Soiltechnics Limited
Registered in England 2680759
Registered office: Cedar Barn, NN6 9PY

FAO Matt Christensen Taylor Wimpey North Thames 1st Floor, 2 Imperial Place Maxwell Road Borehamwood WD6 1JN

Dear Matt,

soiltechnics

environmental - geotechnical - building fabric

Cedar Barn White Lodge Walgrave Northamptonshire NN6 9PY

t: 01604 781877 e: mail@soiltechnics.net w: www.soiltechnics.net

Date: 19th July 2019

Your Ref:

Our Ref: R-STM3370A-G03

Soil leachate testing at Chequersfield, Welwyn Garden City

Further to your instructions, we confirm completion of ground investigations at Chequersfield. Our brief was to undertake leachate testing of soils samples from around and below the invert level of built soakaway chambers to allow an assessment of the potential for soakaway drainage to mobilise leachable contamination.

Soiltechnics disclaims any responsibility to our Client and others in respect of any matters outside the scope of this report. This report has been prepared with reasonable skill, care and diligence in accordance with the terms of our contract, taking account of the manpower, resources, investigations and testing devoted to it by agreement with our Client. This report is confidential to our Client and Soiltechnics accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk.

Fieldwork

Fieldwork was carried out on 23rd May 2019 and comprised the formation of six borehole using driven tube sampling techniques. Borehole logs and a plan detailing borehole locations are appended.

Ground conditions encountered

The boreholes encountered Made Ground overlying Glacial Deposits.

Made Ground was encountered in all locations to depths in the range of 1.4 to 2.3m where the full thickness was proven. Made Ground extended to beyond termination depths of boreholes DTS204 and DTS205 (>3m). Made Ground generally comprised soft gravelly clay or clayey gravelly sand with gravels of flint, brick, chalk, metal, concrete and bituminous coated material.

Glacial Deposits were encountered in boreholes DTS201, DTS202, DTS205 and DTS206 to depths exceeding 5m. Glacial Deposits generally comprised slightly clayey gravelly fine to coarse sand with gravels of fine to coarse sub-angular to rounded flint.

No visual or olfactory evidence for the presence of volatile contamination was encountered.

No groundwater was encountered.

Laboratory testing

Eight samples were scheduled for analysis of leachable concentrations of metals, polycyclic aromatic hydrocarbons (PAH), petroleum hydrocarbons (TPH) volatile organic compounds (VOC) and semi-volatile organic compounds (sVOC). A copy of the laboratory test certificate is appended.

Assessment of test data

For interpretation of test data, we have directly compared measured values with the Environmental Quality Standards (EQS) and UK Drinking Water Standards (UKDWS). In the absence of EQS or UKDWS we have adopted World Health Organisation Drinking Water Guidelines (WHODWG).

EQS values are published by the Environment Agency in their publication, "Environment Agency technical advice to third parties on Pollution of Controlled Waters for Part 11A of the Environmental Protection Act 1990". EQS values for most inorganic contaminants in freshwater are dictated by the hardness of the receiving watercourse. The hardness of water is a measure of the concentration of calcium carbonate in the water. Although we have not sampled water from nearby watercourses, based on data published by DEFRA, water hardness in the local area is in the range of 201 – 300mg/l.

A table summarising comparison of test data with guideline values is appended.

Discussion

All results for leachable concentrations of contaminants are below corresponding guidelines values for the local environment (EQS values) or drinking water standards.

Based on the leachate test results and our observations of soils around the soakaway chambers and below chamber invert levels, stormwater discharged into the built soakaways poses a low risk of mobilisation of contamination.

We trust this provides the information required. If there are any queries, please contact the undersigned.

Yours sincerely,

Seb Crolla B.Sc., (Hons.), MIEnvSc., FGS seb.crolla@soiltechnics.net
Associate Director, Soiltechnics Limited

Enc
Plan detailing exploratory locations
Borehole logs
Laboratory test certificate
Table summarising test results

Title Scale Drawing number

Plan showing development proposals and location of exploratory points

1:500 at A3

01

Key to legends

Composit	e materials, soils and litho	ology			
	Topsoil		Made Ground	0000	Boulders
	Chalk		Clay		Coal
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cobbles	0000	Cobbles & Boulders		Concrete
	Gravel		Limestone		Mudstone
e alte alte a alte alte alte e alte alte a	Peat		Sand		Sand and Gravel
	Sandstone	X X X X X X	Silt	X × X × X :	Silt / Clay
Note: Comp	osite soil types are signified by	y combined	symbols.		Siltstone

Key to 'test results' and 'sampling' columns

	Test result			Sampling
Depth	Records depth that the test was carried out (i.e.: at 2.10m or between 2.10m and 2.55m)	From (m) To (m)	Records	s depth of sampling
	PP – Pocket penetrometer result		D	Disturbed sample
	(kN/m²)		В	Bulk disturbed sample
	SV — Hand held shear vane result (kN/m²) PP result converted to an equivalent undrained shear strength by applying a		ES	Environmental sample comprising plastic and/or glass container
Result	factor of 50. Where at least 3 results obtained at same depth then an average value may be reported.	Туре	W	Water sample
	SPT – Standard Penetration Test result (uncorrected) ^{1,2,3} SPT(c) – Standard Penetration Test result (solid cone) (uncorrected) ^{1,2,3}		UT	Undisturbed sample 100mm diameter sampler
	UT – Undisturbed sample 100mm diameter sampler with number of blows of driving equipment required to obtain sample			

Water observations

Described at foot of log and shown in the 'water strike' column.

Standpipe details

Density

Density recorded in brackets inferred from density testing and soil descriptions from across the site (i.e.: [Medium dense]).

		STRATA				WATER		SPT TE	STING		OTHER IN SI	TU TESTING	9	SAMPLING	
WELL	DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	GEND	STRIKES	YPE / PTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	(MADE GROUND) from 0.5m depth, becomin	clayey fine to coarse SAND. Gravel consists of fine to coarse rounded to sub-rounded flint, bituminous	- 0.95								. ,		0.80		D
		ghtly clayey fine to coarse SAND. Gravel consists of fine to coarse flint.											1.40		ES
	(GLACIAL DEPOSITS)		- - - - - -										2.00		D
		CONTINUED ON NEXT SHEET													
	Disturbed Sample	Notes Collapse of borehole to 2.9m depth.		Title Driven t	tube sa	ampler record									
ES Enviro W Water						y details	Met	thod		Logged by	,	Date			
	ample turbed Sample rd Penetration Test	Groundwater observations		Range (m)	Recovery (%)	-	en tube sampel (m OD)	oler	LC Compiled	by		05/2019 et numbe	er	
C Standa	rd Penetration Test (solid cone)	No groundwater encountered.					Co-c	ordinates		U Checked k	ру	She	et 1 of 2	201	
PID Photo	Ionisation Detector test						-			SC			וט		
Repor	t ref: STM3370A-L-00													Revision	on: 0

