

Plate 17 WS05b - 1.00 to 3.00m bgl

Plate 18 WS05b - Reinstated

Project :-

Welwyn Garden City Town Centre GI

Client: Welwyn Hatfield Borough Council

Project No.: A115249 Date : November 2019

Environmental Consultancy Ground Technologies & Investigation

Plate 19 WS08 - 1.20 to 2.80m bgl

Plate 20 WS09 - 1.20 to 3.00m bgl

Project :-

Welwyn Garden City Town Centre GI

Client: Welwyn Hatfield Borough Council

Environmental Consultancy Ground Technologies & Investigation

Project No.: A115249 Date : November 2019

Appendix J - SPT Hammer Energy Ratios and Calibration Certificates

www.wyg.com creative minds safe hands

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

ARCHWAY ENGINEERING (UK) LTD AINLEYS INDUSTRIAL ESTATE

ELLAND

WEST YORKSHIRE

HX5 9JP

SPT Hammer Ref: CP01

Test Date: 0

07/05/2019

Report Date:

08/05/2019

File Name:

CP01.spt

Test Operator:

CM

Instrumented Rod Data

Diameter dr (mm):

54

Wall Thickness t_r (mm):

6.5

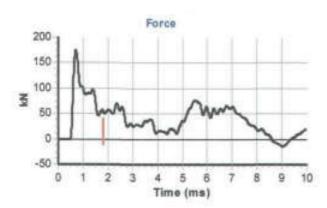
Assumed Modulus Ea (GPa): 208

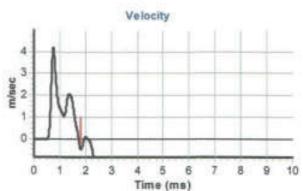
Accelerometer No.1:

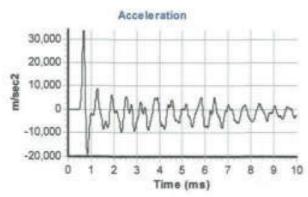
7080

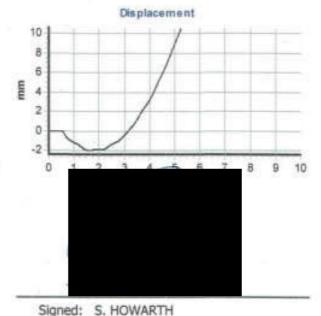
Accelerometer No.2:

11609


SPT Hammer Information


Hammer Mass m (kg): 63.5


Falling Height h (mm): 760


SPT String Length L (m): 10.0

Comments / Location

Title:

FITTER

Calculations

Area of Rod A (mm2):

970

Theoretical Energy Etheor (J):

473

Measured Energy E_{meas} (J):

: 261

Energy Ratio Er (%):

55

The recommended calibration interval is 12 months

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

ARCHWAY ENGINEERING (UK) LTD **AINLEYS INDUSTRIAL ESTATE**

ELLAND

WEST YORKSHIRE

HX5 93P

SPT Hammer Ref: RP07

Test Date: 08/07/2019

Report Date:

08/07/2019

File Name:

RP07.spt

Test Operator:

CM

Instrumented Rod Data

Diameter d_r (mm):

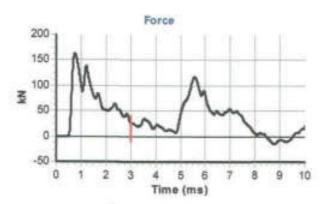
54

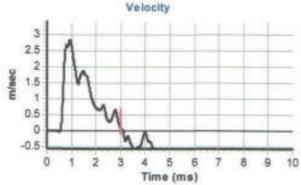
Wall Thickness t_r (mm):

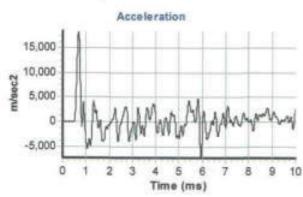
6.5

Assumed Modulus Ea (GPa): 208

Accelerometer No.1: Accelerometer No.2:


7080 11609 **SPT Hammer Information**


Hammer Mass m (kg): 63.5


Falling Height h (mm): 760

SPT String Length L (m): 10.0

Comments / Location

Calculations

Area of Rod A (mm2):

970

Theoretical Energy Etheor (J):

473

Measured Energy E_{meas} (J):

334

Energy Ratio E, (%):

71

The recommended calibration interval is 12 months

Signed: C.MCCLUSKEY

Title: FITTER Appendix D Thames Water Sewer Asset Mapping & Correspondence

Ardent Consulting Engineers Ltd Ardent Third Flo, Ardent

LONDON EC3M 5JE

Search address supplied 2007510 - Welwyn Garden City Campus East

3

Bridge Road

Welwyn Garden City

AL8 6UN

Your reference 2007510 - Welwyn Garden City Campus East

Our reference ALS/ALS/24/2020_4305713

Search date 19 November 2020

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Search address supplied: 2007510 - Welwyn Garden City Campus East, 3, Bridge Road, Welwyn Garden City, AL8 6UN

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: searches@thameswater.co.uk

Web: www.thameswater-propertysearches.co.uk

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

With regard to the fresh water supply, this site falls within the boundary of another water company. For more information, please redirect your enquiry to the following address:

Affinity Water Ltd Tamblin Way Hatfield

AL10 9EZ Tel: 0345 3572401

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public
 water mains in the vicinity of the property. It should be possible to estimate the
 likely length and route of any private water supply pipe connecting the property to
 the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

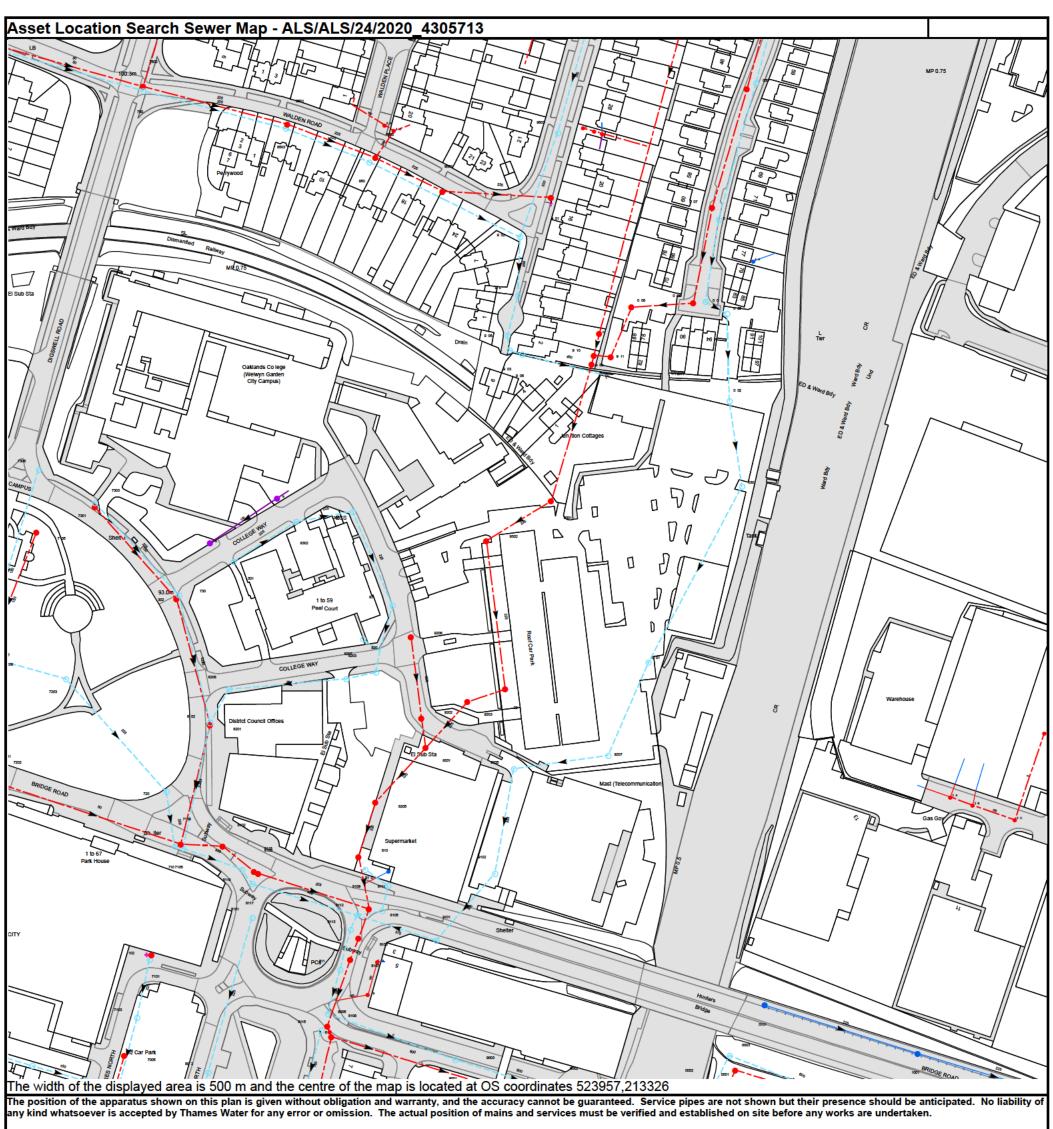
Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk

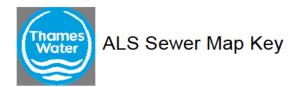

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

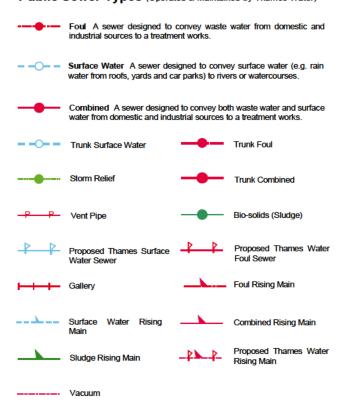
Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk



on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved


Manhole Reference	Manhole Cover Level	Manhole Invert Level
9411 9410	n/a n/a	n/a n/a
9406	92.4	91.48
9403	92.41	91.45
9405	92.48	91.51
9408 0403	n/a n/a	n/a n/a
0408	n/a	n/a
0406	n/a	n/a
0404	n/a	n/a
9404 041A	92.77 n/a	91.69 n/a
9402	93.4	92.03
0405	n/a	n/a
0407 9401	n/a 93.8	n/a 91.73
951C	n/a	n/a
9503	94.53	92.88
951B 951A	n/a	n/a
0502	n/a n/a	n/a n/a
0501	n/a	n/a
8113	87.89	84.86
8112 8111	88.21 n/a	85.18 n/a
8105	88.45	84.99
8110	88.51	86.18
811D	n/a	n/a
8109 8104	88.48 n/a	86.53 n/a
8205	88.62	85.32
9201	89.26	85.52
9202 9203	89.7 89.71	87.6 85.71
8204	90.46	89.04
8203	91.07	89.52
9206	90.46	88.23
8304 8302	90.96 92.78	89.41 90.95
8303	92.24	90.53
831B	n/a	n/a
9502 8504	95.45 93.4	93.08 92.1
8502	97.15	94.55
851A	n/a	n/a
8503	98.96	96.11
851B 8501	n/a 98.9	n/a 96.47
7203	92.33	89.75
7103	88.77	86.56
7102 7101	88.67 88.58	86.73 86.48
7204	89.35	87.79
7104	89.18	87.06
7106 7105	89.1 89.12	86.73 86.94
8202	89.89	87.95
8201	89.86	87.67
8102 8110	89.25	86.56
8119 8101	n/a 88.62	n/a 86.63
8117	88.98	85.9
8118	n/a	n/a
8103 7004	89 89.24	87.33 86.78
8002	88.33	85.58
7011	89.98	87.14
7005 9302	88.88 89.72	86.18 87.78
9102	89.72 87.43	87.78 85.91
9204	88.24	86.38
9205	87.45	86.22
9301 9409	90.64 n/a	88.44 n/a
9207	n/a	n/a
0201	n/a	n/a
0402 0001	n/a 86.76	n/a 79.43
0003	84.9	79.43 80.61
0301	n/a	n/a
0101	91.69 88.25	89.82 86.44
1001 121A	88.25 n/a	86.44 n/a
121B	n/a	n/a
121C	n/a	n/a
221A 9001	n/a 86.29	n/a 80.94
8005	87.05	80.94 81
8115	86.94	84.15
8108 8116	86.89 87.14	83.96
0110	87.14	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
811B	n/a	n/a
8114	87.14	84.63
811A	n/a	n/a
8107	87.47	84.48
9101	89.06	85.55
8106	87.87	84.52
8207	90.49	88.9
8208	90.78	88.21
7305	96.03	93.27
7306	n/a	n/a
7301	95.58	92.98
7303	95.51	92.49
7504	100.37	98.22
7502	100.37	98.2
7304	92.78	89.82
7302	92.83	90.32
831A	n/a	n/a
8301	92.88	91.38

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Public Sewer Types (Operated & Maintained by Thames Water)

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

◆ Air Valve
■ Dam Chase

Fitting

Meter

Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Control Valve

Drop Pipe

Ancillary

Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Outfall

Undefined End

/ Inlet

Notes

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Other Symbols

Symbols used on maps which do not fall under other general categories

▲ / ▲ Public/Private Pumping Station

* Change of characteristic indicator (C.O.C.I.)

