Appendix D - Laboratory Test Data

Geotechnical Laboratory Test Results Chemical Laboratory Analysis Results To Follow i2 Reports 19-37047-2 19-37050-1 19-37740-1 19-37741-1 19-38993-2 19-39000-1 19-39487-1 19-39709-1

John Keay Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: johnk@harrisongroupuk.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 19-37047

Replaces Analytical Report Number : 19-37047, issue no. 1

Project / Site name:	Stanborough Park	Samples received on:	11/04/2019
Your job number:	GE22715	Samples instructed on:	11/04/2019
Your order number:		Analysis completed by:	26/04/2019
Report Issue Number:	2	Report issued on:	29/04/2019
Samples Analysed:	2 leachate samples - 10 soil samples		

Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils leachates waters asbestos	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Project / Site name: Stanborough Park

Lab Sample Number				1198862	1198863	1198864	1198865	1198866
Sample Reference				TP102	TP104	TP104	TP105	TP106
Sample Number				ES2	ES2	ES3	ES5	ES2
Depth (m)				0.50-0.50	0.45-0.45	0.80-0.80	0.90-0.90	0.40-0.40
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	39	62	< 0.1
Moisture Content	%	N/A	NONE	10	9.0	8.8	5.7	9.3
Total mass of sample received	kg	0.001	NONE	1.8	1.5	1.7	2.0	2.0
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	Chrysotile
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	-	Not-detected	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	< 0.001
General Inorganics pH - Automated	pH Units	N/A	MCERTS	7.5	8.1	-	11.0	10.9
Total Sulphate as SO₄	mg/kg	50	MCERTS	360	-	-	1100	4000
Sulphide	mg/kg	1	MCERTS	< 1.0	-	-	1.2	1.5
Total Chloride	mg/kg	5	NONE	140	-	-	71	35
Total Sulphur	mg/kg	50	MCERTS	150	-	-	510	1800
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.4	0.7	-	0.3	0.9
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	1.3	-	0.24	0.26
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.26	-	< 0.05	0.09
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	2.8	-	0.55	0.87
Pyrene	mg/kg	0.05	MCERTS	< 0.05	2.5	-	0.55	0.89
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	1.2	-	0.33	0.58
Chrysene	mg/kg	0.05	MCERTS	< 0.05	1.1	-	0.39	0.41
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.4	-	0.48	0.62
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.69	-	0.14	0.30
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	1.3	-	0.39	0.50
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.65	-	0.17	0.28
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.18	-	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.67	-	0.23	0.30
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	14.1	-	3.47	5.10

Analytical Report Number: 19-37047

Project / Site name: Stanborough Park

Lab Sample Number				1198862	1198863	1198864	1198865	1198866
Sample Reference				TP102	TP104	TP104	TP105	TP106
Sample Number				ES2	ES2	ES3	ES5	ES2
Depth (m)		0.50-0.50	0.45-0.45	0.80-0.80	0.90-0.90	0.40-0.40		
Date Sampled		Deviating	Deviating	Deviating	Deviating	Deviating		
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	13	-	11	13
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	0.8	-	0.6	2.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	-	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29	25	-	26	25
Copper (aqua regia extractable)	mg/kg	1	MCERTS	17	21	-	18	23
Lead (aqua regia extractable)	mg/kg	1	MCERTS	18	85	-	19	32
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	25	16	-	21	18
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.8	< 1.0	-	< 1.0	1.3
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	59	77	-	60	77

Monoaromatics & Oxygenates

Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	3.3	-	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	6.5	-	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	-	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	29	-	< 8.0	28
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	46	-	< 10	34
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	2.2	-	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	7.5	-	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	24	-	< 10	13
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	25	-	< 10	54
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	59	-	< 10	67
PCBs by GC-MS		0.004				0.000	1	
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	0.003	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	0.043	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	0.61	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	0.14	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	1.5	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	2.1	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	2.2	-	-