DESCRIPTION Light brown gravelly (GLACIAL DEPOSITS) from 3.9m depth, becc	slightly clayey fine to coarse SAND. Gravel consists of fine to coarse flint.	DEPTH (m)	REDUCED LVL (m OD)	LEGEND		TYPE / PTH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
(GLACIAL DEPOSITS)	slightly clayey fine to coarse SAND. Gravel consists of fine to coarse flint.													
												4.00		D
Soft greyish greenist (GLACIAL DEPOSITS)	BOREHOLE TERMINATED AT 5.00m	5.00		(4.70		ES
Key D. Small Disturbed Sample B. Bulk Disturbed Sample ES Environmental Sample	Notes Collapse of borehole to 2.9m depth.		Title Driv	en tube s	ampler record	Method	4		Logged by		Dat	e(s)		
W Water Sample C Core sample UT Undistribed Sample S Standard Penetration Test C Standard Penetration Test (collid cone)	Groundwater observations		Ran	ge (m)	Recovery (%)		tube sampl	er	LC Compiled		23/0 She	05/2019 et numbe	r	
C Standard Penetration Test (solid cone) PP Pocket Penetrometer test SV Shear Vane test PID Photo Ionisation Detector test	No groundwater encountered.					Co-ordi	inates		Checked b	у	She	et 2 of 2 DTS	201	

		STRATA				WATER		SPT TE	STING		OTHER IN SI	TU TESTING	:	SAMPLING	i
WELL	DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / EPTH (m)	n) RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	(MADE GROUND) Dark brown gravelly slightuminous coated grave (MADE GROUND)	ghtly clayey fine to coarse SAND. Gravel consists of fine to coarse angular to sub-angular flint and vels. welly slightly clayey fine to coarse SAND. Gravel consists of fine to coarse angular to sub-angular flint and vels. welly slightly clayey fine to coarse SAND. Gravel consists of fine to coarse rounded to sub-angular flint.	(m)	LOVE (MODI)			erin (m)		DEPTH (M)	LEVEL(M)	DEPIH (M)		0.50 1.20	(m)	ES
	Disturbed Sample isturbed Sample	Notes Borehole remained upright and stable upon completion.		Title Drive		ampler recor	d								
ES Enviro W Water	nmental Sample Sample			-		y details		/lethod		Logged by	,	Dat	e(s)		
C Core sa UT Undist	ample surbed Sample			Range	e (m)	Recovery (%	"	riven tube samp	oler	LC			05/2019		
	rd Penetration Test rd Penetration Test (solid cone)	Groundwater observations No groundwater encountered.					Le	evel (m OD)		Compiled	by	I	et numb et 1 of 2		
SV Shear \	Penetrometer test Vane test I lonisation Detector test						Co	o-ordinates		Checked b	ру		DTS	S202	
Repor	t ref: STM3370A-L-00	1												Revis	ion: 0

u.s		STRATA				WATER		SPT TE	STING		OTHER IN SI	TU TESTING	5	AMPLING	
WELL DESCR	RIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (m	n) RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
(GLA	t orange brown gra ACIAL DEPOSITS) rom 3.7m depth, becomin												4.50		ES D
Key D. Small Disturbed S B. Bulk Disturbed S ES Environmental Sa W. Water Sample C. Core sample	ample	Notes Borehole remained upright and stable upon completion.			ren tube s Recover	ampler recor	N	/lethod		Logged by	,	Dat			
UT Undisturbed Sam S Standard Penetrat C Standard Penetrat	ition Test	Groundwater observations No groundwater encountered.		Ran	ge (m)	Recovery (%	"	evel (m OD)	oler	Compiled	by	She	05/2019 eet number et 2 of 2	er	
PP Pocket Penetrome SV Shear Vane test PID Photo Ionisation							C	o-ordinates		Checked b	ру		DTS	202	
Report ref:	STM3370A-L-003									1				Revisi	on: 0

		STRATA			v	VATER		SPT TE	STING		OTHER IN SI	TU TESTING	2	SAMPLING	
WELL	DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	ST END		/PE / TH (m)	RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	BITUMINOUS BOUND I (MADE GROUND) Greenish brown and gr (MADE GROUND)	MATERIAL. ey slightly sandy GRAVEL. Gravel consists of fine to coarse rounded to sub-angular flint and granite.	0.12										0.50		D
	sandstone and granite. (MADE GROUND) Chaotic mix of dark bro	own and grey brown soft gravelly very sandy CLAY and clayey gravelly fine to coarse SAND. Gravel	0.60										0.80		D
	(MADE GROUND) Chaotic mix of brown s	oft to firm slightly gravelly sandy clay and slightly gravelly clayey SAND. Gravel consists of fine to coarse flint, brick and charcoal.	2.00										2.60		ES
Key		Notes		Title											
B Bulk D	Disturbed Sample isturbed Sample	Borehole remained upright and stable upon completion.		Driven tu	ibe sam	pler record									
ES Enviro W Water C Core si	nmental Sample Sample				overy d		Method		-1	Logged by	'		e(s)		
UT Undist S Standar	urbed Sample rd Penetration Test rd Penetration Test (solid cone)	Groundwater observations No groundwater encountered.		Range (m	n) R	ecovery (%)	Driven to Level (m		oier	Compiled	by	She	05/2019 eet numberet 1 of 2	er	
SV Shear	Penetrometer test Vane test I onisation Detector test						Co-ordin	nates		Checked b	ру		DTS	203	
Repor	t ref: STM3370A-L-00	1												Revisi	on: 0

		STRATA				WATER		SPT TE	ESTING		OTHER IN SI	TU TESTING	:	SAMPLING	
WELL	DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE DEPTH (CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Chaotic mix of brown s angular to sub-angular (MADE GROUND)	oft to firm slightly gravelly sandy clay and slightly gravelly clayey SAND. Gravel consists of fine to coarse flint, brick and charcoal.	3.00												
	(In the state of t	BOREHOLE TERMINATED AT 3.00m													
			L												
			L												
Key		Notes		Title	e										
B Bulk D	Disturbed Sample Disturbed Sample	Borehole remained upright and stable upon completion.		Driv	en tube :	sampler reco	ord								
ES Enviro W Water	onmental Sample r Sample				Recove	ry details		Method		Logged by	,	Dat	e(s)		
C Core s UT Undis	sample sturbed Sample			Ran	ige (m)	Recovery (%)	Driven tube sam	pler	LC		23/	05/2019		
S Standa	rd Penetration Test	Groundwater observations						Level (m OD)		Compiled	by		et numb	er	
	ard Penetration Test (solid cone)	No groundwater encountered.						-		JJ		She	et 2 of 2		
SV Shear	t Penetrometer test Vane test o Ionisation Detector test							Co-ordinates		Checked b	ру		DTS	S203	
Repor	rt ref: STM3370A-L-00	1								•				Revis	ion: 0