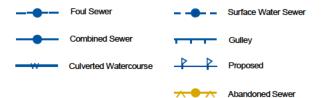
Invert Level

< Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement


/// Operational Site

:::::: Chamber

Tunnel

Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to 'Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Bruce Wickham

Ardent Consulting Engineers Office 3, The Garage Studios, 41-43 St Mary's Gate, Lace Market NG1 1PU Nottingham

18 October 2022

Pre-planning enquiry: Confirmation of sufficient capacity

Dear Mr Wickham.

Thank you for providing information on your development at East Lower Car Park, Welwyn Garden City, Hertfordshire, AL8 6AB. You are proposing to discharge sewerage via gravity from 307 new flats and Café with floor space of 55.7m2 with maximum capacity of 56 people

Proposed foul water discharge via gravity into manhole 9203 (112 flats) and new connection on existing foul water sewer between foul water Manholes 9301 and 9204 (for 195flats and the cafe).

Proposed surface water discharge at total of 8l/s into existing surface water sewer. Being the split 4l/s for the connection between surface water Manholes 9207 and 9205 and two more connections between surface water Manholes 9207 and 0402 at 2l/s each.

We have completed the assessment of the foul water flows and surface water run-off based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network.

Foul Water

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the adjacent foul water sewer network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

Surface Water

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. Before we can consider your surface water needs, you'll need written approval from the lead local flood authority that you

have followed the sequential approach to the disposal of surface water and considered all practical means.

The disposal hierarchy being:

- 1) rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)
- 2) rainwater infiltration to ground at or close to source
- 3) rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
- 4) rainwater discharge direct to a watercourse (unless not appropriate)
- 5) controlled rainwater discharge to a surface water sewer or drain
- 6) controlled rainwater discharge to a combined sewer.

Where connection to the public sewerage network is required to manage surface water flows we will accept these flows at a discharge rate in line with CIRIA's best practice guide on SuDS or that stated within the sites planning approval.

If the above surface water hierarchy has been followed and if the flows are restricted and split at 4l/s, 2l/s and 2l/s then Thames Water would not have any objections to the proposal.

Please see the attached 'Planning your wastewater' leaflet for additional information.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me on 0800 009 3921.

Yours sincerely

Maria Merchan

Adoption Engineer Developer Services

Appendix E CCTV Sewer Survey

Appendix F Surface Water Drainage Calculations

EXISTING SURFACE WATER

ARDENT CONSULTING ENGINEERS

Existing site information:

Site Boundary Area 21148 m2
Developable Area 2.1148 ha
Impermeable Area 1.8130 ha

Modified Rational Method Equation:

$$Q_n = 2.78 \, CiA$$

where:

C Runoff Coeffic = 1 (in this case 1 as using impermeable area)

*i*_n Rainfall Intensity for n return period (mm/hr)

A Impermeable Area (Ha)

 Q_n Runoff for n return period (I/s)

Rainfall Intensity:

The rainfall intensities for various return periods were extracted from Table 1(a) of the Transport and Road Research Laboratory Report - Estimated rainfall for drainage calculations in the United Kingdom (TRRL Report LR 595) by C. P. Young. For the 5 min duration.

i ₁	50.8 mm/hr
i ₃₀	113.02 mm/hr
i ₁₀₀	143.9 mm/hr

Existing Surface Water Runoff:

Therefore:

			С		i _n		Α		Q_n	
Q_1	2.78	x	1	Х	50.8	X	1.813	=	256.04	I/s
Q ₃₀	2.78	x	1	х	113.0	x	1.813	=	569.64	I/s
Q ₁₀₀	2.78	x	1	Х	143.9	х	1.813	=	725.28	I/s

Difference in Runoff Volume Following Development (i.e. Long Term Storage Volume)

This methodology is taken from *The SuDS Manual* (Ciria C753) and is also in accordance with the methods in *SCO30219 Rainfall Runoff for Developments* and *BS 8582 Code of Practice for Surface Water Management for Development Sites*.

The SuDS Manual Equation for brownfield development sites

$$Vol_{xs} = RD \times A \times 10 \left[(0.8 - SPR) \frac{PIMP_2}{100} + (SPR - 0.8) \frac{PIMP_1}{100} \right]$$

Calculation Inputs

RD	63	Rainfall depth during 1 in 100 year, 6hour storm event (taken from Figure A3.1 in 'Rainfall runoff management for developments ') (mm)
Α	2.115	Total area of site (ha)
SPR	0.3	Standard Percentage Runoff from greenfield site
PIMP ₁	86	Percentage impermeable area before development (%)
PIMP ₂	59	Percentage impermeable area following development (%)

Calculation Outputs

Pre-development runoff volume
Post development runoff volume

Post development runoff volume

Post development runoff volume

792.81

m³

cassuming brownfield site)

m³

Difference in Runoff Volume, Vol_{xs}
(i.e. Long Term Storage Volume)

Where a development is found to increase the volume of runoff then the additional volume should be prevented from leaving the site (i.e. infiltration or rainwater harvesting). If this is not possible then the additional volume should be released at a very low rate (2 l/s/ha or less).

Ardent		Page 1
3rd Floor, The Hallmark Building	2007511 - Welwyn garden City	
52-56 LeadenHall Street	Greenfield	
London, EC3M 5JE		Micro
Date 26/09/2022 16:08	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Diamage
Innovyze	Source Control 2020.1	•

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 SAAR (mm) 662 Urban 0.000 Area (ha) 2.115 Soil 0.300 Region Number Region 6

Results 1/s QBAR Rural 3.6 QBAR Urban 3.6 Q100 years 11.5 Q1 year 3.1 Q30 years 8.2 Q100 years 11.5

Ardent		Page 1
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Tank 1	
London, EC3M 5JE	1in100-yr+40%CC	Micro
Date 30/09/2022 16:06	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Dialilage
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 978 minutes.

	Storm Max Max Max Max		Max	Max	Status				
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(1/s)	(m³)	
15	min Sı	ummer	89.218	0.618	0.0	1.7	1.7	84.5	ОК
			89.391		0.0	1.7	1.7		ОК
			89.557		0.0	1.8	1.8		ОК
			89.757		0.0	1.9	1.9		ОК
180	min Su	ummer	89.860	1.260	0.0	1.9	1.9	172.3	ОК
240	min Su	ummer	89.915	1.315	0.0	1.9	1.9	179.9	Flood Risk
360	min Su	ummer	89.955	1.355	0.0	1.9	1.9	185.3	Flood Risk
480	min Su	ummer	89.947	1.347	0.0	1.9	1.9	184.3	Flood Risk
600	min Su	ummer	89.918	1.318	0.0	1.9	1.9	180.3	Flood Risk
720	min Su	ummer	89.876	1.276	0.0	1.9	1.9	174.6	O K
960	min Su	ummer	89.790	1.190	0.0	1.9	1.9	162.7	O K
1440	min Su	ummer	89.652	1.052	0.0	1.8	1.8	143.9	O K
2160	min Su	ummer	89.511	0.911	0.0	1.8	1.8	124.6	O K
2880	min Su	ummer	89.402	0.802	0.0	1.7	1.7	109.8	O K
4320	min Su	ummer	89.235	0.635	0.0	1.7	1.7	86.8	O K
5760	min Su	ummer	89.105	0.505	0.0	1.6	1.6	69.1	O K
7200	min Su	ummer	89.004	0.404	0.0	1.6	1.6	55.2	O K
8640	min Su	ummer	88.922	0.322	0.0	1.5	1.5	44.0	O K
10080	min Su	ummer	88.856	0.256	0.0	1.5	1.5	35.0	O K
15	min Wi	inter	89.293	0.693	0.0	1.7	1.7	94.8	O K
30	min W	inter	89.488	0.888	0.0	1.8	1.8	121.5	O K
60	min Wi	inter	89.676	1.076	0.0	1.8	1.8	147.2	O K
120	min W	inter	89.907	1.307	0.0	1.9	1.9	178.7	Flood Risk
180	min W	inter	90.026	1.426	0.0	1.9	1.9	195.1	Flood Risk

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	149.720	0.0	86.1	19
30	min	Summer	96.659	0.0	111.2	34
60	min	Summer	59.445	0.0	136.8	64
120	\min	Summer	36.981	0.0	170.4	124
180	\min	Summer	27.553	0.0	190.3	182
240	min	Summer	22.148	0.0	203.9	242
360	min	Summer	16.027	0.0	221.3	362
480	min	Summer	12.613	0.0	232.3	482
600	min	Summer	10.426	0.0	240.0	600
720	min	Summer	8.901	0.0	245.9	702
960	min	Summer	6.905	0.0	254.4	800
1440	min	Summer	4.808	0.0	265.8	1040
2160	min	Summer	3.348	0.0	277.4	1448
2880	min	Summer	2.598	0.0	287.2	1844
4320	min	Summer	1.836	0.0	304.4	2640
5760	\min	Summer	1.449	0.0	320.4	3408
7200	min	Summer	1.216	0.0	336.1	4176
8640	\min	Summer	1.061	0.0	351.6	4920
10080	min	Summer	0.951	0.0	367.9	5640
15	min	Winter	149.720	0.0	96.5	19
30	min	Winter	96.659	0.0	124.5	33
60	min	Winter	59.445	0.0	153.3	62
120	\min	Winter	36.981	0.0	190.8	122
180	min	Winter	27.553	0.0	213.1	180

©1982-2020 Innovyze

Ardent		Page 2
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Tank 1	
London, EC3M 5JE	lin100-yr+40%CC	Micro
Date 30/09/2022 16:06	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Dialilage
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
240	min Wint	er 90.094	1.494	0.0	2.0	2.0	204.4	Flood Risk
360	min Wint	er 90.149	1.549	0.0	2.0	2.0	211.9	Flood Risk
480	min Wint	er 90.152	1.552	0.0	2.0	2.0	212.4	Flood Risk
600	min Wint	er 90.131	1.531	0.0	2.0	2.0	209.5	Flood Risk
720	min Wint	er 90.097	1.497	0.0	2.0	2.0	204.8	Flood Risk
960	min Wint	er 90.008	1.408	0.0	1.9	1.9	192.6	Flood Risk
1440	min Wint	er 89.838	1.238	0.0	1.9	1.9	169.4	O K
2160	min Wint	er 89.649	1.049	0.0	1.8	1.8	143.5	O K
2880	min Wint	er 89.497	0.897	0.0	1.8	1.8	122.6	O K
4320	min Wint	er 89.254	0.654	0.0	1.7	1.7	89.4	O K
5760	min Wint	er 89.067	0.467	0.0	1.6	1.6	63.9	O K
7200	min Wint	er 88.923	0.323	0.0	1.5	1.5	44.2	O K
8640	min Wint	er 88.811	0.211	0.0	1.5	1.5	28.9	O K
10080	min Wint	er 88.72 4	0.124	0.0	1.4	1.4	17.0	O K

ge Time-Peak
e (mins)
.4 238
.0 354
.3 470
.9 582
.5 692
.9 902
.8 1112
.6 1560
.5 2016
.9 2852
.8 3632
.3 4392
.0 5096
.8 5752
8 8 9 1 9 1

Ardent		Page 3
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Tank 1	
London, EC3M 5JE	lin100-yr+40%CC	Micro
Date 30/09/2022 16:06	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Dialilade
Innovvze	Source Control 2020.1	·

Rainfall Details

 Rainfall Model
 FEH
 Winter Storms
 Yes

 Return Period (years)
 100
 Cv (Summer)
 0.750

 FEH Rainfall Version
 2013
 Cv (Winter)
 0.840

 Site Location
 GB 523970
 213285
 TL 23970
 13285
 Shortest Storm (mins)
 15

 Data Type
 Point
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.307

Time (mins) Area From: To: (ha)

©1982-2020 Innovyze

Ardent		Page 4
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Tank 1	
London, EC3M 5JE	1in100-yr+40%CC	Micro
Date 30/09/2022 16:06	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Dialilade
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 90.200

Cellular Storage Structure

Invert Level (m) 88.600 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) 1.600 144.0 220.8

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0052-2000-2880-2000 Design Head (m) 2.880 Design Flow (1/s) 2.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 52 87.320 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point (Calculated)	2.880	2.0	Kick-Flo®	0.469	0.9
Flush-Flo™	0.231	1.1	Mean Flow over Head Range	_	1.4

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flo	ow (l/s)	Depth (m) Fl	ow (1/s)	Depth (m) F	low (l/s)	Depth (m) Flo	w (l/s)	Depth (m) F	low (1/s)
0.100	1.0	0.800	1.1	2.000	1.7	4.000	2.3	7.000	3.0
0.200	1.1	1.000	1.2	2.200	1.8	4.500	2.5	7.500	3.1
0.300	1.1	1.200	1.3	2.400	1.8	5.000	2.6	8.000	3.2
0.400	1.0	1.400	1.4	2.600	1.9	5.500	2.7	8.500	3.3
0.500	0.9	1.600	1.5	3.000	2.0	6.000	2.8	9.000	3.4
0.600	1.0	1.800	1.6	3.500	2.2	6.500	2.9	9.500	3.5

Ardent		Page 1
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Tank 1	
London, EC3M 5JE	lin30yr	Micro
Date 30/09/2022 16:07	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Dialitage
Innovyze	Source Control 2020.1	

Summary of Results for 30 year Return Period

Half Drain Time : 545 minutes.