Project / Site name: Stanborough Park

Lab Sample Number				1198867	1198868	1198907	1198908	1198909
Sample Reference				TP108	TP109	TP105	TP106	TP109
Sample Number				ES2	ES2	ES4	ES3	ES1
Depth (m)				0.25-0.25	0.35-0.35	0.50-0.50	0.60-0.60	0.15-0.15
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	-	-	-
Moisture Content	%	N/A	NONE	14	14	-	-	-
Total mass of sample received	kg	0.001	NONE	1.2	1.3	-	-	-
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	-	-	Chrysotile	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	Not-detected	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-	-	< 0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-	-	< 0.001	-
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.1	8.1	-	-	
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	340	-	-	-
Sulphide	mg/kg	1	MCERTS	-	< 1.0	-	-	-
Total Chloride	mg/kg	5	NONE	-	110	-	-	-
Total Sulphur	mg/kg	50	MCERTS	-	130	-	-	-
Total Organic Carbon (TOC)	%	0.1	MCERTS	2.9	0.4	-	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	0.74	< 0.05	-	-	-
Pyrene	mg/kg	0.05	MCERTS	0.73	< 0.05	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.59	< 0.05	-	-	-
Chrysene	mg/kg	0.05	MCERTS	0.44	< 0.05	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.0	< 0.05	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.29	< 0.05	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.72	< 0.05	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.41	< 0.05	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.12	< 0.05	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.48	< 0.05	-	-	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	5.53	< 0.80	-	-	-

Project / Site name: Stanborough Park

Lab Sample Number			_	1198867	1198868	1198907	1198908	1198909
Sample Reference				TP108	TP109	TP105	TP106	TP109
Sample Number		ES2	ES2	ES4	ES3	ES1		
Depth (m)				0.25-0.25	0.35-0.35	0.50-0.50	0.60-0.60	0.15-0.15
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids					•			•
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	16	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.0	1.5	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	< 0.2	-	-	-
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	37	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	21	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	29	16	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	16	31	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.6	< 1.0	-	-	-
Zinc (agua regia extractable)	mg/kg	1	MCERTS	50	63	-	-	-

Monoaromatics & Oxygenates

Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
FPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	-	-	-
PH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	-	-	-
PH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	-	-	-
PH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	-	-	-
FPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	27	< 10	-	-	-
IPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	34	< 10	-	-	-
PCBs by GC-MS								
CB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	-
CB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	-
CB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	-
CB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	-
CB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	-
CB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	-

Total Pebs by GC-M5								
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	-

Analytical Report Number: 19-37047 Project / Site name: Stanborough Park Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1198866	TP106	0.40-0.40	130	Loose Fibres	Chrysotile	< 0.001	< 0.001
1198867	TP108	0.25-0.25	122	Loose Fibres	Chrysotile	< 0.001	< 0.001
1198908	TP106	0.60-0.60	141	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Stanborough Park

Lab Sample Number	1198869	1198870					
Sample Reference			TP102	TP109			
Sample Number			ES3	ES3			
Depth (m)				0.70-0.70	1.30-1.30		
Date Sampled			Deviating	Deviating			
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				

General	Inorganics	

Total Cyanide	µg/l	10	ISO 17025	< 10	< 10		
Complex Cyanide	µg/l	10	ISO 17025	< 10	< 10		
Free Cyanide	µg/l	10	ISO 17025	< 10	< 10		
Sulphate as SO ₄	mg/l	0.1	ISO 17025	13.3	4.4		
Chloride	mg/l	0.15	ISO 17025	0.40	0.91		
Ammoniacal Nitrogen as N	µg/l	15	NONE	< 15	20		
Total Organic Carbon (TOC)	mg/l	0.1	NONE	5.32	5.18		
Hardness - Total	mgCaCO3/I	1	NONE	42.9	60.8		

Heavy Metals / Metalloids

Arsenic (dissolved)	µg/l	1.1	ISO 17025	1.3	< 1.1		
Boron (dissolved)	µg/l	10	ISO 17025	30	52		
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08		
Chromium (dissolved)	µg/l	0.4	ISO 17025	< 0.4	< 0.4		
Copper (dissolved)	µg/l	0.7	ISO 17025	3.1	2.2		
Lead (dissolved)	µg/l	1	ISO 17025	< 1.0	< 1.0		
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5		
Nickel (dissolved)	µg/l	0.3	ISO 17025	1.6	1.6		
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0	< 4.0		
Zinc (dissolved)	µg/l	0.4	ISO 17025	5.6	4.9		
		=				-	-
Calcium (dissolved)	mg/l	0.012	ISO 17025	16	22		
Magnesium (dissolved)	mg/l	0.005	ISO 17025	0.97	1.3		

Project / Site name: Stanborough Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1198862	TP102	ES2	0.50-0.50	Brown clay and sand with gravel and vegetation.
1198863	TP104	ES2	0.45-0.45	Brown clay and sand with gravel and vegetation.
1198864	TP104	ES3	0.80-0.80	Brown sand with gravel and stones.
1198865	TP105	ES5	0.90-0.90	Brown clay and sand with gravel and stones.
1198866	TP106	ES2	0.40-0.40	Brown loam and clay with gravel and vegetation.
1198867	TP108	ES2	0.25-0.25	Brown loam and clay with gravel and vegetation.
1198868	TP109	ES2	0.35-0.35	Brown loam and clay with gravel and vegetation.
1198907	TP105	ES4	0.50-0.50	-
1198908	TP106	ES3	0.60-0.60	-
1198909	TP109	ES1	0.15-0.15	-