		STRATA				WATER		SPT T	ESTING		OTHER IN SI	TU TESTING	:	SAMPLING	
WELL	DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE /		CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	bituminous containing (MADE GROUND)	clayey fine to coarse SAND. Gravel consists of fine to coarse angular to sub-angular flint, bituminous	- 0.40 				<u> </u>						0.20	()	D
			- - - -										1.00		ES
	Soft grey silty slightly si (MADE GROUND)	andy CLAY.	- 1.30 - - 1.50										1.40		D
	(MADE GROUND)	ine to coarse SAND. Gravel consists of fine to coarse angular to sub-angular flint and metal.	 2.40										2.20		ES
	Soft to firm dark browr and organic matter. (MADE GROUND)	n slightly gravelly sandy silty CLAY. Gravel consists of fine to coarse rounded to sub-angular flint, charcoal	- - - -										2.90		D
Key		Notes		Title	•										
B Bulk D	Disturbed Sample isturbed Sample	Borehole remained upright and stable upon completion.		Driv		sampler rec	ord			1					
W Water				Rani	Recover ge (m)	ry details Recovery		Method Driven tube sam	ıpler	Logged by	•		e(s) 05/2019		
	rd Penetration Test rd Penetration Test (solid cone)	Groundwater observations No groundwater encountered.			- • •			Level (m OD)		Compiled	by		et numb		
SV Shear	t Penetrometer test Vane test o Ionisation Detector test							Co-ordinates		Checked b	ру	Jile		5204	
Repor	t ref: STM3370A-L-00	1								1				Revisi	on: 0

WELL		STRATA			WA	ATER	SPT T	ESTING		OTHER IN SI	TU TESTING		SAMPLING	
WELL	DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	STR	RIKES TYI DEPT	PE / RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
		a slightly gravelly sandy silty CLAY. Gravel consists of fine to coarse rounded to sub-angular flint, charcoal BOREHOLE TERMINATED AT 3.00m		REDUCED LEGEL LEGE	END						RESULT			ТҮРЕ
B Bulk D	Disturbed Sample isturbed Sample sommental Sample	Notes Borehole remained upright and stable upon completion.	_			oler record								
W Water C Core s	Sample				overy de		Method Driven tube sam	ıpler	Logged by	1	23/	e(s) 05/2019		
S Standa	rd Penetration Test rd Penetration Test rd Penetration Test (solid cone)	Groundwater observations		Range (n	ii) Ke	ecovery (%)	Level (m OD)		Compiled	by	She	et numb		
PP Pocket SV Shear	t Penetration Test (solid cone) t Penetrometer test Vane test to lonisation Detector test	No groundwater encountered.					Co-ordinates		Checked b	ру	She	et 2 of 2	5204	
Repor	t ref: STM3370A-L-00	1		1			1						Revis	ion: 0

		STRATA			WATER		SPT T	ESTING		OTHER IN SI	TU TESTING		SAMPLING	
WELL	DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD) LEGENE	STRIKES	TYPE	E / RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	BITUMINOUS BOUND I (MADE GROUND) Brown sandy GRAVEL. (MADE GROUND)	Gravel consists of fine to coarse rounded to sub-rounded flint. clayey fine to coarse SAND. Gravel consists of fine to coarse angular to sub-rounded flint, bituminous and lightweight concrete block.	(m) - 0.12 0.40 	LVL (m OD)		DEPTH	I (m) RESULI	DEPTH (m)	LEVEL (m)	DEPTH (m)	RESULI	(m)	(m)	D
			- - -									1.30		D
	Light brown gravelly sli (GLACIAL DEPOSITS)	ghtly clayey fine to coarse SAND. Gravel consists of fine to coarse sub-angular to rounded flint.	_ _ _ _ 2.00 _									1.90		ES
			- - - -									2.50		ES
		CONTINUED ON NEXT SHEET												
Key D Small [B Bulk Di	isturbed Sample sturbed Sample	Notes Borehole remained upright and stable upon completion.		Title Driven tube	sampler re	cord								
ES Enviro W Water C Core sa	nmental Sample Sample mple				ery details	. (0/)	Method Driven tube sam	pler	Logged by	1	Dat 23/	e(s) 05/2019		
S Standar	urbed Sample I Penetration Test Id Penetration Test (solid cone)	Groundwater observations No groundwater encountered.		Range (m)	Recovery	y (%)	Level (m OD)	F'	Compiled	by	She	et numb	er	
SV Shear \	Penetrometer test 'ane test Ionisation Detector test						Co-ordinates		Checked b	ру		DT:	205	
	ref: STM3370A-L-00	I							1 30				Revisi	on: (

		STRATA				WATER		SPT TI	ESTING		OTHER IN SI	TU TESTING	:	SAMPLING	
WELL	DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE DEPTH		CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Light brown gravelly sli (GLACIAL DEPOSITS)	ghtly clayey fine to coarse SAND. Gravel consists of fine to coarse sub-angular to rounded flint.	3.00												
	(GENERAL BET GST15)	BOREHOLE TERMINATED AT 3.00m	-												
			-												
			-												
			-												
			-												
			-												
			-												
			-												
			-												
			_												
			_												
			-												
			-												
			-												
			-												
			-												
Key		Notes		Title	9			•							
D Small B Bulk I	l Disturbed Sample Disturbed Sample	Borehole remained upright and stable upon completion.				sampler reco	ord								
ES Envir	ronmental Sample er Sample				Recove	ry details		Method		Logged by	,	Dat			
UT Undis	sample sturbed Sample	Construction about the constructions		Ran	ge (m)	Recovery (\^0/ -	Driven tube sam	pler	LC	L		05/2019		
S Standa C Standa	ard Penetration Test lard Penetration Test (solid cone)	Groundwater observations No groundwater encountered.						Level (m OD)		Compiled	ру		et number et 2 of 2	er	
SV Shear	et Penetrometer test r Vane test to Ionisation Detector test							Co-ordinates		Checked b	ру		DTS	S205	
Repo	rt ref: STM3370A-L-00	1								•		1		Revis	on: 0

WELL				WATER		SPT TE	ESTING		OTHER IN S	OTHER IN SITU TESTING		SAMPLING		
WELL	DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD) LEGEND	STRIKES	TYPE , DEPTH (CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	(MADE GROUND) Brown gravelly slightly coated gravel, brick an (MADE GROUND) Grey brown gravelly ve and brick. (MADE GROUND)	Gravel consists of fine to coarse rounded to sub-rounded flint. clayey fine to coarse SAND. Gravel consists of fine to coarse angular to sub-rounded flint, bituminous	- 0.12 - 0.35 									1.00 1.50 2.20		ES D
Key	Disturbed Sample		Title											
B Bulk D ES Enviro	isturbed Sample onmental Sample	Borehole remained upright and stable upon completion.		Driven tube	sampler rec		Method		Logged by	,	Dat	e(s)		
W Water C Core s UT Undist				Range (m)	Recovery		Driven tube sam	pler	LC LC			05/2019		
	Standard Penetration Test Standard Penetration Test (Solid cone) No groundwater encountered.						Level (m OD)		Compiled	by		et numb et 1 of 2	er	
SV Shear	t Penetrometer test Vane test o Ionisation Detector test						Co-ordinates		Checked b	ру		DT:	S206	
Repor	t ref: STM3370A-L-00	1		1									Revisi	ion: 0

