to soil containing contaminants at around 25% of their adopted screening values in the risk assessment.

For the cover system itself, EPS would usually carry out a verification process of your site to demonstrate the control measure has been implemented as intended to satisfy all interested parties such as planning authorities, the NHBC and the future property owner. To document this process, EPS will prepare a Verification Report. If you wish for EPS to do this, we will need the following points confirmed relating to the soils preferably before they are installed in gardens.

If there are any queries, please contact EPS before purchasing any soil.

**EPS Contact Details:** 

Tel: 01954 710666

Email: info@epstrategies.co.uk



Pre-Verification Cover System Checklist							
	The soil must not be a waste. Has it been confirmed that the soil is not a waste and has never been deemed as such in the past?						
Soil Source	Has the source of the soil been provided?						
	Have all the delivery notes confirming the source, volume and type of soil been provided for all that is to be used? Where suppliers such as British Sugar are used, the soils should be delivered direct to site (not via an intermediary depot).						
	The soils are free of invasive plant species such as Japanese Knotweed, and have not been sourced from an affected area?						
	Do the soils look clean and of a high quality? I.e. the soil must not have an odour or contain any visual evidence of contamination, including oils, asbestos, glass, plastic, rubble, metal, ash, sharp objects or tarmac/bitumen?						
	Testing to 'BS 3882:2015 Specification for topsoil and requirements for use' is preferable but generally not essential for public health regulation, provided you can confirm the soils comply with the above points, are suitable for their intended purpose and will provide an adequate growing medium?						
Soil Quality	Has the soil been chemically tested prior to it arriving at site? Any soil test results presented to EPS by a third party must be current and clearly relate to the soil used, i.e. the testing must generally be dated within 6 weeks of delivery. The quantity of testing will be dependent on how much confidence is generated in the quality of the material, as well any specific local regulatory requirements. If the soil is clean soil from an established source such as British Sugar, the testing they provide at source may be sufficient alone without further testing (by EPS). For other soils, EPS can advise on the likely testing frequencies but as a rule of thumb, anticipate at least one sample per average-sized plot. The testing would usually comprise the following: Heavy Metals, Poly Aromatic						
	Hydrocarbons, Asbestos and Total Petroleum Hydrocarbons at an accredited lab. If adequate testing has not been completed, then EPS will need to test it from stockpiles prior to installation. Installing the soils into gardens without any testing data is not advised, as it may need to all be removed later.						
Cover	soils to be installed?						
Thickness	If yes, can you provide waste transfer documentation for any excavated soils?						



# APPENDIX M

# Method Statement for Encountering Unexpected Contamination



### METHOD STATEMENT

### ACTIONS TO BE TAKEN IN THE EVENT OF DISCOVERING UNEXPECTED CONTAMINATION DURING INTRUSIVE GROUNDWORKS

If at any point during intrusive groundworks at a site, evidence of unforeseen contamination is encountered in the form of significant noxious odours, discolouration, or instability within soils or sheen/discolouration in groundwater, the following actions will be taken:

- Intrusive works in the immediate area of the impacted ground will be suspended and the continuation of work in other areas of the site will be considered within the context of the site specific health & safety plan.
- Environmental Protection Strategies Ltd (EPS) will be contacted and appraised of the situation so that arrangements can be made to characterise the impact and determine what action may be necessary in addition to the scheduled site works. Where possible / health & safety plan permits, digital photographs of the impacted ground will be taken and emailed to EPS at the address below to assist in the initial assessment
- It may well be necessary for EPS to attend site to undertake visual inspection and obtain samples for field and/or laboratory analysis, although the actions taken will be dependent on the nature of what is encountered
- In cases where EPS consider the unforeseen contamination likely to pose a significant risk of significant harm to adjacent site users or local environmental receptors, the local authority and the Environment Agency will be informed of the situation and the actions being taken
- Once appropriate action has been agreed and undertaken, a written summary will be produced by EPS for submission to the Local Authority, (and where relevant, the Environment Agency) in accordance with planning requirements. The submission will include details of work undertaken, analytical results of investigative and validation samples obtained and conclusions and recommendations for any further actions considered necessary
- Where regulatory bodies have been involved, site works should only recommence following their agreement and in all cases should only recommence when the site manager considers it safe to do so within the context of the site specific health & safety plan.

### EPS Contact Details:

Marcus Bell	Associate Director	Tel:
Will Evans	Director	Tel:
Steve Bullock	Director	Tel:

Email: <u>info@epstrategies.co.uk</u> (Automatically forwarded to the above and office-based personnel)







7B Caxton House Broad Street Cambourne Cambridge CB23 6JN Registered Namoer:4530320 T +44 (0) 1954 710566 F +44 (0) 1954 710577 E info@epstrategies.co.uk W www.epstrategies.co.uk

HAS'