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min Sum	mer 88.936	0.336	0.0	1.5	1.5	45.9	ОК
30	min Sum	mer 89.024	0.424	0.0	1.6	1.6	58.0	O K
60	min Sum	mer 89.103	0.503	0.0	1.6	1.6	68.8	O K
120	min Sum	mer 89.200	0.600	0.0	1.6	1.6	82.1	O K
180	min Sum	mer 89.240	0.640	0.0	1.7	1.7	87.5	O K
240	min Sum	mer 89.253	0.653	0.0	1.7	1.7	89.3	O K
360	min Sum	mer 89.242	0.642	0.0	1.7	1.7	87.8	O K
480	min Sum	mer 89.209	0.609	0.0	1.6	1.6	83.3	O K
600	min Sum	mer 89.177	0.577	0.0	1.6	1.6	79.0	O K
720	min Sum	mer 89.151	0.551	0.0	1.6	1.6	75.3	O K
960	min Sum	mer 89.106	0.506	0.0	1.6	1.6	69.2	O K
1440	min Sum	mer 89.035	0.435	0.0	1.6	1.6	59.5	O K
2160	min Sum	mer 88.950	0.350	0.0	1.5	1.5	47.8	O K
2880	min Sum	mer 88.881	0.281	0.0	1.5	1.5	38.4	O K
4320	min Sum	mer 88.776	0.176	0.0	1.5	1.5	24.1	O K
5760	min Sum	mer 88.705	0.105	0.0	1.4	1.4	14.3	O K
7200	min Sum	mer 88.656	0.056	0.0	1.4	1.4	7.7	O K
8640	min Sum	mer 88.625	0.025	0.0	1.4	1.4	3.5	O K
10080	min Sum	mer 88.608	0.008	0.0	1.4	1.4	1.0	O K
15	min Win	ter 88.977	0.377	0.0	1.6	1.6	51.6	O K
30	min Win	ter 89.078	0.478	0.0	1.6	1.6	65.3	O K
60	min Win	ter 89.169	0.569	0.0	1.6	1.6	77.8	O K
120	min Win	ter 89.283	0.683	0.0	1.7	1.7	93.5	O K
180	min Win	ter 89.333	0.733	0.0	1.7	1.7	100.2	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	82.569	0.0	47.4	19
30	min	Summer	52.959	0.0	60.9	33
60	min	Summer	32.340	0.0	74.4	64
120	min	Summer	20.264	0.0	93.2	122
180	min	Summer	15.080	0.0	104.1	182
240	min	Summer	12.105	0.0	111.4	242
360	min	Summer	8.748	0.0	120.8	360
480	min	Summer	6.879	0.0	126.6	430
600	min	Summer	5.690	0.0	130.9	486
720	min	Summer	4.864	0.0	134.3	544
960	min	Summer	3.790	0.0	139.6	674
1440	min	Summer	2.667	0.0	147.3	940
2160	min	Summer	1.886	0.0	156.3	1344
2880	min	Summer	1.483	0.0	163.7	1732
4320	min	Summer	1.073	0.0	177.8	2468
5760	min	Summer	0.862	0.0	190.5	3176
7200	min	Summer	0.735	0.0	202.8	3888
8640	min	Summer	0.649	0.0	215.0	4504
10080	min	Summer	0.587	0.0	227.0	5144
15	min	Winter	82.569	0.0	53.2	19
30	min	Winter	52.959	0.0	68.3	33
60	min	Winter	32.340	0.0	83.2	62
120	min	Winter	20.264	0.0	104.4	120
180	min	Winter	15.080	0.0	116.6	178

©1982-2020 Innovyze

Ardent		Page 2
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Tank 1	
London, EC3M 5JE	1in30yr	Micro
Date 30/09/2022 16:07	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 30 year Return Period

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
240	min	Winter	89.353	0.753	0.0	1.7	1.7	103.0	ОК
360	min	Winter	89.352	0.752	0.0	1.7	1.7	102.9	ОК
480	min	Winter	89.325	0.725	0.0	1.7	1.7	99.2	ОК
600	min	Winter	89.289	0.689	0.0	1.7	1.7	94.2	O K
720	min	Winter	89.252	0.652	0.0	1.7	1.7	89.2	O K
960	min	Winter	89.192	0.592	0.0	1.6	1.6	81.0	O K
1440	min	Winter	89.094	0.494	0.0	1.6	1.6	67.6	ОК
2160	min	Winter	88.970	0.370	0.0	1.5	1.5	50.6	O K
2880	min	Winter	88.868	0.268	0.0	1.5	1.5	36.7	ОК
4320	min	Winter	88.720	0.120	0.0	1.4	1.4	16.4	O K
5760	min	Winter	88.629	0.029	0.0	1.4	1.4	4.0	O K
7200	min	Winter	88.600	0.000	0.0	1.3	1.3	0.0	ОК
8640	min	Winter	88.600	0.000	0.0	1.2	1.2	0.0	O K
10080	min	Winter	88.600	0.000	0.0	1.1	1.1	0.0	ОК

	Stor	m.	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
240	min	Winter	12.105	0.0	124.8	236
360	min	Winter	8.748	0.0	135.4	350
480	min	Winter	6.879	0.0	141.8	458
600	min	Winter	5.690	0.0	146.6	558
720	min	Winter	4.864	0.0	150.4	578
960	min	Winter	3.790	0.0	156.3	728
1440	\min	Winter	2.667	0.0	165.0	1024
2160	min	Winter	1.886	0.0	174.8	1452
2880	min	Winter	1.483	0.0	183.6	1848
4320	min	Winter	1.073	0.0	199.1	2592
5760	min	Winter	0.862	0.0	213.5	3176
7200	min	Winter	0.735	0.0	227.3	0
8640	min	Winter	0.649	0.0	240.9	0
10080	min	Winter	0.587	0.0	254.3	0

Ardent		Page 1
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Tank 1	
London, EC3M 5JE	1in2yr	Micro
Date 30/09/2022 16:08	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 2 year Return Period

Half Drain Time : 255 minutes.

	Storm	ı	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(l/s)	(m³)	
15	min 9	Summer	88.741	0 1/1	0.0	1.4	1.4	19.2	ок
			88.772		0.0	1.5	1.5	23.5	O K
			88.796		0.0	1.5	1.5		O K
			88.851		0.0	1.5	1.5	34.3	O K
			88.868		0.0	1.5	1.5	36.6	O K
			88.869		0.0	1.5	1.5		O K
			88.861		0.0	1.5	1.5	35.7	O K
			88.849		0.0	1.5	1.5	34.0	ОК
			88.836		0.0	1.5	1.5		ОК
			88.823		0.0	1.5	1.5	30.5	ОК
			88.798		0.0	1.5	1.5	27.0	ОК
			88.752		0.0	1.5	1.5	20.8	ОК
			88.698		0.0	1.4	1.4	13.4	ОК
2880	min S	Summer	88.659	0.059	0.0	1.4	1.4	8.1	ОК
4320	min S	Summer	88.615	0.015	0.0	1.4	1.4		ОК
5760	min S	Summer	88.600	0.000	0.0	1.4	1.4	0.0	ОК
7200	min S	Summer	88.600	0.000	0.0	1.2	1.2	0.0	ОК
8640	min S	Summer	88.600	0.000	0.0	1.1	1.1	0.0	ОК
10080	min S	Summer	88.600	0.000	0.0	1.0	1.0	0.0	ОК
15	min W	Winter	88.759	0.159	0.0	1.5	1.5	21.7	ОК
30	min W	Winter	88.795	0.195	0.0	1.5	1.5	26.7	ОК
60	min W	Winter	88.825	0.225	0.0	1.5	1.5	30.8	ОК
120	min W	Winter	88.892	0.292	0.0	1.5	1.5	39.9	ОК
180	min V	Winter	88.916	0.316	0.0	1.5	1.5	43.3	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	36.112	0.0	20.7	18
30	min	Summer	22.876	0.0	26.3	33
60	min	Summer	13.954	0.0	32.0	62
120	min	Summer	9.731	0.0	44.9	122
180	min	Summer	7.565	0.0	52.3	180
240	min	Summer	6.226	0.0	57.4	214
360	min	Summer	4.626	0.0	63.8	278
480	min	Summer	3.700	0.0	68.1	342
600	min	Summer	3.098	0.0	71.3	410
720	min	Summer	2.673	0.0	73.7	478
960	min	Summer	2.113	0.0	77.7	614
1440	min	Summer	1.517	0.0	83.8	878
2160	min	Summer	1.099	0.0	91.1	1252
2880	min	Summer	0.882	0.0	97.4	1612
4320	min	Summer	0.661	0.0	109.4	2252
5760	min	Summer	0.546	0.0	120.7	0
7200	min	Summer	0.476	0.0	131.6	0
8640	min	Summer	0.429	0.0	142.2	0
10080	min	Summer	0.395	0.0	152.8	0
15	min	Winter	36.112	0.0	23.2	18
30	min	Winter	22.876	0.0	29.4	32
60	min	Winter	13.954	0.0	35.9	62
120	min	Winter	9.731	0.0	50.1	118
180	min	Winter	7.565	0.0	58.5	176

©1982-2020 Innovyze

Ardent		Page 2
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Tank 1	
London, EC3M 5JE	lin2yr	Micro
Date 30/09/2022 16:08	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Dialilade
Innovyze	Source Control 2020.1	

Summary of Results for 2 year Return Period

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
240	min N	Winter	88.922	0.322	0.0	1.5	1.5	44.1	ОК
360	min V	Winter	88.909	0.309	0.0	1.5	1.5	42.3	ОК
480	min V	Winter	88.892	0.292	0.0	1.5	1.5	40.0	O K
600	min V	Winter	88.875	0.275	0.0	1.5	1.5	37.6	O K
720	min V	Winter	88.856	0.256	0.0	1.5	1.5	35.0	O K
960	min V	Winter	88.817	0.217	0.0	1.5	1.5	29.7	O K
1440	min V	Winter	88.749	0.149	0.0	1.5	1.5	20.4	ОК
2160	min V	Winter	88.671	0.071	0.0	1.4	1.4	9.7	O K
2880	min V	Winter	88.620	0.020	0.0	1.4	1.4	2.7	O K
4320	min V	Winter	88.600	0.000	0.0	1.2	1.2	0.0	O K
5760	min V	Winter	88.600	0.000	0.0	1.0	1.0	0.0	O K
7200	min V	Winter	88.600	0.000	0.0	0.9	0.9	0.0	O K
8640	min V	Winter	88.600	0.000	0.0	0.8	0.8	0.0	O K
10080	min V	Winter	88.600	0.000	0.0	0.7	0.7	0.0	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
240	min	Winter	6.226	0.0	64.2	230
360	min	Winter	4.626	0.0	71.6	296
480	min	Winter	3.700	0.0	76.3	368
600	min	Winter	3.098	0.0	79.9	446
720	min	Winter	2.673	0.0	82.6	520
960	min	Winter	2.113	0.0	87.1	666
1440	min	Winter	1.517	0.0	93.8	938
2160	min	Winter	1.099	0.0	102.0	1300
2880	min	Winter	0.882	0.0	109.2	1616
4320	min	Winter	0.661	0.0	122.7	0
5760	min	Winter	0.546	0.0	135.2	0
7200	min	Winter	0.476	0.0	147.4	0
8640	min	Winter	0.429	0.0	159.3	0
10080	min	Winter	0.395	0.0	171.1	0

Ardent Consulting Engineers						
Office 3, Garage Studios, St Mary'	2007511 - Welwyn Garden City C					
The Lace Market, Nottingham	Tank 2					
NG1 1PU	1 in 100+40%CC	Micro				
Date 05/10/2022	Designed by BNW	Drainage				
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Drail large				
XP Solutions	Source Control 2020.1	'				

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 2553 minutes.