		STRATA				WATER		SPT TE	ESTING		OTHER IN SI	TU TESTING		SAMPLING	
WELL	DESCRIPTION		DEPTH (m)	REDUCED LVL (m OD)	LEGEND	STRIKES	TYPE / DEPTH (r	m) RESULT	CASING DEPTH (m)	WATER LEVEL (m)	TYPE / DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Light brown gravelly sli (GLACIAL DEPOSITS)	phtly clayey fine to coarse SAND. Gravel consists of fine to coarse sub-angular to rounded flint.	3.00												
	(GEACIAE DEI OSITS)	BOREHOLE TERMINATED AT 3.00m													
			-												
			-												
			-												
			-												
			-												
			-												
			-												
			_												
			L												
			H												
			-												
			-												
	1		1		1				I.	1					
Key D. Small	Disturbed Sample	Notes		Title											
B Bulk I ES Envir	Disturbed Sample onmental Sample	Borehole remained upright and stable upon completion.		Driv		ry details		NA - 4 h d		I a a a a a d b c		P-4	-/-)		
W Wate	r Sample			Ran	ge (m)	Recovery (Method Driven tube sam	pler	Logged by	′		Date(s) 23/05/2019		
S Standa	Groundwater observations				G= \···/	, (Level (m OD)		Compiled	by		et numb		
	Standard Penetration Test (solid cone) No groundwater encountered.						-	-		JJ		She	et 2 of 2		
SV Shear	et Penetrometer test Vane test o Ionisation Detector test							Co-ordinates -		Checked b	ру		DT:	S206	
Repo	rt ref: STM3370A-L-00:											•		Revisi	on: 0

Lauren Wenham Soiltechnics Ltd White Lodge Cedar Barn Walgrave NN6 9PY **DETS Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 19-07525

Site Reference: Chequersfield, Welwyn Garden C

Project / Job Ref: STM3370A

Order No: POR005496

Sample Receipt Date: 29/05/2019

Sample Scheduled Date: 29/05/2019

Report Issue Number: 1

Reporting Date: 04/06/2019

Authorised by:

Dave Ashworth Deputy Quality Manager

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

4480

eachate Analysis Certificate											
DETS Report No: 19-07525	Date Sampled	23/05/19	23/05/19	23/05/19	23/05/19	23/05/19					
Soiltechnics Ltd	Time Sampled	None Supplied									
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS201	DTS201	DTS202	DTS203	DTS204					
Project / Job Ref: STM3370A	Additional Refs	ES	ES	ES	ES	ES					
Order No: POR005496	Depth (m)	1.40	4.70	3.50	2.60	2.20					
Reporting Date: 04/06/2019	DETS Sample No	411034	411035	411036	411037	411038					

Determinand	Unit	RL	Accreditation					
рН	pH Units	N/a	ISO17025	6.8	6.8	6.8	6.6	6.6
Total Cyanide	ug/l	< 5	NONE	< 5	< 5	< 5	< 5	< 5
Complex Cyanide	ug/l	< 5	NONE	< 5	< 5	< 5	< 5	< 5
Free Cyanide	ug/l	< 5	NONE	< 5	< 5	< 5	< 5	< 5
Sulphate as SO ₄	mg/l	< 1	ISO17025	2	3	< 1	< 1	3
Sulphide	mg/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nitrate as NO ₃	mg/l	< 0.5	ISO17025	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Beryllium	ug/l	< 3	ISO17025	< 3	< 3	< 3	< 3	< 3
Boron	ug/l	< 5	ISO17025	7	63	7	33	14
Cadmium	ug/l	< 0.4	ISO17025	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Chromium (hexavalent)	ug/l	< 20	NONE	< 20	< 20	< 20	< 20	< 20
Copper	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Lead	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	5
Mercury	ug/l	< 0.05	ISO17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Selenium	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Vanadium	ug/l		ISO17025	< 5	< 5	< 5	< 5	< 5
Zinc	ug/l	< 2	ISO17025	< 2	3	< 2	12	11
Total Phenols (monohydric)			NONE	< 10	< 10	< 10	< 10	< 10

Subcontracted analysis (S)

4480

eachate Analysis Certificate										
DETS Report No: 19-07525	Date Sampled	23/05/19	23/05/19	23/05/19						
Soiltechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied						
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS205	DTS206	DTS206						
Project / Job Ref: STM3370A	Additional Refs	ES	ES	ES						
Order No: POR005496	Depth (m)	2.50	2.20	2.70						
Reporting Date: 04/06/2019	DETS Sample No	411039	411040	411041						

Determinand	Unit	RL	Accreditation				
рН	pH Units	N/a	ISO17025	6.4	6.5	6.4	
Total Cyanide	ug/l	< 5	NONE	< 5	< 5	< 5	
Complex Cyanide	ug/l	< 5	NONE	< 5	< 5	< 5	
Free Cyanide	ug/l	< 5	NONE	< 5	< 5	< 5	
Sulphate as SO ₄	mg/l	< 1	ISO17025	2	3	1	
Sulphide	mg/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Nitrate as NO ₃	mg/l	< 0.5	ISO17025	< 0.5	< 0.5	2.5	
Arsenic	ug/l	< 5	ISO17025	< 5	6	< 5	
Beryllium	ug/l	< 3	ISO17025	< 3	< 3	< 3	
Boron	ug/l	< 5	ISO17025	< 5	29	7	
Cadmium	ug/l	< 0.4	ISO17025	< 0.4	< 0.4	< 0.4	
Chromium	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Chromium (hexavalent)	ug/l	< 20	NONE	< 20	< 20	< 20	
Copper	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Lead	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Mercury	ug/l	< 0.05	ISO17025	< 0.05	< 0.05	< 0.05	
Nickel	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Selenium	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Vanadium	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Zinc	ug/l		ISO17025	21	4	5	
Total Phenols (monohydric)			NONE	< 10	< 10	< 10	

Subcontracted analysis (S)

Tel: 01622 850410

Leachate Analysis Certificate - Speciated	Leachate Analysis Certificate - Speciated PAH											
DETS Report No: 19-07525	Date Sampled	23/05/19	23/05/19	23/05/19	23/05/19	23/05/19						
Soiltechnics Ltd	Time Sampled	None Supplied										
Site Reference: Chequersfield, Welwyn	TP / BH No	DTS201	DTS201	DTS202	DTS203	DTS204						
Garden C												
Project / Job Ref: STM3370A	Additional Refs	ES	ES	ES	ES	ES						
Order No: POR005496	Depth (m)	1.40	4.70	3.50	2.60	2.20						
Reporting Date: 04/06/2019	DETS Sample No	411034	411035	411036	411037	411038						

Determinand	Unit	RL	Accreditation					
Naphthalene	ug/l	< 0.01	NONE	0.04	0.04	0.03	0.02	0.03
Acenaphthylene	ug/l	< 0.01	NONE	0.03	< 0.01	< 0.01	< 0.01	0.04
Acenaphthene	ug/l	< 0.01	NONE	0.05	0.01	0.02	0.02	0.02
Fluorene	ug/l	< 0.01	NONE	0.03	0.03	0.03	0.04	< 0.01
Phenanthrene	ug/l	< 0.01	NONE	0.10	0.22	0.14	0.60	< 0.01
Anthracene	ug/l	< 0.01	NONE	0.02	0.03	0.03	0.03	< 0.01
Fluoranthene	ug/l	< 0.01	NONE	0.08	0.04	0.05	0.06	< 0.01
Pyrene	ug/l	< 0.01	NONE	0.04	0.02	0.03	0.04	< 0.01
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	ug/l	< 0.008	NONE	< 0.008	< 0.008	< 0.008	< 0.008	< 0.008
Total EPA-16 PAHs	ug/l	< 0.01	NONE	0.39	0.39	0.33	0.81	0.09

Kent ME17 2JN Tel: 01622 850410

eachate Analysis Certificate - Speciated PAH										
DETS Report No: 19-07525	Date Sampled	23/05/19	23/05/19	23/05/19						
Soiltechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied						
Site Reference: Chequersfield, Welwyn	TP / BH No	DTS205	DTS206	DTS206						
Garden C										
Project / Job Ref: STM3370A	Additional Refs	ES	ES	ES						
Order No: POR005496	Depth (m)	2.50	2.20	2.70						
Reporting Date: 04/06/2019	DETS Sample No	411039	411040	411041						

Determinand	Unit	RL	Accreditation				
Naphthalene	ug/l	< 0.01	NONE	< 0.01	0.02	0.04	
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Acenaphthene	ug/l	< 0.01	NONE	0.02	0.01	0.02	
Fluorene	ug/l	< 0.01	NONE	0.03	0.01	0.04	
Phenanthrene	ug/l	< 0.01	NONE	0.12	0.06	0.12	
Anthracene	ug/l	< 0.01	NONE	0.03	0.01	0.03	
Fluoranthene	ug/l	< 0.01	NONE	0.04	0.03	0.03	
Pyrene	ug/l	< 0.01	NONE	0.03	0.02	0.02	
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Chrysene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	ug/l	< 0.008	NONE	< 0.008	< 0.008	< 0.008	
Total EPA-16 PAHs	ug/l	< 0.01	NONE	0.27	0.16	0.30	

Tel: 01622 850410

Leachate Analysis Certificate - TPH CWG	eachate Analysis Certificate - TPH CWG Banded										
DETS Report No: 19-07525	Date Sampled	23/05/19	23/05/19	23/05/19	23/05/19	23/05/19					
Soiltechnics Ltd	Time Sampled	None Supplied									
Site Reference: Chequersfield, Welwyn	TP / BH No	DTS201	DTS201	DTS202	DTS203	DTS204					
Garden C											
Project / Job Ref: STM3370A	Additional Refs	ES	ES	ES	ES	ES					
Order No: POR005496	Depth (m)	1.40	4.70	3.50	2.60	2.20					
Reporting Date: 04/06/2019	DETS Sample No	411034	411035	411036	411037	411038					

Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C6 - C8	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C8 - C10	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C10 - C12	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C12 - C16	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C16 - C21	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic >C21 - C34	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C34)	ug/l	< 70	NONE	< 70	< 70	< 70	< 70	< 70
Aromatic >C5 - C7	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic >C7 - C8	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic >C8 - C10	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic >C10 - C12	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic >C12 - C16	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic >C16 - C21	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic >C21 - C35	ug/l	< 10	NONE	< 10	< 10	< 10	< 10	< 10
Aromatic (C5 - C35)	ug/l	< 70	NONE	< 70	< 70	< 70	< 70	< 70
Total >C5 - C35	ug/l	< 140	NONE	< 140	< 140	< 140	< 140	< 140

Tel: 01622 850410

Leachate Analysis Certificate - TPH CWG Banded									
DETS Report No: 19-07525	Date Sampled	23/05/19	23/05/19	23/05/19					
Soiltechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied					
Site Reference: Chequersfield, Welwyn	TP / BH No	DTS205	DTS206	DTS206					
Garden C									
Project / Job Ref: STM3370A	Additional Refs	ES	ES	ES					
Order No: POR005496	Depth (m)	2.50	2.20	2.70					
Reporting Date: 04/06/2019	DETS Sample No	411039	411040	411041					

Determinand	Unit	RL	Accreditation				
Aliphatic >C5 - C6	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C6 - C8	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C8 - C10	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C10 - C12	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C12 - C16	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C16 - C21	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic >C21 - C34	ug/l	< 10	NONE	< 10	< 10	< 10	
Aliphatic (C5 - C34)	ug/l	< 70	NONE	< 70	< 70	< 70	
Aromatic >C5 - C7	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C7 - C8	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C8 - C10	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C10 - C12	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C12 - C16	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C16 - C21	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic >C21 - C35	ug/l	< 10	NONE	< 10	< 10	< 10	
Aromatic (C5 - C35)	ug/l	< 70	NONE	< 70	< 70	< 70	
Total >C5 - C35	ug/l	< 140	NONE	< 140	< 140	< 140	

4480

Leachate Analysis Certificate - BTEX / MTBE										
DETS Report No: 19-07525	Date Sampled	23/05/19	23/05/19	23/05/19	23/05/19	23/05/19				
Soiltechnics Ltd	Time Sampled	None Supplied								
Site Reference: Chequersfield, Welwyn	TP / BH No	DTS201	DTS201	DTS202	DTS203	DTS204				
Garden C										
Project / Job Ref: STM3370A	Additional Refs	ES	ES	ES	ES	ES				
Order No: POR005496	Depth (m)	1.40	4.70	3.50	2.60	2.20				
Reporting Date: 04/06/2019	DETS Sample No	411034	411035	411036	411037	411038				

Determinand	Unit	RL	Accreditation					
Benzene	ug/l	< 1	ISO17025	< 1	< 1	< 1	< 1	< 1
Toluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
Ethylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
p & m-xylene	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10
o-xylene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5
MTBE	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10

4480

Leachate Analysis Certificate - BTEX / MTBE										
DETS Report No: 19-07525	Date Sampled	23/05/19	23/05/19	23/05/19						
Soiltechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied						
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS205	DTS206	DTS206						
Project / Job Ref: STM3370A	Additional Refs	ES	ES	ES						
Order No: POR005496	Depth (m)	2.50	2.20	2.70						
Reporting Date: 04/06/2019	DETS Sample No	411039	411040	411041						

Determinand	Unit	RL	Accreditation				
Benzene	ug/l	< 1	ISO17025	< 1	< 1	< 1	
Toluene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Ethylbenzene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
p & m-xylene	ug/l	< 10	ISO17025	< 10	< 10	< 10	
o-xylene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
MTBE	ug/l	< 10	ISO17025	< 10	< 10	< 10	