	Storm	ι	Max	Max	Max	Max	Max	Max	Status
	Event	;	Level	Depth	${\bf Infiltration}$	${\tt Control}$	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
1.5	(C	88.154	0 554	0.0	1.5	1.5	191.4	ок
			88.312		0.0	1.6	1.6	246.3	O K
			88.470		0.0	1.7			O K
			88.671		0.0	1.8	1.8		O K
180	min S	Summer	88.784	1.184	0.0	1.8	1.8	409.6	O K
240	min S	Summer	88.857	1.257	0.0	1.8	1.8	434.6	O K
360	min S	Summer	88.937	1.337	0.0	1.9	1.9	462.3	O K
480	min S	Summer	88.975	1.375	0.0	1.9	1.9	475.6	O K
600	min S	Summer	88.993	1.393	0.0	1.9	1.9	481.7	O K
720	min S	Summer	88.999	1.399	0.0	1.9	1.9	483.6	o K
960	min S	Summer	88.989	1.389	0.0	1.9	1.9	480.5	ОК
1440	min S	Summer	88.937	1.337	0.0	1.9	1.9	462.5	O K
2160	min S	Summer	88.839	1.239	0.0	1.8	1.8	428.4	O K
2880	min S	Summer	88.759	1.159	0.0	1.8	1.8	400.7	ОК
4320	min S	Summer	88.645	1.045	0.0	1.7	1.7	361.4	ок
5760	min S	Summer	88.572	0.972	0.0	1.7	1.7	336.3	O K
7200	min S	Summer	88.521	0.921	0.0	1.7	1.7	318.6	O K
8640	min S	Summer	88.481	0.881	0.0	1.7	1.7	304.8	O K
10080	min S	Summer	88.449	0.849	0.0	1.6	1.6	293.7	O K
15	min V	Winter	88.220	0.620	0.0	1.5	1.5	214.5	ОК
30	min V	Winter	88.399	0.799	0.0	1.6	1.6	276.1	O K
60	min V	Winter	88.576	0.976	0.0	1.7	1.7	337.6	ОК
120	min V	Winter	88.803	1.203	0.0	1.8	1.8	415.8	ОК
180	min V	Winter	88.932	1.332	0.0	1.9	1.9	460.5	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	149.720	0.0	119.1	19
30	\min	Summer	96.659	0.0	126.9	34
60	min	Summer	59.445	0.0	250.2	64
120	\min	Summer	36.981	0.0	267.9	124
180	min	Summer	27.553	0.0	277.4	184
240	\min	Summer	22.148	0.0	283.3	244
360	\min	Summer	16.027	0.0	289.5	362
480	\min	Summer	12.613	0.0	292.2	482
600	\min	Summer	10.426	0.0	293.3	602
720	\min	Summer	8.901	0.0	293.4	722
960	\min	Summer	6.905	0.0	291.8	962
1440	\min	Summer	4.808	0.0	285.5	1440
2160	\min	Summer	3.348	0.0	533.8	1884
2880	\min	Summer	2.598	0.0	526.7	2248
4320	\min	Summer	1.836	0.0	501.6	3024
5760	\min	Summer	1.449	0.0	716.2	3856
7200	\min	Summer	1.216	0.0	751.9	4680
8640	\min	Summer	1.061	0.0	787.5	5528
10080	\min	Summer	0.951	0.0	819.3	6352
15	\min	Winter	149.720	0.0	122.4	19
30	\min	Winter	96.659	0.0	130.8	34
60	\min	Winter	59.445	0.0	259.5	64
120	\min	Winter	36.981	0.0	278.6	122
180	\min	Winter	27.553	0.0	288.8	182

©1982-2020 Innovyze

Ardent Consulting Engineers	Page 2	
Office 3, Garage Studios, St Mary'	2007511 - Welwyn Garden City C	
The Lace Market, Nottingham	Tank 2	
NG1 1PU	1 in 100+40%CC	Micro
Date 05/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Diamage
XP Solutions	Source Control 2020.1	•

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Gevel (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
240	min Wint	er 8	9.014	1.414	0.0	1.9	1.9	489.1	ок
360	min Wint	er 8	9.108	1.508	0.0	2.0	2.0	521.3	O K
480	min Wint	er 8	9.154	1.554	0.0	2.0	2.0	537.3	O K
600	min Wint	er 8	9.177	1.577	0.0	2.0	2.0	545.4	O K
720	min Wint	er 8	9.187	1.587	0.0	2.0	2.0	548.8	O K
960	min Wint	ter 8	9.184	1.584	0.0	2.0	2.0	547.8	O K
1440	min Wint	ter 8	9.142	1.542	0.0	2.0	2.0	533.1	O K
2160	min Wint	ter 8	9.049	1.449	0.0	1.9	1.9	501.1	O K
2880	min Wint	ter 8	8.955	1.355	0.0	1.9	1.9	468.6	O K
4320	min Wint	ter 8	8.822	1.222	0.0	1.8	1.8	422.5	O K
5760	min Wint	ter 8	8.716	1.116	0.0	1.8	1.8	385.9	O K
7200	min Wint	ter 8	8.641	1.041	0.0	1.7	1.7	359.8	O K
8640	min Wint	er 8	8.578	0.978	0.0	1.7	1.7	338.1	O K
10080	min Wint	ter 8	8.524	0.924	0.0	1.7	1.7	319.6	O K

	stor	m.	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
240	min	Winter	22.148	0.0	295.0	240
360	min	Winter	16.027	0.0	301.6	358
480	min	Winter	12.613	0.0	304.5	476
600	\min	Winter	10.426	0.0	305.5	594
720	min	Winter	8.901	0.0	305.5	710
960	min	Winter	6.905	0.0	303.6	942
1440	\min	Winter	4.808	0.0	296.3	1398
2160	\min	Winter	3.348	0.0	558.7	2052
2880	\min	Winter	2.598	0.0	549.9	2364
4320	\min	Winter	1.836	0.0	524.2	3244
5760	\min	Winter	1.449	0.0	802.9	4152
7200	\min	Winter	1.216	0.0	842.2	5048
8640	\min	Winter	1.061	0.0	881.9	5960
10080	min	Winter	0.951	0.0	875.8	6848

Ardent Consulting Engineers					
Office 3, Garage Studios, St Mary'	2007511 - Welwyn Garden City C				
The Lace Market, Nottingham	Tank 2				
NG1 1PU	1 in 100+40%CC	Micro			
Date 05/10/2022	Designed by BNW	Drainage			
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Diamage			
XP Solutions	Source Control 2020.1	1			

Rainfall Details

Rainfall Model FEH Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
FEH Rainfall Version 2013 Cv (Winter) 0.840
Site Location GB 523970 213285 TL 23970 13285 Shortest Storm (mins) 15
Data Type Point Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.687

Time (mins) Area From: To: (ha)

0 4 0.687

Ardent Consulting Engineers	Page 4	
Office 3, Garage Studios, St Mary'		
The Lace Market, Nottingham	Tank 2	
NG1 1PU	1 in 100+40%CC	Micro
Date 05/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Drainage
XP Solutions	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 90.100

Cellular Storage Structure

Invert Level (m) 87.600 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000 364.0 364.0 1.600 364.0 486.1 1.601 0.0 486.1

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0056-2000-2200-2000 Design Head (m) 2.200 Design Flow (1/s) 2.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 56 Diameter (mm) Invert Level (m) 87.000 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point (Calculated)	2.200	2.0	Kick-Flo®	0.495	1.0
Flush-Flo™	0.244	1.2	Mean Flow over Head Range	_	1.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)								
0.100	1.1	0.800	1.3	2.000	1.9	4.000	2.6	7.000	3.4
0.200	1.2	1.000	1.4	2.200	2.0	4.500	2.8	7.500	3.5
0.300	1.2	1.200	1.5	2.400	2.1	5.000	2.9	8.000	3.6
0.400	1.2	1.400	1.6	2.600	2.2	5.500	3.0	8.500	3.7
0.500	1.0	1.600	1.7	3.000	2.3	6.000	3.2	9.000	3.8
0.600	1.1	1.800	1.8	3.500	2.5	6.500	3.3	9.500	3.9

Ardent Consulting Engineers	Page 1	
Office 3, Garage Studios, St Mary'	2007511 - Welwyn Garden City C	
The Lace Market, Nottingham	Tank 2	
NG1 1PU	1 in 30yr	Micro
Date 05/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Diamage
XP Solutions	Source Control 2020.1	'

Half Drain Time : 1564 minutes.

	Ston	n.	Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\tt Infiltration}$	${\tt Control}$	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
		_							
			87.904		0.0	1.3		105.0	O K
			87.987		0.0	1.4	1.4	133.9	O K
			88.068		0.0	1.4	1.4	161.8	O K
120	min	Summer	88.176	0.576	0.0	1.5	1.5	199.1	O K
180	min	Summer	88.232	0.632	0.0	1.5	1.5	218.5	O K
240	min	Summer	88.265	0.665	0.0	1.6	1.6	230.0	O K
360	min	Summer	88.297	0.697	0.0	1.6	1.6	241.0	O K
480	min	Summer	88.307	0.707	0.0	1.6	1.6	244.4	O K
600	min	Summer	88.306	0.706	0.0	1.6	1.6	244.3	O K
720	min	Summer	88.300	0.700	0.0	1.6	1.6	242.2	O K
960	min	Summer	88.279	0.679	0.0	1.6	1.6	234.9	O K
1440	min	Summer	88.227	0.627	0.0	1.5	1.5	216.9	O K
2160	min	Summer	88.168	0.568	0.0	1.5	1.5	196.4	O K
2880	min	Summer	88.130	0.530	0.0	1.5	1.5	183.1	O K
4320	min	Summer	88.077	0.477	0.0	1.4	1.4	165.1	O K
5760	min	Summer	88.038	0.438	0.0	1.4	1.4	151.6	O K
7200	min	Summer	88.007	0.407	0.0	1.4	1.4	140.7	O K
8640	min	Summer	87.981	0.381	0.0	1.4	1.4	131.6	O K
10080	min	Summer	87.958	0.358	0.0	1.4	1.4	123.9	O K
15	min	Winter	87.941	0.341	0.0	1.4	1.4	117.7	ОК
30	min	Winter	88.035	0.435	0.0	1.4	1.4	150.3	O K
60	min	Winter	88.125	0.525	0.0	1.5	1.5	181.7	ОК
120	min	Winter	88.248	0.648	0.0	1.5	1.5	224.1	O K
180	min	Winter	88.313	0.713	0.0	1.6	1.6	246.5	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	82.569	0.0	105.7	19
30	min	Summer	52.959	0.0	110.4	34
60	min	Summer	32.340	0.0	166.4	64
120	min	Summer	20.264	0.0	208.6	124
180	min	Summer	15.080	0.0	229.4	184
240	\min	Summer	12.105	0.0	233.3	242
360	\min	Summer	8.748	0.0	237.5	362
480	\min	Summer	6.879	0.0	239.5	482
600	\min	Summer	5.690	0.0	240.4	602
720	\min	Summer	4.864	0.0	240.8	722
960	\min	Summer	3.790	0.0	240.4	960
1440	\min	Summer	2.667	0.0	237.4	1228
2160	\min	Summer	1.886	0.0	349.5	1600
2880	\min	Summer	1.483	0.0	366.7	1992
4320	\min	Summer	1.073	0.0	397.8	2812
5760	\min	Summer	0.862	0.0	426.6	3632
7200	\min	Summer	0.735	0.0	454.0	4464
8640	\min	Summer	0.649	0.0	481.2	5272
10080	\min	Summer	0.587	0.0	507.8	6048
15	\min	Winter	82.569	0.0	107.8	19
30	\min	Winter	52.959	0.0	113.0	34
60	\min	Winter	32.340	0.0	186.4	64
120	\min	Winter	20.264	0.0	230.2	122
180	\min	Winter	15.080	0.0	236.9	180

Ardent Consulting Engineers	Page 2	
Office 3, Garage Studios, St Mary'	2007511 - Welwyn Garden City C	
The Lace Market, Nottingham	Tank 2	
NG1 1PU	1 in 30yr	Micro
Date 05/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Drainage
XP Solutions	Source Control 2020.1	

	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	${\tt Infiltration}$	${\tt Control}$	$\Sigma \ \text{Outflow}$	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
240	min Winter	88 351	0 751	0.0	1.6	1.6	259.8	ок
	min Winter			0.0	1.6	1.6	273.4	O K
480	min Winter	88.405	0.805	0.0	1.6	1.6	278.4	O K
600	min Winter	88.408	0.808	0.0	1.6	1.6	279.4	O K
720	min Winter	88.405	0.805	0.0	1.6	1.6	278.3	O K
960	min Winter	88.389	0.789	0.0	1.6	1.6	272.7	O K
1440	min Winter	88.341	0.741	0.0	1.6	1.6	256.2	O K
2160	min Winter	88.271	0.671	0.0	1.6	1.6	231.9	O K
2880	min Winter	88.217	0.617	0.0	1.5	1.5	213.2	O K
4320	min Winter	88.142	0.542	0.0	1.5	1.5	187.3	O K
5760	min Winter	88.081	0.481	0.0	1.4	1.4	166.2	O K
7200	min Winter	88.029	0.429	0.0	1.4	1.4	148.5	O K
8640	min Winter	87.986	0.386	0.0	1.4	1.4	133.5	O K
10080	min Winter	87.948	0.348	0.0	1.4	1.4	120.4	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
240	min	Winter	12.105	0.0	241.1	240
360	min	Winter	8.748	0.0	245.6	358
480	min	Winter	6.879	0.0	247.7	474
600	min	Winter	5.690	0.0	248.6	590
720	min	Winter	4.864	0.0	248.8	704
960	min	Winter	3.790	0.0	248.1	930
1440	min	Winter	2.667	0.0	244.2	1356
2160	min	Winter	1.886	0.0	391.4	1688
2880	min	Winter	1.483	0.0	410.7	2160
4320	min	Winter	1.073	0.0	419.3	3068
5760	min	Winter	0.862	0.0	477.8	3928
7200	min	Winter	0.735	0.0	508.7	4824
8640	min	Winter	0.649	0.0	538.8	5624
10080	min	Winter	0.587	0.0	568.9	6456

Ardent Consulting Engineers						
Office 3, Garage Studios, St Mary'	2007511 - Welwyn Garden City C					
The Lace Market, Nottingham	Tank 2					
NG1 1PU	1 in 2yr	Micro				
Date 05/10/2022	Designed by BNW	Drainage				
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Drainage				
XP Solutions	Source Control 2020.1					

Half Drain Time : 857 minutes.