n-Butylbenzene

1,2-Dichlorobenzene

Hexachlorobutadiene

.,2-Dibromo-3-chloropropane

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

4480

Tel : 01622 850410									
Leachate Analysis Certi	ficate - Volatile Org	janic C	Compounds (VC	OC)					
DETS Report No: 19-0752	25		Date Sampled	23/05/19	23/05/19	23/05/19	23/05/19	23/05/19	
Soiltechnics Ltd			Time Sampled	None Supplied					
Site Reference: Chequers Garden C	sfield, Welwyn		TP / BH No	DTS201	DTS201	DTS202	DTS203	DTS204	
Project / Job Ref: STM33	Project / Job Ref: STM3370A		Additional Refs	ES	ES	ES	ES		
Order No: POR005496			Depth (m)	1.40	4.70	3.50	2.60		
Reporting Date: 04/06/2019		D	ETS Sample No	411034	411035	411036	411037	411038	
Determinand	Unit	RL	Accreditation						
Dichlorodifluoromethane		< 5		< 5	< 5	< 5	< 5	< 5	
Vinyl Chloride	J,	< 5		< 5	< 5	< 5	< 5		
Chloromethane	ug/l	< 5	-	< 5	< 5	< 5	< 5	< 5	
Chloroethane	ug/l	< 5		< 5	< 5	< 5	< 5		
Bromomethane	ug/l	< 5		< 5	< 5	< 5	< 5	< 5	
Trichlorofluoromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5	
1,1-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5	
MTBE	ug/l	< 10	ISO17025	< 10	< 10	< 10	< 10	< 10	
trans-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5	
1,1-Dichloroethane	5,	< 5		< 5	< 5	< 5	< 5	< 5	
cis-1,2-Dichloroethene	<u> </u>	< 5		< 5	< 5	< 5	< 5	< 5	
2,2-Dichloropropane	<u> </u>	< 5		< 5	< 5	< 5	< 5	< 5	
Chloroform	- 5/	< 5		< 5	< 5	< 5	< 5	< 5	
Bromochloromethane	5,	< 10		< 10	< 10	< 10	< 10	< 10	
1,1,1-Trichloroethane	<u>J.</u>	< 5		< 5	< 5	< 5	< 5	< 5	
1,1-Dichloropropene	<u> </u>	< 5		< 5	< 5	< 5	< 5	< 5	
Carbon Tetrachloride	- 31	< 5		< 5	< 5	< 5	< 5	< 5	
1,2-Dichloroethane	<u>J.</u>			< 10	< 10	< 10	< 10		
Benzene 1,2-Dichloropropane	3:	< 1 < 5	ISO17025 ISO17025	< 1	< 1	< 1	< 1 < 5	< 1 < 5	
Trichloroethene		< 5		< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5	
Bromodichloromethane	5	< 5		< 5	< 5	< 5	< 5	< 5	
Dibromomethane	ug/l	< 5		< 5	< 5	< 5	< 5	< 5	
TAME		< 5		< 5	< 5	< 5	< 5	< 5	
cis-1,3-Dichloropropene	5	< 5		< 5	< 5	< 5	< 5	< 5	
Toluene		< 5		< 5	< 5	< 5	< 5	< 5	
trans-1,3-Dichloropropene		< 5		< 5	< 5	< 5	< 5	< 5	
1,1,2-Trichloroethane		< 10		< 10	< 10	< 10	< 10		
1,3-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5	
Tetrachloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	< 5	< 5	
Dibromochloromethane	ug/l	< 5		< 5	< 5	< 5	< 5	< 5	
1,2-Dibromoethane		< 5		< 5	< 5	< 5	< 5	< 5	
Chlorobenzene		< 5		< 5	< 5	< 5	< 5	< 5	
1,1,1,2-Tetrachloroethane	_	< 5		< 5	< 5	< 5	< 5	< 5	
Ethyl Benzene	<u>.</u>	< 5		< 5	< 5	< 5	< 5	< 5	
m,p-Xylene		< 10		< 10	< 10	< 10	< 10		
o-Xylene	J.	< 5		< 5	< 5	< 5	< 5	< 5	
Styrene Promoform		< 5		< 5	< 5	< 5	< 5	< 5	
Bromoform Isopropylbenzene	<u> </u>	< 10 < 5		< 10 < 5					
1,1,2,2-Tetrachloroethane		< 10		< 5 < 10	< 5 < 10	< 5 < 10	< 5 < 10		
1,2,3-Trichloropropane	<u>.</u>	< 5		< 10 < 5	< 10 < 5	< 10 < 5	< 10 < 5	< 10	
n-Propylbenzene		< 5		< 5	< 5	< 5	< 5		
Bromobenzene		< 5		< 5	< 5	< 5	< 5	< 5	
2-Chlorotoluene	J.	< 5		< 5	< 5	< 5	< 5		
1,3,5-Trimethylbenzene	<u> </u>	< 5		< 5	< 5	< 5	< 5		
4-Chlorotoluene		< 5		< 5	< 5	< 5	< 5		
tert-Butylbenzene	ý			< 5	< 5	< 5	< 5		
1,2,4-Trimethylbenzene				< 5	< 5			< 5	
sec-Butylbenzene		< 5	ISO17025	< 5	< 5		< 5		
p-Isopropyltoluene		< 5		< 5	< 5	< 5	< 5	< 5	
1,3-Dichlorobenzene		< 5		< 5	< 5		< 5		
1,4-Dichlorobenzene	5,	< 5		< 5	< 5		< 5		
n-Butylbenzene	ua/l	< 5	TS017025	< 5	< 5	< 5	< 5	< 5	

ISO17025

ISO17025

ISO17025

ISO17025

< 5

< 5

< 10

< 5

ug/l

ug/l

ug/l

ug/l

< 5

< 5

< 5

< 10

< 5

< 5

< 10

< 5

< 5

< 5

< 10

< 5

< 5

< 5

< 10

< 5

< 5

< 5

< 10

< 5

4480

Leachate Analysis Certificate	- Volatile Org	anic Co	mpounds (VC	OC)			
DETS Report No: 19-07525			Date Sampled	23/05/19	23/05/19	23/05/19	
Soiltechnics Ltd			ime Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Chequersfield, V	Velwyn		TP / BH No	DTS205	DTS206	DTS206	
Garden C	-		•				
Project / Job Ref: STM3370A		Ac	ditional Refs	ES	ES	ES	
Order No: POR005496			Depth (m)	2.50	2.20	2.70	
Reporting Date: 04/06/2019		DE	ΓS Sample No	411039	411040	411041	
Determinand	Unit		Accreditation		_	_	_
Dichlorodifluoromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Vinyl Chloride	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Chloromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Chloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Bromomethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Trichlorofluoromethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
MTBE	ug/l	< 10	ISO17025	< 10	< 10	< 10	
trans-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1-Dichloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
cis-1,2-Dichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
2,2-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Chloroform	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Bromochloromethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
1,1,1-Trichloroethane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,1-Dichloropropene	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Carbon Tetrachloride	ug/l	< 5	ISO17025	< 5	< 5	< 5	
1,2-Dichloroethane	ug/l	< 10	ISO17025	< 10	< 10	< 10	
Benzene	ug/l	< 1	ISO17025	< 1	< 1	< 1	
1,2-Dichloropropane	ug/l	< 5	ISO17025	< 5	< 5	< 5	
Trichloroethene	ug/l	< 5	ISO17025	< 5	< 5	< 5	

Tel: 01622 850410

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS201
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	1.40
Reporting Date: 04/06/2019	DETS Sample No	411034

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/A	N/A	μg/l	< 5	< 5
2	N/A	N/A	μg/l	< 5	< 5
3	N/A	N/A			< 5
4	N/A	N/A	μg/l	< 5	< 5
5	N/A	N/A	μg/l	< 5	< 5

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS201
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	4.70
Reporting Date: 04/06/2019	DETS Sample No	411035

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/A	N/A	<u>μ</u> g/l	< 5	< 5
2	N/A	N/A			< 5
3	N/A	N/A			< 5
4	N/A	N/A			< 5
5	N/A	N/A			< 5