	Stori	n.	Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\bf Infiltration}$	${\tt Control}$	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
			87.731		0.0	1.2	1.2	45.2	O K
			87.764		0.0	1.2	1.2	56.6	O K
60	min	Summer	87.795	0.195	0.0	1.3	1.3	67.4	O K
120	min	Summer	87.864	0.264	0.0	1.3	1.3	91.4	O K
180	min	Summer	87.899	0.299	0.0	1.3	1.3	103.5	O K
240	min	Summer	87.919	0.319	0.0	1.3	1.3	110.4	O K
360	min	Summer	87.936	0.336	0.0	1.4	1.4	116.2	O K
480	min	Summer	87.938	0.338	0.0	1.4	1.4	116.8	O K
600	min	Summer	87.933	0.333	0.0	1.4	1.4	115.1	O K
720	min	Summer	87.924	0.324	0.0	1.3	1.3	112.2	O K
960	min	Summer	87.907	0.307	0.0	1.3	1.3	106.3	O K
1440	min	Summer	87.883	0.283	0.0	1.3	1.3	97.8	O K
2160	min	Summer	87.858	0.258	0.0	1.3	1.3	89.2	O K
2880	min	Summer	87.839	0.239	0.0	1.3	1.3	82.5	O K
4320	min	Summer	87.809	0.209	0.0	1.3	1.3	72.2	O K
5760	min	Summer	87.785	0.185	0.0	1.3	1.3	64.1	O K
7200	min	Summer	87.766	0.166	0.0	1.2	1.2	57.4	O K
8640	min	Summer	87.750	0.150	0.0	1.2	1.2	51.9	ОК
10080	min	Summer	87.737	0.137	0.0	1.2	1.2	47.3	ОК
15	min	Winter	87.747	0.147	0.0	1.2	1.2	50.8	ОК
30	min	Winter	87.784	0.184	0.0	1.3	1.3	63.7	O K
60	min	Winter	87.820	0.220	0.0	1.3	1.3	76.0	ок
120	min	Winter	87.899	0.299	0.0	1.3	1.3	103.5	ОК
180	min	Winter	87.940	0.340	0.0	1.4	1.4	117.7	ОК

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	36.112	0.0	46.3	19
30	min	Summer	22.876	0.0	58.8	34
60	min	Summer	13.954	0.0	71.7	64
120	min	Summer	9.731	0.0	100.1	122
180	min	Summer	7.565	0.0	116.8	182
240	min	Summer	6.226	0.0	128.2	242
360	min	Summer	4.626	0.0	142.8	362
480	min	Summer	3.700	0.0	152.4	480
600	min	Summer	3.098	0.0	159.4	600
720	min	Summer	2.673	0.0	165.1	674
960	\min	Summer	2.113	0.0	174.0	782
1440	\min	Summer	1.517	0.0	187.4	1036
2160	\min	Summer	1.099	0.0	203.7	1448
2880	\min	Summer	0.882	0.0	218.0	1848
4320	\min	Summer	0.661	0.0	244.9	2676
5760	\min	Summer	0.546	0.0	270.0	3464
7200	\min	Summer	0.476	0.0	294.4	4248
8640	\min	Summer	0.429	0.0	317.9	5016
10080	\min	Summer	0.395	0.0	341.9	5752
15	\min	Winter	36.112	0.0	51.9	19
30	\min	Winter	22.876	0.0	65.8	33
60	\min	Winter	13.954	0.0	80.4	62
120	\min	Winter	9.731	0.0	112.1	122
180	min	Winter	7.565	0.0	130.8	180

Ardent Consulting Engineers	Page 2	
Office 3, Garage Studios, St Mary'	2007511 - Welwyn Garden City C	
The Lace Market, Nottingham	Tank 2	
NG1 1PU	1 in 2yr	Micro
Date 05/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Diamage
XP Solutions	Source Control 2020.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
240	min Win	nter	87.964	0.364	0.0	1.4	1.4	126.0	ок
360	min Win	nter	87.986	0.386	0.0	1.4	1.4	133.6	O K
480	min Win	nter	87.992	0.392	0.0	1.4	1.4	135.6	O K
600	min Win	nter	87.990	0.390	0.0	1.4	1.4	135.0	O K
720	min Win	nter	87.984	0.384	0.0	1.4	1.4	133.0	O K
960	min Win	nter	87.967	0.367	0.0	1.4	1.4	126.8	O K
1440	min Win	nter	87.932	0.332	0.0	1.4	1.4	114.8	O K
2160	min Win	nter	87.897	0.297	0.0	1.3	1.3	102.8	O K
2880	min Win	nter	87.867	0.267	0.0	1.3	1.3	92.3	O K
4320	min Win	nter	87.818	0.218	0.0	1.3	1.3	75.3	O K
5760	min Win	nter	87.778	0.178	0.0	1.2	1.2	61.6	O K
7200	min Win	nter	87.746	0.146	0.0	1.2	1.2	50.4	O K
8640	min Win	nter	87.719	0.119	0.0	1.2	1.2	41.1	O K
10080	min Win	nter	87.696	0.096	0.0	1.2	1.2	33.2	O K

	Stor	m.	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
240	min	Winter	6.226	0.0	143.5	238
360	min	Winter	4.626	0.0	160.0	354
480	min	Winter	3.700	0.0	170.6	468
600	min	Winter	3.098	0.0	178.6	580
720	min	Winter	2.673	0.0	184.9	688
960	min	Winter	2.113	0.0	194.9	894
1440	min	Winter	1.517	0.0	208.9	1110
2160	min	Winter	1.099	0.0	228.2	1560
2880	min	Winter	0.882	0.0	244.2	2016
4320	min	Winter	0.661	0.0	274.3	2856
5760	min	Winter	0.546	0.0	302.3	3696
7200	min	Winter	0.476	0.0	329.5	4472
8640	min	Winter	0.429	0.0	356.2	5272
10080	min	Winter	0.395	0.0	382.9	6048

Ardent		Page 1
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Podium with Pongola	
London, EC3M 5JE	1in100yr+40%CC	Micro
Date 30/09/2022 16:11	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Dialilage
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 954 minutes.

	Storm Event		Max Level	-	Max Infiltration				Status
			(m)	(m)	(1/s)	(l/s)	(l/s)	(m³)	
15	min S	ummer	90.008	0.158	0.0	0.9	0.9	48.1	ОК
30	min S	ummer	90.053	0.203	0.0	0.9	0.9	61.6	ОК
60	min S	ummer	90.096	0.246	0.0	1.0	1.0	74.6	ОК
120	min S	ummer	90.148	0.298	0.0	1.1	1.1	90.4	ОК
180	min S	ummer	90.175	0.325	0.0	1.1	1.1	98.6	ОК
240	min S	ummer	90.189	0.339	0.0	1.1	1.1	103.1	ОК
360	min S	ummer	90.201	0.351	0.0	1.2	1.2	106.6	ОК
480	min S	ummer	90.201	0.351	0.0	1.2	1.2	106.5	ОК
600	min S	ummer	90.195	0.345	0.0	1.2	1.2	104.7	ОК
720	min S	ummer	90.186	0.336	0.0	1.1	1.1	102.2	ОК
960	min S	ummer	90.170	0.320	0.0	1.1	1.1	97.2	O K
1440	min S	ummer	90.140	0.290	0.0	1.1	1.1	88.1	ОК
2160	min S	ummer	90.104	0.254	0.0	1.0	1.0	77.1	O K
2880	min S	ummer	90.078	0.228	0.0	1.0	1.0	69.3	O K
4320	min S	ummer	90.041	0.191	0.0	0.9	0.9	57.9	O K
5760	min S	ummer	90.013	0.163	0.0	0.9	0.9	49.5	O K
7200	min S	ummer	89.992	0.142	0.0	0.8	0.8	43.1	O K
8640	min S	ummer	89.975	0.125	0.0	0.8	0.8	37.9	O K
10080	min S	ummer	89.961	0.111	0.0	0.8	0.8	33.7	O K
15	min W	<i>l</i> inter	90.027	0.177	0.0	0.9	0.9	53.9	O K
30	min W	Minter	90.077	0.227	0.0	1.0	1.0	69.1	O K
60	min W	<i>l</i> inter	90.126	0.276	0.0	1.1	1.1	83.9	O K
120	min W	<i>l</i> inter	90.185	0.335	0.0	1.1	1.1	101.9	O K
180	min W	<i>l</i> inter	90.217	0.367	0.0	1.2	1.2	111.4	O K

	Stor	m.	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Summer	149.720	0.0	48.7	19
		Summer	96.659	0.0	62.9	34
		Summer	59.445	0.0	77.4	64
		Summer	36.981	0.0	96.4	122
180	min	Summer	27.553	0.0	107.7	182
240	min	Summer	22.148	0.0	115.5	242
360	min	Summer	16.027	0.0	125.3	362
480	min	Summer	12.613	0.0	131.5	480
600	min	Summer	10.426	0.0	135.9	600
720	min	Summer	8.901	0.0	139.2	672
960	min	Summer	6.905	0.0	143.0	780
1440	min	Summer	4.808	0.0	141.2	1026
2160	min	Summer	3.348	0.0	157.1	1432
2880	min	Summer	2.598	0.0	162.6	1844
4320	min	Summer	1.836	0.0	172.4	2640
5760	min	Summer	1.449	0.0	181.3	3456
7200	min	Summer	1.216	0.0	190.4	4184
8640	min	Summer	1.061	0.0	199.2	4936
10080	min	Summer	0.951	0.0	208.4	5744
15	min	Winter	149.720	0.0	54.6	19
30	min	Winter	96.659	0.0	66.4	33
60	min	Winter	59.445	0.0	86.8	62
120	min	Winter	36.981	0.0	107.9	122
180	min	Winter	27.553	0.0	120.7	180

Ardent		Page 2
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Podium with Pongola	
London, EC3M 5JE	1in100yr+40%CC	Micro
Date 30/09/2022 16:11	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	niairiade
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event	•	Level (m)	(m)	Infiltration (1/s)	(1/s)	(1/s)	(m³)	
240	min V	Winter	90.234	0.384	0.0	1.2	1.2	116.7	ОК
360	min V	Winter	90.249	0.399	0.0	1.2	1.2	121.3	O K
480	min V	Winter	90.251	0.401	0.0	1.2	1.2	121.9	O K
600	min V	Winter	90.247	0.397	0.0	1.2	1.2	120.6	O K
720	min V	Winter	90.240	0.390	0.0	1.2	1.2	118.3	O K
960	min V	Winter	90.220	0.370	0.0	1.2	1.2	112.4	O K
1440	min V	Winter	90.186	0.336	0.0	1.1	1.1	102.0	O K
2160	min V	Winter	90.141	0.291	0.0	1.1	1.1	88.4	O K
2880	min V	Winter	90.104	0.254	0.0	1.0	1.0	77.3	O K
4320	min V	Winter	90.052	0.202	0.0	0.9	0.9	61.4	O K
5760	min V	Winter	90.013	0.163	0.0	0.9	0.9	49.5	O K
7200	min V	Winter	89.984	0.134	0.0	0.8	0.8	40.6	O K
8640	min V	Winter	89.960	0.110	0.0	0.8	0.8	33.5	O K
10080	min V	Winter	89.942	0.092	0.0	0.7	0.7	27.9	O K

	Ston	n.	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
240	min	Winter	22.148	0.0	129.3	238
360	min	Winter	16.027	0.0	140.4	354
480	min	Winter	12.613	0.0	147.3	468
600	min	Winter	10.426	0.0	151.4	578
720	min	Winter	8.901	0.0	152.5	686
960	min	Winter	6.905	0.0	152.9	884
1440	min	Winter	4.808	0.0	150.5	1096
2160	min	Winter	3.348	0.0	176.1	1556
2880	min	Winter	2.598	0.0	182.1	1992
4320	min	Winter	1.836	0.0	193.1	2852
5760	min	Winter	1.449	0.0	203.2	3640
7200	min	Winter	1.216	0.0	213.2	4464
8640	min	Winter	1.061	0.0	223.2	5192
10080	min	Winter	0.951	0.0	233.2	5952

Ardent		Page 3
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Podium with Pongola	
London, EC3M 5JE	lin100yr+40%CC	Micro
Date 30/09/2022 16:11	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Dialilade
Innovvze	Source Control 2020.1	·

Rainfall Details

 Rainfall Model
 FEH
 Winter Storms
 Yes

 Return Period (years)
 100
 Cv (Summer)
 0.750

 FEH Rainfall Version
 2013
 Cv (Winter)
 0.840

 Site Location
 GB 523970
 213285
 TL 23970
 13285
 Shortest Storm (mins)
 15

 Data Type
 Point
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.174

Time (mins) Area From: To: (ha)

Ardent		Page 4
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Podium with Pongola	
London, EC3M 5JE	lin100yr+40%CC	Micro
Date 30/09/2022 16:11	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	mainage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 90.750

Cellular Storage Structure

Invert Level (m) 89.850 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) Inf. Area (m²) 319.8 3

Orifice Outflow Control

Diameter (m) 0.029 Discharge Coefficient 0.600 Invert Level (m) 89.750

Ardent		Page 1
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Podium with Pongola	
London, EC3M 5JE	1in30yr	Micro
Date 30/09/2022 16:12	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Diamage
Innovyze	Source Control 2020.1	

Half Drain Time : 608 minutes.

	Storm	ı	Max	Max	Max	Max	Max	Max	Status
	Event	;	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(l/s)	(1/s)	(m³)	
1 5	min (Cummon	89.936	0 006	0.0	0.7	0.7	26.2	ок
			89.959		0.0	0.7	0.7	33.2	O K
			89.981		0.0	0.8	0.8	39.7	O K
			90.007		0.0	0.0	0.0	47.7	O K
			90.007		0.0	0.9	0.9	51.3	O K
			90.019		0.0	0.9	0.9	52.8	O K
			90.024		0.0	0.9	0.9	52.9	O K
			90.024		0.0	0.9	0.9	51.3	O K
			90.019		0.0	0.9	0.9	49.5	O K
			90.013		0.0	0.9	0.9	47.6	O K
			89.995		0.0	0.9	0.9	44.1	O K
			89.979		0.0	0.8	0.8	39.0	O K
			89.960		0.0	0.8	0.8	33.5	O K
			89.946		0.0	0.8	0.8	29.1	O K
			89.924		0.0	0.7	0.7	22.5	O K
			89.924		0.0	0.7	0.7	17.7	O K
			89.896						
			89.887		0.0	0.6	0.6	14.0	0 K
					0.0	0.6	0.6	11.1	0 K
			89.879		0.0	0.6	0.6	8.9	O K
			89.947		0.0	0.7	0.7	29.5	0 K
			89.973		0.0	0.8	0.8	37.4	0 K
			89.997		0.0	0.8	0.8	44.7	0 K
			90.028		0.0	0.9	0.9	54.0	0 K
180	min V	winter	90.042	0.192	0.0	0.9	0.9	58.3	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	82.569	0.0	26.8	19
30	min	Summer	52.959	0.0	34.4	34
60	min	Summer	32.340	0.0	42.0	64
120	min	Summer	20.264	0.0	52.7	122
180	min	Summer	15.080	0.0	58.8	182
240	\min	Summer	12.105	0.0	63.1	242
360	min	Summer	8.748	0.0	68.4	360
480	min	Summer	6.879	0.0	71.6	448
600	min	Summer	5.690	0.0	74.1	500
720	min	Summer	4.864	0.0	76.0	560
960	min	Summer	3.790	0.0	79.0	686
1440	min	Summer	2.667	0.0	83.3	956
2160	min	Summer	1.886	0.0	88.5	1364
2880	min	Summer	1.483	0.0	92.8	1760
4320	min	Summer	1.073	0.0	100.6	2552
5760	\min	Summer	0.862	0.0	107.9	3288
7200	min	Summer	0.735	0.0	114.8	4032
8640	min	Summer	0.649	0.0	121.7	4760
10080	min	Summer	0.587	0.0	128.5	5448
15	min	Winter	82.569	0.0	30.0	19
30	min	Winter	52.959	0.0	38.6	33
60	min	Winter	32.340	0.0	47.1	62
120	\min	Winter	20.264	0.0	59.1	120
180	min	Winter	15.080	0.0	66.0	178

Ardent		Page 2
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Podium with Pongola	
London, EC3M 5JE	1in30yr	Micro
Date 30/09/2022 16:12	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Diamage
Innovyze	Source Control 2020.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
240	min V	Winter	90.048	0.198	0.0	0.9	0.9	60.3	ОК
360	min V	Winter	90.051	0.201	0.0	0.9	0.9	61.0	ОК
480	min V	Winter	90.047	0.197	0.0	0.9	0.9	59.8	O K
600	min V	Winter	90.040	0.190	0.0	0.9	0.9	57.8	O K
720	min V	Winter	90.033	0.183	0.0	0.9	0.9	55.6	O K
960	min V	Winter	90.020	0.170	0.0	0.9	0.9	51.8	O K
1440	min V	Winter	89.997	0.147	0.0	0.8	0.8	44.7	ОК
2160	min V	Winter	89.972	0.122	0.0	0.8	0.8	36.9	O K
2880	min V	Winter	89.951	0.101	0.0	0.8	0.8	30.6	ОК
4320	min V	Winter	89.920	0.070	0.0	0.7	0.7	21.2	O K
5760	min V	Winter	89.898	0.048	0.0	0.6	0.6	14.5	O K
7200	min V	Winter	89.881	0.031	0.0	0.6	0.6	9.6	ОК
8640	min V	Winter	89.869	0.019	0.0	0.6	0.6	5.9	O K
10080	min V	Winter	89.860	0.010	0.0	0.5	0.5	3.1	O K

	Stor		Rain		Discharge	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
240	min	Winter	12.105	0.0	70.6	236
360	min	Winter	8.748	0.0	76.6	350
480	min	Winter	6.879	0.0	80.3	458
600	min	Winter	5.690	0.0	83.0	560
720	min	Winter	4.864	0.0	85.2	588
960	min	Winter	3.790	0.0	88.5	732
1440	min	Winter	2.667	0.0	93.4	1038
2160	min	Winter	1.886	0.0	99.1	1472
2880	min	Winter	1.483	0.0	103.9	1900
4320	min	Winter	1.073	0.0	112.8	2684
5760	min	Winter	0.862	0.0	120.8	3456
7200	min	Winter	0.735	0.0	128.7	4184
8640	min	Winter	0.649	0.0	136.3	4920
10080	min	Winter	0.587	0.0	144.0	5552

Ardent		Page 1
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Podium with Pongola	
London, EC3M 5JE	1in2yr	Micro
Date 30/09/2022 16:13	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	manaye
Innovyze	Source Control 2020.1	<u> </u>

Half Drain Time : 339 minutes.

	Storm	ı	Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(l/s)	(l/s)	(m³)	
			89.887		0.0	0.6	0.6	11.2	O K
30	min S	Summer	89.895	0.045	0.0	0.6	0.6	13.8	O K
60	min S	Summer	89.903	0.053	0.0	0.7	0.7	16.0	O K
120	min S	Summer	89.919	0.069	0.0	0.7	0.7	21.0	O K
180	min S	Summer	89.926	0.076	0.0	0.7	0.7	23.0	0 K
240	min S	Summer	89.928	0.078	0.0	0.7	0.7	23.6	O K
360	min S	Summer	89.927	0.077	0.0	0.7	0.7	23.3	O K
480	min S	Summer	89.924	0.074	0.0	0.7	0.7	22.4	O K
600	min S	Summer	89.921	0.071	0.0	0.7	0.7	21.5	O K
720	min S	Summer	89.918	0.068	0.0	0.7	0.7	20.7	O K
960	min S	Summer	89.913	0.063	0.0	0.7	0.7	19.1	O K
1440	min S	Summer	89.904	0.054	0.0	0.7	0.7	16.4	O K
2160	min S	Summer	89.893	0.043	0.0	0.6	0.6	13.1	O K
2880	min S	Summer	89.884	0.034	0.0	0.6	0.6	10.4	O K
4320	min S	Summer	89.872	0.022	0.0	0.6	0.6	6.7	O K
5760	min S	Summer	89.864	0.014	0.0	0.6	0.6	4.2	O K
7200	min S	Summer	89.858	0.008	0.0	0.5	0.5	2.5	O K
8640	min S	Summer	89.854	0.004	0.0	0.5	0.5	1.3	O K
10080	min S	Summer	89.852	0.002	0.0	0.5	0.5	0.5	O K
15	min V	Winter	89.891	0.041	0.0	0.6	0.6	12.6	O K
30	min V	Winter	89.901	0.051	0.0	0.6	0.6	15.6	O K
60	min V	Winter	89.910	0.060	0.0	0.7	0.7	18.2	O K
120	min V	Winter	89.929	0.079	0.0	0.7	0.7	24.0	O K
180	min V	Winter	89.937	0.087	0.0	0.7	0.7	26.6	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	36.112	0.0	11.6	18
30	min	Summer	22.876	0.0	14.8	33
60	min	Summer	13.954	0.0	18.0	62
120	min	Summer	9.731	0.0	25.2	122
180	min	Summer	7.565	0.0	29.4	180
240	min	Summer	6.226	0.0	32.3	240
360	min	Summer	4.626	0.0	36.1	302
480	min	Summer	3.700	0.0	38.5	364
600	min	Summer	3.098	0.0	40.3	428
720	min	Summer	2.673	0.0	41.7	498
960	min	Summer	2.113	0.0	44.0	636
1440	min	Summer	1.517	0.0	47.4	908
2160	min	Summer	1.099	0.0	51.5	1300
2880	min	Summer	0.882	0.0	55.1	1676
4320	min	Summer	0.661	0.0	61.9	2420
5760	min	Summer	0.546	0.0	68.3	3120
7200	min	Summer	0.476	0.0	74.4	3824
8640	min	Summer	0.429	0.0	80.5	4496
10080	min	Summer	0.395	0.0	86.6	5152
15	min	Winter	36.112	0.0	13.0	18
30	min	Winter	22.876	0.0	16.6	33
60	min	Winter	13.954	0.0	20.2	62
120	min	Winter	9.731	0.0	28.3	120
180	min	Winter	7.565	0.0	33.0	176

Ardent		Page 2
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Podium with Pongola	
London, EC3M 5JE	1in2yr	Micro
Date 30/09/2022 16:13	Designed by BNW	Drainage
File 2007511 - Welwyn Garden City	Checked by EF	Diamage
Innovyze	Source Control 2020.1	

	Storn Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
240	min	Winter	89.941	0.091	0.0	0.7	0.7	27.6	ОК
360	min	Winter	89.941	0.091	0.0	0.7	0.7	27.5	ОК
480	min	Winter	89.937	0.087	0.0	0.7	0.7	26.5	O K
600	min	Winter	89.933	0.083	0.0	0.7	0.7	25.3	ОК
720	min	Winter	89.929	0.079	0.0	0.7	0.7	24.1	O K
960	min	Winter	89.922	0.072	0.0	0.7	0.7	21.9	O K
1440	min	Winter	89.909	0.059	0.0	0.7	0.7	17.8	ОК
2160	min	Winter	89.892	0.042	0.0	0.6	0.6	12.9	O K
2880	min	Winter	89.880	0.030	0.0	0.6	0.6	9.1	O K
4320	min	Winter	89.863	0.013	0.0	0.6	0.6	3.8	O K
5760	min	Winter	89.853	0.003	0.0	0.5	0.5	0.8	O K
7200	min	Winter	89.850	0.000	0.0	0.5	0.5	0.0	ОК
8640	min	Winter	89.850	0.000	0.0	0.4	0.4	0.0	O K
10080	min	Winter	89.850	0.000	0.0	0.4	0.4	0.0	ОК

	Stor	m.	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
240	min	Winter	6.226	0.0	36.3	232
360	min	Winter	4.626	0.0	40.4	338
480	min	Winter	3.700	0.0	43.1	384
600	min	Winter	3.098	0.0	45.1	460
720	min	Winter	2.673	0.0	46.8	536
960	min	Winter	2.113	0.0	49.3	690
1440	\min	Winter	1.517	0.0	53.0	980
2160	min	Winter	1.099	0.0	57.7	1388
2880	min	Winter	0.882	0.0	61.7	1784
4320	min	Winter	0.661	0.0	69.3	2504
5760	min	Winter	0.546	0.0	76.7	3112
7200	min	Winter	0.476	0.0	83.5	0
8640	min	Winter	0.429	0.0	90.3	0
10080	min	Winter	0.395	0.0	97.0	0

Ardent		Page 1
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Permavoid	
London, EC3M 5JE	lin100yr+40%CC	Micro
Date 27/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	niairiage
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 199 minutes.