There were no / other compounds identified with a match of >90%

Tel: 01622 850410

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS202
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	3.50
Reporting Date: 04/06/2019	DETS Sample No	411036

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/A	N/A	<u>μ</u> g/l	< 5	< 5
2	N/A	N/A			< 5
3	N/A	N/A			< 5
4	N/A	N/A			< 5
5	N/A	N/A			< 5

448

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS203
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	2.60
Reporting Date: 04/06/2019	DETS Sample No	411037

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/A	N/A	μg/l	< 5	< 5
2	N/A	N/A			< 5
3	N/A	N/A			< 5
4	N/A	N/A			< 5
5	N/A	N/A			< 5

Tel: 01622 850410

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS204
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	2.20
Reporting Date: 04/06/2019	DETS Sample No	411038

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/A	N/A	μg/l	< 5	< 5
2	N/A	N/A	μg/l	< 5	< 5
3	N/A	N/A			< 5
4	N/A	N/A	μg/l	< 5	< 5
5	N/A	N/A	μg/l	< 5	< 5

Tel: 01622 850410

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS205
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	2.50
Reporting Date: 04/06/2019	DETS Sample No	411039

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/A	N/A	μg/l	< 5	< 5
2	N/A	N/A	μg/l	< 5	< 5
3	N/A	N/A			< 5
4	N/A	N/A	μg/l	< 5	< 5
5	N/A	N/A	μg/l	< 5	< 5

Tel: 01622 850410

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS206
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	2.20
Reporting Date: 04/06/2019	DETS Sample No	411040

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/A	N/A	μg/l	< 5	< 5
2	N/A	N/A	μg/l	< 5	< 5
3	N/A	N/A	μg/l	< 5	< 5
4	N/A	N/A	μg/l	< 5	< 5
5	N/A	N/A	μg/l	< 5	< 5

Tel: 01622 850410

Leachate Analysis Certificate - Volatile Organic Compounds TIC (VOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS206
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	2.70
Reporting Date: 04/06/2019	DETS Sample No	411041

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/A	N/A	μg/l	< 5	< 5
2	N/A	N/A	μg/l	< 5	< 5
3	N/A	N/A			< 5
4	N/A	N/A	μg/l	< 5	< 5
5	N/A	N/A	μg/l	< 5	< 5

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN

Tel: 01622 850410

Leachate Analysis Certif		ie Org			22/2-/	22/2-/		 //:-
DETS Report No: 19-0752	25		Date Sampled	23/05/19	23/05/19	23/05/19		
Soiltechnics Ltd			Time Sampled	None Supplied				
Site Reference: Chequers	field, Welwyn		TP / BH No	DTS201	DTS201	DTS202	DTS203	DTS204
Garden C								
Project / Job Ref: STM33	70A		Additional Refs	ES	ES	ES	ES	ES
Order No: POR005496			Depth (m)	1.40	4.70	3.50	2.60	2.20
Reporting Date: 04/06/2	019	D	ETS Sample No	411034	411035	411036	411037	411038
Determinand	Unit	RL	Accreditation					
Phenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2,4-Trichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitrophenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Nitrobenzene			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
0-Cresol			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethoxy)methane			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-chloroethyl)ether			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dichlorophenol			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chlorophenol			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,3-Dichlorobenzene			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2-Dichlorobenzene			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dimethylphenol			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Isophorone			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachloroethane			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
p-Cresol	_		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,6-Trichlorophenol			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Nitroaniline	<u> </u>		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylnaphthalene	<u> </u>		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorocyclopentadiene			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethyl phthalate			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloroanaline			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitrophenol			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chlorophenyl phenyl ether			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3-Nitroaniline			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Nitroaniline			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Bromophenyl phenyl ether	ug/l		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobenzene			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4-Dinitrotoluene			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Diethyl phthalate			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenzofuran			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Azobenzene			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibutyl phthalate	ug/l		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Carbazole			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
bis(2-ethylhexyl)phthalate	5,		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzyl butyl phthalate			NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Di-n-octyl phthalate	J.		NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds (SVOC)							
DETS Report No: 19-07525	Date Sampled	23/05/19	23/05/19	23/05/19			
Soiltechnics Ltd	Time Sampled	None Supplied	None Supplied	None Supplied			
Site Reference: Chequersfield, Welwyn	TP / BH No	DTS205	DTS206	DTS206			
Garden C							
Project / Job Ref: STM3370A	Additional Refs	ES	ES	ES			
Order No: POR005496	Depth (m)	2.50	2.20	2.70			
Reporting Date: 04/06/2019	DETS Sample No	411039	411040	411041			

reporting Parter or if oof =				111033	111010	111011	
Determinand	Unit	RL	Accreditation				
Phenol	ug/l			< 0.1	< 0.1	< 0.1	
1,2,4-Trichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Nitrophenol	ug/l	< 0.1		< 0.1	< 0.1	< 0.1	
Nitrobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
0-Cresol	ug/l	< 0.1		< 0.1	< 0.1	< 0.1	
bis(2-chloroethoxy)methane	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
bis(2-chloroethyl)ether	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4-Dichlorophenol		< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Chlorophenol		< 0.1	NONE	< 0.1	< 0.1	< 0.1	
1,3-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
1,4-Dichlorobenzene	ug/l	< 0.1		< 0.1	< 0.1	< 0.1	
1,2-Dichlorobenzene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,4-Dimethylphenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Isophorone	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Hexachloroethane	ug/l	< 0.1		< 0.1	< 0.1	< 0.1	
p-Cresol	ug/l	< 0.1		< 0.1	< 0.1	< 0.1	
2,4,6-Trichlorophenol			NONE	< 0.1	< 0.1	< 0.1	
2,4,5-Trichlorophenol		< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Nitroaniline	<u> </u>	< 0.1		< 0.1	< 0.1	< 0.1	
4-Chloro-3-methylphenol	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Methylnaphthalene	<u> </u>	< 0.1		< 0.1	< 0.1	< 0.1	
Hexachlorocyclopentadiene	ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Hexachlorobutadiene	ug/l ug/l	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2,6-Dinitrotoluene		< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Dimethyl phthalate	<u> </u>	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
2-Chloronaphthalene		< 0.1	NONE	< 0.1	< 0.1	< 0.1	
4-Chloroanaline		< 0.1	NONE	< 0.1	< 0.1	< 0.1	
	ug/l					< 0.1	
4-Nitrophenol 4-Chlorophenyl phenyl ether				< 0.1 < 0.1	< 0.1 < 0.1	< 0.1	
3-Nitroaniline	ug/l	< 0.1	NONE				
4-Nitroaniline	ug/l	< 0.1		< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	
4-Bromophenyl phenyl ether	ug/l	< 0.1	NONE				
Hexachlorobenzene	<u> </u>			< 0.1	< 0.1	< 0.1	
	ug/l	< 0.1		< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	
2,4-Dinitrotoluene	ug/l	< 0.1		< 0.1	< 0.1	< 0.1 < 0.1	
Diethyl phthalate Dibenzofuran		< 0.1	NONE	< 0.1	< 0.1	< 0.1 < 0.1	
	<u> </u>			< 0.1			
Azobenzene	ug/l	< 0.1		< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	
Dibutyl phthalate Carbazole	<u> </u>	< 0.1		< 0.1	< 0.1	< 0.1 < 0.1	
	5,			< 0.1	< 0.1	< 0.1 < 0.1	
bis(2-ethylhexyl)phthalate Benzyl butyl phthalate	9,			< 0.1	< 0.1	< 0.1 < 0.1	
Di-n-octyl phthalate	ug/l		1		< 0.1	< 0.1	
ויווים pnthalate	ug/l	< U.1	NONE	< 0.1	< 0.1	< 0.1	

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS201
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	1.40
Reporting Date: 04/06/2019	DETS Sample No	411034

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a	N/a	μg/l	< 0.1	< 0.1
5	N/a	N/a			< 0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS201
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	4.70
Reporting Date: 04/06/2019	DETS Sample No	411035

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a	N/a	μg/l	< 0.1	< 0.1
5	N/a	N/a			< 0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS202
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	3.50
Reporting Date: 04/06/2019	DETS Sample No	411036

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a	N/a	μg/l	< 0.1	< 0.1
5	N/a	N/a	μg/l	< 0.1	< 0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS203
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	2.60
Reporting Date: 04/06/2019	DETS Sample No	411037

Compound No	Compound Name	% Match	Units	RL	Estimated
					Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a			< 0.1
4	N/a	N/a	μg/l	< 0.1	< 0.1
5	N/a	N/a	μg/l	< 0.1	< 0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS204
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	2.20
Reporting Date: 04/06/2019	DETS Sample No	411038

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a	N/a	μg/l	< 0.1	< 0.1
5	N/a	N/a	μg/l	< 0.1	0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS205
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	2.50
Reporting Date: 04/06/2019	DETS Sample No	411039

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a	N/a	μg/l	< 0.1	< 0.1
5	N/a	N/a			< 0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS206
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	2.20
Reporting Date: 04/06/2019	DETS Sample No	411040

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a	N/a	μg/l	< 0.1	< 0.1
5	N/a	N/a			< 0.1

Tel: 01622 850410

Leachate Analysis Certificate - Semi Volatile Organic Compounds TIC (SVOC)		
DETS Report No: 19-07525	Date Sampled	23/05/19
Soiltechnics Ltd	Time Sampled	None Supplied
Site Reference: Chequersfield, Welwyn Garden C	TP / BH No	DTS206
Project / Job Ref: STM3370A	Additional Refs	ES
Order No: POR005496	Depth (m)	2.70
Reporting Date: 04/06/2019	DETS Sample No	411041

Compound No	Compound Name	% Match	Units	RL	Estimated Concentration
1	N/a	N/a	μg/l	< 0.1	< 0.1
2	N/a	N/a	μg/l	< 0.1	< 0.1
3	N/a	N/a	μg/l	< 0.1	< 0.1
4	N/a	N/a	μg/l	< 0.1	< 0.1
5	N/a	N/a			< 0.1

4480

Soil	Analysis	Certificate -	Methodology	& Miscellaneous	Information
------	----------	---------------	-------------	-----------------	-------------

DETS Report No: 19-07525

Soiltechnics Ltd

Site Reference: Chequersfield, Welwyn Garden C

Project / Job Ref: STM3370A Order No: POR005496 Reporting Date: 04/06/2019

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of $1,5$ diphenylcarbazide followed by cc	E116
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F	Dissolved Organic Content (DOC)	Determination of DOC by filtration followed by low heat with persulphate addition followed by IR detect	E110
Water	UF		Determination of electrical conductivity by electrometric measurement	E123
Water	F	EPH (C10 – C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F		Determination of liquid: liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	E104
Water	F	Fluoride	Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F		Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F		Based on National Rivers Authority leaching test 1994	E301
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302
Water	F	Metals	Determination of metals by filtration followed by ICP-MS	E102
Water	F	Mineral Oil (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E105
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethane	E108
Water	UF		Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water	UF		Determination of pH by electrometric measurement	E107
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of redox potential by electrometric measurement	E113
Water	F		Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	E118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF	, ,	Low heat with persulphate addition followed by IR detection	E110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF		Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

<u>Key</u>

F Filtered UF Unfiltered

Summary of leachate and water test results

Receptor Groundwater Water type Freshwater Fish type Cyprinid

Water hardness 200-250 mg/l

Contaminant	Guideline value	Guideline	Location	DTS201	DTS201	DTS202	DTS203	DTS204	DTS205	DTS206	DTS206
	(μg/I)	source	Depth (m)	1.4	4.7	3.5	2.6	2.2	2.5	2.2	2.7
			Sample type	Leachate							
Inorganics (μg/l)											
Arsenic	50	EQS (f)		< 5	< 5	< 5	< 5	< 5	< 5	6	< 5
Boron	2000	EQS (f)		7	63	7	33	14	< 5	29	7
Cadmium	5	EQS (f)		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	250	EQS (f)		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Copper	10	EQS (f)		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Lead	250	EQS (f)		< 5	< 5	< 5	< 5	5	< 5	< 5	< 5
Mercury	1	EQS (f)		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	200	EQS (f)		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Selenium ¹	10	UKDWS		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Vanadium ²	60	EQS (f)		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Zinc	250	EQS (f)		< 2	3	< 2	12	11	21	4	5
Free Cyanide ¹	50	UKDWS		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Nitrate as N	50000	UKDWS		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	3
Sulphate as SO4	400000	EQS(f)		2	3	< 1	< 1	3	2	3	1
PAH (μg/l)											
Benzo(a)pyrene ^{1,4}	0.00017	EQS (f)		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Naphthalene ²	2	EQS (f)		0.04	0.04	0.03	0.02	0.03	< 0.01	0.0	0.0
1,2-dichloroethane	10	UKDWS		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
TPH (μg/l)											
Aliphatic EC5-EC6	150000	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic EC>6-EC8	150000	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic EC>8-EC10	300	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic EC>10-EC12	300	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic EC>12-EC16	300	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic EC>16-EC21	-	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic EC>21-EC34	-	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic EC5-EC6	10	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic EC>6-EC8	700	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic EC>8-EC10	500	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic EC>10-EC12	90	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic EC>12-EC16	90	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic EC>16-EC21	90	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic EC>21-EC35	90	WHO		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	10	EQS (f)		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Toluene ²	740	EQS (f)	7	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Ethyl benzene ²	300	WHO	7	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Xylene ²	30	EQS (f)	7	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Notes

- 1 EQS values not available
- 2 UKDWS not available
- 3 Lower detectable limit above UKDWS. Concentrations below detectable limits are not considered further.
- * Taken as lower detection limit
- # Taken as lower detection limit of a single compound

UKDWS UK Drinking Water Standard Guideline taken from "The Water Supply (Water Quality) Regulations 2000"

EQS (f) Environmental Quality Standard for freshwater published by the Environment Agency

EQS (s) Environmental Quality Standard for saltwater published by the Environment Agency

WHO World Health Organization (WHO) guideline values for fractions in drinking water

Title	Table number	
Comparison of measured concentrations with		
guideline values for water receptors.	1	