Storm Max 1		Max	Max	Max	Max	Max	Status		
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(l/s)	(m³)	
			86.547		0.0	1.6	1.6		O K
			86.593		0.0	1.8	1.8		O K
			86.632		0.0	1.9	1.9		Flood Risk
			86.670		0.0	2.1	2.1		Flood Risk
180	min S	ummer	86.900	0.530	0.0	2.8	2.8	44.1	FLOOD
240	min S	ummer	86.900	0.530	0.0	2.8	2.8	44.4	FLOOD
360	min S	ummer	86.900	0.530	0.0	2.8	2.8	43.9	FLOOD
480	min S	ummer	86.665	0.295	0.0	2.1	2.1	42.8	Flood Risk
600	min S	ummer	86.652	0.282	0.0	2.0	2.0	40.9	Flood Risk
720	min S	ummer	86.638	0.268	0.0	2.0	2.0	39.0	Flood Risk
960	min S	ummer	86.613	0.243	0.0	1.9	1.9	35.2	Flood Risk
1440	min S	ummer	86.571	0.201	0.0	1.7	1.7	29.2	O K
2160	min S	ummer	86.527	0.157	0.0	1.5	1.5	22.8	O K
2880	min S	ummer	86.498	0.128	0.0	1.3	1.3	18.5	O K
4320	min S	ummer	86.462	0.092	0.0	1.1	1.1	13.3	ОК
5760	min S	ummer	86.442	0.072	0.0	0.9	0.9	10.4	ОК
7200	min S	ummer	86.430	0.060	0.0	0.8	0.8	8.7	ОК
8640	min S	ummer	86.422	0.052	0.0	0.8	0.8	7.6	ОК
10080	min S	ummer	86.418	0.048	0.0	0.7	0.7	7.0	ОК
15	min W	inter	86.568	0.198	0.0	1.7	1.7	28.8	ок
30	min W	inter	86.621	0.251	0.0	1.9	1.9	36.4	Flood Risk
60	min W	inter	86.665	0.295	0.0	2.1	2.1	42.9	Flood Risk
			86.904		0.0	2.8	2.8		FLOOD
180	min W	inter	86.906	0.536	0.0	2.8	2.8	49.4	FLOOD

	Stor	m.	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	149.720	0.0	26.6	18
30	min	Summer	96.659	0.0	34.4	33
		Summer	59.445	0.0	42.3	62
120	min	Summer	36.981	0.0	52.6	120
180	min	Summer	27.553	0.4	58.8	140
240	min	Summer	22.148	0.7	63.1	172
360	min	Summer	16.027	0.3	68.4	240
480	min	Summer	12.613	0.0	71.8	322
600	min	Summer	10.426	0.0	74.2	390
720	min	Summer	8.901	0.0	76.0	458
960	min	Summer	6.905	0.0	78.6	594
1440	min	Summer	4.808	0.0	82.1	852
2160	min	Summer	3.348	0.0	85.8	1232
2880	min	Summer	2.598	0.0	88.8	1588
4320	\min	Summer	1.836	0.0	94.1	2296
5760	min	Summer	1.449	0.0	99.0	3008
7200	min	Summer	1.216	0.0	103.9	3744
8640	min	Summer	1.061	0.0	108.8	4416
10080	min	Summer	0.951	0.0	113.7	5144
15	min	Winter	149.720	0.0	29.8	18
30	min	Winter	96.659	0.0	38.5	32
60	min	Winter	59.445	0.0	47.4	60
120	min	Winter	36.981	4.5	58.9	116
180	min	Winter	27.553	5.8	65.9	150

Ardent		Page 2
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Permavoid	
London, EC3M 5JE	lin100yr+40%CC	Micro
Date 27/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

	Storm		Max	Max	Max	Max	Max	Status
	Event		Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(l/s)	(1/s)	(m³)	
240	min Wint	er 86.906	0.536	0.0	2.8	2.8	49.7	FLOOD
360	min Wint	er 86.904	0.534	0.0	2.8	2.8	48.2	FLOOD
480	min Wint	er 86.902	0.532	0.0	2.8	2.8	45.9	FLOOD
600	min Wint	er 86.900	0.530	0.0	2.8	2.8	44.0	FLOOD
720	min Wint	er 86.661	0.291	0.0	2.0	2.0	42.2	Flood Risk
960	min Wint	er 86.626	0.256	0.0	1.9	1.9	37.1	Flood Risk
1440	min Wint	er 86.570	0.200	0.0	1.7	1.7	29.1	ОК
2160	min Wint	er 86.515	0.145	0.0	1.4	1.4	21.0	O K
2880	min Wint	er 86.480	0.110	0.0	1.2	1.2	16.0	O K
4320	min Wint	er 86.442	0.072	0.0	0.9	0.9	10.4	O K
5760	min Wint	er 86.423	0.053	0.0	0.8	0.8	7.7	O K
7200	min Wint	er 86.416	0.046	0.0	0.7	0.7	6.6	ОК
8640	min Wint	er 86.411	0.041	0.0	0.6	0.6	5.9	O K
10080	min Wint	er 86.407	0.037	0.0	0.5	0.5	5.4	O K

Storm			Rain	Flooded	Discharge	Time-Peak
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
240	min	Winter	22.148	6.1	70.6	186
360	min	Winter	16.027	4.6	76.7	262
480	min	Winter	12.613	2.3	80.5	334
600	min	Winter	10.426	0.3	83.1	400
720	min	Winter	8.901	0.0	85.2	494
960	min	Winter	6.905	0.0	88.1	636
1440	min	Winter	4.808	0.0	92.0	906
2160	min	Winter	3.348	0.0	96.1	1280
2880	min	Winter	2.598	0.0	99.4	1644
4320	min	Winter	1.836	0.0	105.4	2336
5760	min	Winter	1.449	0.0	110.9	3008
7200	min	Winter	1.216	0.0	116.4	3680
8640	min	Winter	1.061	0.0	121.9	4488
10080	min	Winter	0.951	0.0	127.4	5152

Ardent		Page 3
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Permavoid	
London, EC3M 5JE	1in100yr+40%CC	Micro
Date 27/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Diamage
Innovvze	Source Control 2020.1	·

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
FEH Rainfall Version 213285 TL 23970 13285 Shortest Storm (mins) 15
Data Type Point Longest Storm (mins) 440
Summer Storms Yes Climate Change 440

Time Area Diagram

Total Area (ha) 0.095

Time (mins) Area From: To: (ha)

Ardent		Page 4
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Permavoid	
London, EC3M 5JE	lin100yr+40%CC	Micro
Date 27/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Dialilage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 86.900

Cellular Storage Structure

Invert Level (m) 86.370 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) Inf. Area (m²) 152.9 0.300 152.9 167.7 0.301 0.0 167.8

Orifice Outflow Control

Diameter (m) 0.043 Discharge Coefficient 0.600 Invert Level (m) 86.360

Ardent		Page 1
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Permavoid	
London, EC3M 5JE	lin30yr	Micro
Date 27/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Dialilage
Innovyze	Source Control 2020.1	•

Half Drain Time : 176 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	86.467	0.097	0.0	1.1	1.1	14.0	ок
30	min S	Summer	86.490	0.120	0.0	1.3	1.3	17.5	ОК
60	min S	Summer	86.509	0.139	0.0	1.4	1.4	20.1	ОК
120	min S	Summer	86.526	0.156	0.0	1.5	1.5	22.6	O K
180	min S	Summer	86.530	0.160	0.0	1.5	1.5	23.3	O K
240	min S	Summer	86.531	0.161	0.0	1.5	1.5	23.3	O K
360	min S	Summer	86.526	0.156	0.0	1.5	1.5	22.6	O K
480	min S	Summer	86.518	0.148	0.0	1.4	1.4	21.5	O K
600	min S	Summer	86.510	0.140	0.0	1.4	1.4	20.4	O K
720	min S	Summer	86.502	0.132	0.0	1.3	1.3	19.2	O K
960	min S	Summer	86.488	0.118	0.0	1.3	1.3	17.2	O K
1440	min S	Summer	86.467	0.097	0.0	1.1	1.1	14.0	O K
2160	min S	Summer	86.446	0.076	0.0	1.0	1.0	11.0	O K
2880	min S	Summer	86.432	0.062	0.0	0.9	0.9	9.1	O K
4320	min S	Summer	86.419	0.049	0.0	0.7	0.7	7.1	O K
5760	min S	Summer	86.412	0.042	0.0	0.6	0.6	6.1	O K
7200	min S	Summer	86.407	0.037	0.0	0.5	0.5	5.4	O K
8640	min S	Summer	86.404	0.034	0.0	0.5	0.5	5.0	O K
10080	min S	Summer	86.402	0.032	0.0	0.4	0.4	4.6	O K
15	min W	Vinter	86.478	0.108	0.0	1.2	1.2	15.8	O K
30	min W	Vinter	86.505	0.135	0.0	1.4	1.4	19.7	O K
60	min W	∛inter	86.526	0.156	0.0	1.5	1.5	22.7	O K
120	min W	Vinter	86.547	0.177	0.0	1.6	1.6	25.7	O K
180	min W	Vinter	86.551	0.181	0.0	1.6	1.6	26.2	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	82.569	0.0	14.6	18
30	min	Summer	52.959	0.0	18.8	33
60	min	Summer	32.340	0.0	23.0	62
120	min	Summer	20.264	0.0	28.8	112
180	min	Summer	15.080	0.0	32.2	140
240	min	Summer	12.105	0.0	34.4	172
360	min	Summer	8.748	0.0	37.3	242
480	min	Summer	6.879	0.0	39.1	310
600	min	Summer	5.690	0.0	40.5	378
720	min	Summer	4.864	0.0	41.5	442
960	min	Summer	3.790	0.0	43.1	576
1440	min	Summer	2.667	0.0	45.5	824
2160	min	Summer	1.886	0.0	48.3	1192
2880	min	Summer	1.483	0.0	50.6	1556
4320	min	Summer	1.073	0.0	54.9	2248
5760	min	Summer	0.862	0.0	58.9	2992
7200	min	Summer	0.735	0.0	62.7	3680
8640	min	Summer	0.649	0.0	66.5	4416
10080	min	Summer	0.587	0.0	70.2	5144
15	min	Winter	82.569	0.0	16.4	18
30	min	Winter	52.959	0.0	21.1	32
60	min	Winter	32.340	0.0	25.7	60
120	min	Winter	20.264	0.0	32.3	116
180	min	Winter	15.080	0.0	36.0	146

Ardent		Page 2
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Permavoid	
London, EC3M 5JE	1in30yr	Micro
Date 27/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Dialilade
Innovyze	Source Control 2020.1	

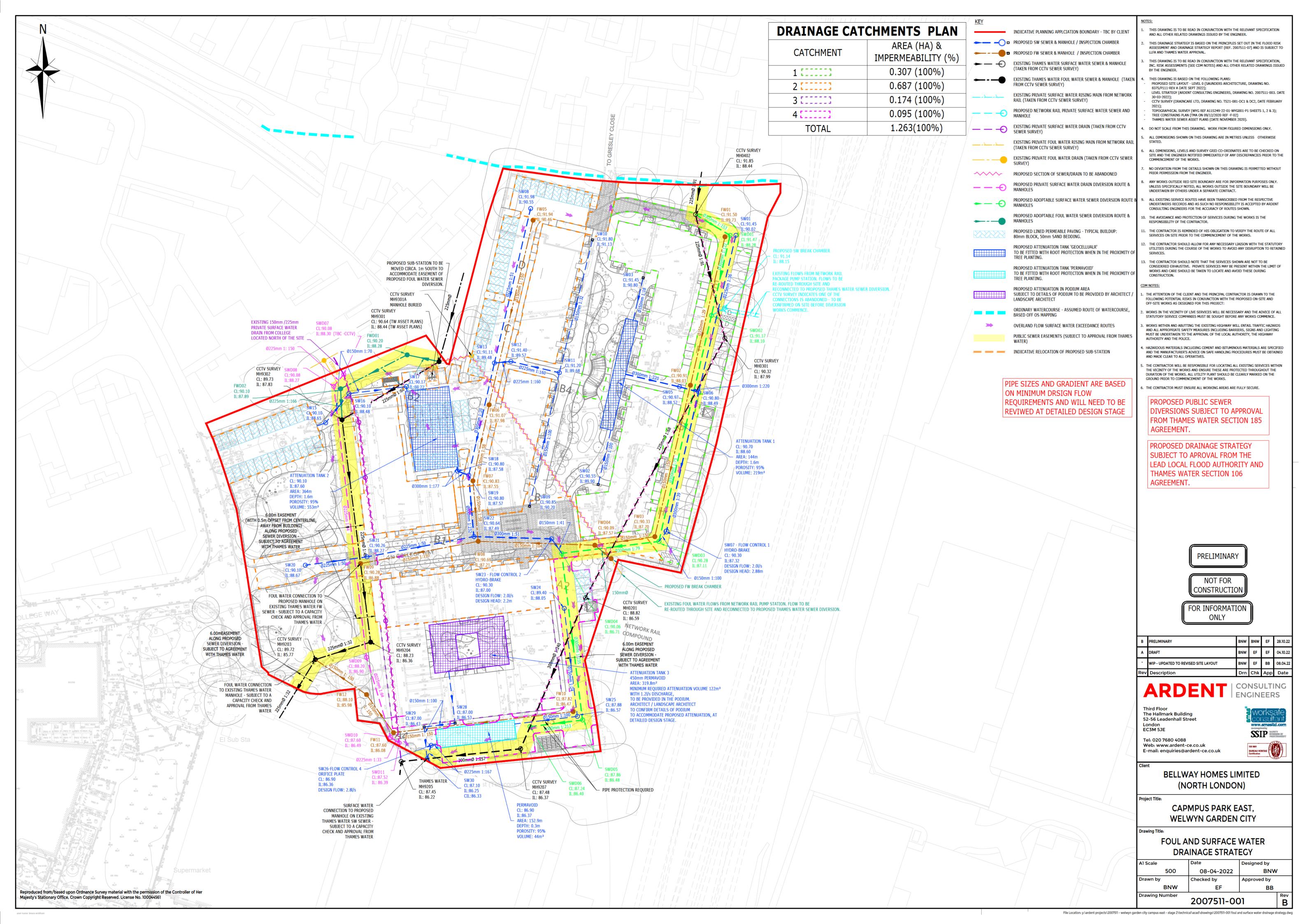
	Storm Event	_	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max E Outflow (1/s)	Max Volume (m³)	Status
240	min V	Winter	86.550	0.180	0.0	1.6	1.6	26.2	O K
360	min V	Winter	86.542	0.172	0.0	1.5	1.5	25.0	ОК
480	min V	Winter	86.531	0.161	0.0	1.5	1.5	23.4	ОК
600	min V	Winter	86.519	0.149	0.0	1.4	1.4	21.7	ОК
720	min V	Winter	86.508	0.138	0.0	1.4	1.4	20.1	O K
960	min V	Winter	86.489	0.119	0.0	1.3	1.3	17.3	O K
1440	min V	Winter	86.461	0.091	0.0	1.1	1.1	13.2	O K
2160	min V	Winter	86.435	0.065	0.0	0.9	0.9	9.5	O K
2880	min V	Winter	86.422	0.052	0.0	0.8	0.8	7.5	O K
4320	min V	Winter	86.410	0.040	0.0	0.6	0.6	5.8	O K
5760	min V	Winter	86.404	0.034	0.0	0.5	0.5	4.9	O K
7200	min V	Winter	86.400	0.030	0.0	0.4	0.4	4.4	O K
8640	min V	Winter	86.397	0.027	0.0	0.4	0.4	3.9	O K
10080	min V	Winter	86.395	0.025	0.0	0.3	0.3	3.6	O K

	Stor	m.	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
240	min	Winter	12.105	0.0	38.6	184
360	min	Winter	8.748	0.0	41.8	260
480	min	Winter	6.879	0.0	43.8	334
600	min	Winter	5.690	0.0	45.3	404
720	min	Winter	4.864	0.0	46.5	476
960	min	Winter	3.790	0.0	48.3	608
1440	min	Winter	2.667	0.0	51.0	866
2160	min	Winter	1.886	0.0	54.1	1232
2880	min	Winter	1.483	0.0	56.7	1556
4320	min	Winter	1.073	0.0	61.6	2288
5760	min	Winter	0.862	0.0	66.0	2992
7200	min	Winter	0.735	0.0	70.3	3736
8640	min	Winter	0.649	0.0	74.5	4416
10080	min	Winter	0.587	0.0	78.6	5144

Ardent		Page 1
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Permavoid	
London, EC3M 5JE	lin2yr	Micro
Date 27/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Dialitage
Innovyze	Source Control 2020.1	

Half Drain Time : 132 minutes.

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min Summer	86.412	0.042	0.0	0.6	0.6	6.1	ок
30	min Summer	86.421	0.051	0.0	0.8	0.8	7.4	O K
60	min Summer	86.427	0.057	0.0	0.8	0.8	8.3	ОК
120	min Summer	86.441	0.071	0.0	0.9	0.9	10.3	ОК
180	min Summer	86.446	0.076	0.0	1.0	1.0	11.1	ОК
240	min Summer	86.448	0.078	0.0	1.0	1.0	11.4	O K
360	min Summer	86.447	0.077	0.0	1.0	1.0	11.2	O K
480	min Summer	86.444	0.074	0.0	1.0	1.0	10.8	O K
600	min Summer	86.441	0.071	0.0	0.9	0.9	10.3	O K
720	min Summer	86.437	0.067	0.0	0.9	0.9	9.7	O K
960	min Summer	86.431	0.061	0.0	0.9	0.9	8.8	O K
1440	min Summer	86.421	0.051	0.0	0.8	0.8	7.4	O K
2160	min Summer	86.413	0.043	0.0	0.6	0.6	6.3	O K
2880	min Summer	86.408	0.038	0.0	0.5	0.5	5.5	O K
4320	min Summer	86.402	0.032	0.0	0.4	0.4	4.6	O K
5760	min Summer	86.398	0.028	0.0	0.4	0.4	4.1	O K
7200	min Summer	86.396	0.026	0.0	0.3	0.3	3.7	O K
8640	min Summer	86.394	0.024	0.0	0.3	0.3	3.5	O K
10080	min Summer	86.392	0.022	0.0	0.3	0.3	3.2	O K
15	min Winter	86.417	0.047	0.0	0.7	0.7	6.8	O K
30	min Winter	86.427	0.057	0.0	0.8	0.8	8.3	O K
	min Winter			0.0	0.9	0.9	9.4	O K
120	min Winter	86.450	0.080	0.0	1.0	1.0	11.6	O K
180	min Winter	86.455	0.085	0.0	1.0	1.0	12.4	O K


	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		_				
		Summer	36.112	0.0	6.4	18
		Summer	22.876	0.0	8.1	32
		Summer	13.954	0.0	9.9	60
		Summer	9.731	0.0	13.8	96
180	min	Summer	7.565	0.0	16.1	128
240	min	Summer	6.226	0.0	17.7	162
360	min	Summer	4.626	0.0	19.7	232
480	min	Summer	3.700	0.0	21.0	298
600	min	Summer	3.098	0.0	22.0	364
720	min	Summer	2.673	0.0	22.8	428
960	min	Summer	2.113	0.0	24.0	558
1440	min	Summer	1.517	0.0	25.9	796
2160	min	Summer	1.099	0.0	28.1	1168
2880	min	Summer	0.882	0.0	30.1	1528
4320	min	Summer	0.661	0.0	33.8	2252
5760	min	Summer	0.546	0.0	37.3	3000
7200	min	Summer	0.476	0.0	40.6	3744
8640	min	Summer	0.429	0.0	43.9	4488
10080	min	Summer	0.395	0.0	47.2	5152
15	min	Winter	36.112	0.0	7.1	18
30	min	Winter	22.876	0.0	9.1	32
60	min	Winter	13.954	0.0	11.1	60
120	min	Winter	9.731	0.0	15.5	100
180	min	Winter	7.565	0.0	18.0	138

Ardent		Page 2
3rd Floor, The Hallmark Building	2007511 - Welwyn Garden City C	
52-56 LeadenHall Street	Permavoid	
London, EC3M 5JE	1in2yr	Micro
Date 27/10/2022	Designed by BNW	Drainage
File 2007511 - WELWYN GARDEN CITY	Checked by EF	Diamage
Innovyze	Source Control 2020.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
240	min Wi	inter	86.456	0.086	0.0	1.1	1.1	12.6	ОК
360	min Wi	inter	86.454	0.084	0.0	1.0	1.0	12.1	ОК
480	min Wi	inter	86.448	0.078	0.0	1.0	1.0	11.4	O K
600	min Wi	inter	86.443	0.073	0.0	1.0	1.0	10.6	O K
720	min Wi	inter	86.438	0.068	0.0	0.9	0.9	9.8	O K
960	min Wi	inter	86.429	0.059	0.0	0.8	0.8	8.5	O K
1440	min Wi	inter	86.418	0.048	0.0	0.7	0.7	6.9	O K
2160	min Wi	inter	86.409	0.039	0.0	0.6	0.6	5.6	O K
2880	min Wi	inter	86.403	0.033	0.0	0.5	0.5	4.8	O K
4320	min Wi	inter	86.397	0.027	0.0	0.4	0.4	3.9	O K
5760	min Wi	inter	86.393	0.023	0.0	0.3	0.3	3.3	O K
7200	min Wi	inter	86.390	0.020	0.0	0.3	0.3	2.9	O K
8640	min Wi	inter	86.388	0.018	0.0	0.2	0.2	2.6	O K
10080	min Wi	inter	86.387	0.017	0.0	0.2	0.2	2.4	O K

	Storm Event		Rain		Discharge	
	Event	•	(mm/hr)		Volume	(mins)
				(m³)	(m³)	
240	min	Winter	6.226	0.0	19.8	176
360	min	Winter	4.626	0.0	22.1	250
480	min	Winter	3.700	0.0	23.6	320
600	min	Winter	3.098	0.0	24.6	388
720	min	Winter	2.673	0.0	25.5	456
960	min	Winter	2.113	0.0	26.9	580
1440	min	Winter	1.517	0.0	29.0	824
2160	min	Winter	1.099	0.0	31.5	1192
2880	min	Winter	0.882	0.0	33.7	1560
4320	min	Winter	0.661	0.0	37.9	2296
5760	min	Winter	0.546	0.0	41.8	3056
7200	min	Winter	0.476	0.0	45.5	3744
8640	min	Winter	0.429	0.0	49.2	4488
10080	min	Winter	0.395	0.0	52.9	5152

Appendix G Surface and Foul Water Drainage Strategy Plan

Appendix H SuDS Operation and Maintenance Schedules

OPERATION AND MAINTENANCE REQUIREMENTS BASED ON C753 THE SuDS MANUAL 2015

Inlets, Outlets, Controls and Inspection Chamber	s
Regular Maintenance	Frequency
Inlets, outlets and surface control structures Inspect surface structures, removing obstructions and silt as necessary. Check there is no physical damage.	Monthly
Inspection chambers and below-ground control chambers	
Remove cover and inspect, ensuring that water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt.	Annually
Undertake inspection after leaf fall in autumn.	
Occasional Maintenance	
Check topsoil levels are 20mm above edges of baskets and chambers to avoid mower damage.	As necessary
Remedial Work	Frequency
Repair physical damage if necessary	As Required

Operatio	Operation and Maintenance Requirements for Pervious Pavements					
Maintenance Schedule	Required Action	Typical Frequency				
Regular Maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface).	Once a year, after autumn leaf fall, or reduce frequency as required, based on site-specific observations of clogging or manufacture's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is the most likely to collect the most sediment.				
Occasional	Stabilise and mow contributing and adjacent areas.	As required.				
maintenance	Removal of weeds or management using glyphosphate applied directly into the weeds by an applicator rather than a spray.	As required – once per a year on less frequently used pavements.				
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level of the paving.	As required.				
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing materials.	As required.				
	Rehabilitation of surface and upper substructure by remedial sweeping.	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)				
Monitoring	Initial inspection.	Monthly for three months after instillation.				

Operatio	Operation and Maintenance Requirements for Pervious Pavements					
Maintenance Schedule	Required Action	Typical Frequency				
	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action.	Three-monthly, 48 hours after large storms in first six months.				
	Inspect silt accumulation rates and establish appropriate brushing frequencies.	Annually.				
	Monitor inspection chambers.	Annually.				

Operation and Maintenance Requirements for Attenuation Storage Tanks						
Maintenance Schedule	Required Action	Typical Frequency				
	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months, then annually				
Regular	Remove debris from the catchment surface (where it may cause risk to performance)	Monthly				
Inspections	For systems where rainfall infiltrates into the tank from above, check surface or filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary.	Annually				
	Remove sediment from pre-treatment structures and/ or internal forebays.	Annually, or as required				
Remedial Action	Repair/rehabilitate inlets, outlets, overflows and vents.	As required				
Monitoring	Inspect/ check all inlets, outlets vents and overflows to ensure that they are in good condition and operating as designed.	Annually				
	Survey inside of tank for sediment build- up and remove if necessary.	Every 5 years or as required				