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in leachate	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	w	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	extraction with water for 24 hours. Eluate filtered prior to analysis. and MTBE in soil Determination of BTEX in soil by headspace GC-MS. In-hou		L043-PL	w	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride in leachate	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Chloride in soil	bride in soil Determination of acid soluble chloride in soil by extraction with nitric acid, addition of silver nitrate followed by titration against thiocyanate.		L075-PL	D	NONE
Complex cyanide in leachate	extraction with nitric acid, addition of silver nitrat followed by titration against thiocyanate.		L040-PL	w	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Free cyanide in leachate	Determination of free cyanide by distillation followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS

Iss No 19-37047-2 Stanborough Park GE22715

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of leachates	Determination of hardness in leachates by calculation from calcium and magnesium.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	w	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Total organic carbon in leachate	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	NONE
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
TP102	2	S	19-37047	1198862	a			
TP102	3	L	19-37047	1198869	a			
TP104	2	S	19-37047	1198863	a			
TP104	3	S	19-37047	1198864	a			
TP105	4	S	19-37047	1198907	a			
TP105	5	S	19-37047	1198865	a			
TP106	2	S	19-37047	1198866	a			
TP106	3	S	19-37047	1198908	a			
TP108	2	S	19-37047	1198867	a			
TP109	1	S	19-37047	1198909	a			
TP109	2	S	19-37047	1198868	a			
TP109	3	L	19-37047	1198870	a			

John Keay Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: johnk@harrisongroupuk.com

Analytical Report Number : 19-37050

Project / Site name:	Stanborough Park	Samples received on:	11/04/2019
Your job number:	GE22715	Samples instructed on:	11/04/2019
Your order number:		Analysis completed by:	25/04/2019
Report Issue Number:	1	Report issued on:	25/04/2019
Samples Analysed:	3 leachate samples - 3 soil samples		

Signed:

Rexona Rahman Head of Customer Services For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils leachates waters asbestos	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	Results	10.	37050				
		19-	37030				
					Client:	HARRIGROU	IP
Location		Stanbo	rough Park				
Lab Reference (Sample Number)		110990	6 / 1109907		Landfill	Waste Acceptance	e Criteria
		119669	6 / 1198897			Limits	1
Sampling Date			2105.4		-	Stable Non- reactive	
Sample ID		11	P105 4		Inert Waste	HAZARDOUS	Hazardous
Depth (m)		0.5	50-0.50		Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis							
TOC (%)**	0.7				3%	5%	6%
Loss on Ignition (%) **	3.1						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	0.16				1		
Mineral Oil (mg/kg)	33			+	500		
Total PAH (WAC-17) (mg/kg)	6.9			+	100		
pH (units)**	10.8					>6	
Acid Neutralisation Capacity (mol / kg)	44					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1	Limit value	eaching test	
	10.1			10.1	using BS EN	12457-2 at L/S 10	l/ka (ma/ka)
(BS EN 12457 - 2 preparation utilising end over end leaching	mg/l			mg/kg	USING DS EN	12457-2 dt L/S 10	i/kg (mg/kg)
procedure)	ilig/i			iiig/kg			
Arsenic *	0.0021			0.0194	0.5	2	25
Barium *	0.0230			0.209	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0036			0.033	0.5	10	70
Copper *	0.050			0.45	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0010			0.0093	0.5	10	30
Nickel *	0.0099			0.090	0.4	10	40
Lead *	0.0019			0.018 < 0.017	0.5	10 0.7	50
Antimony * Selenium *	< 0.0017			< 0.017	0.06	0.7	5
Zinc *	0.0040			0.044	4	50	200
Chloride *	2.1			19	800	4000	25000
Fluoride	0.17			1.6	10	150	500
Sulphate *	34			310	1000	20000	50000
TDS*	250			2300	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	15.9			145	500	800	1000
Leach Test Information		† – – – – – – – – – – – – – – – – – – –	1	1	1		
Stone Content (%)	< 0.1						
Sample Mass (kg)	2.0						
Dry Matter (%)	90						
Moisture (%)	10						
Results are expressed on a dry weight basis, after correction for moi	sture content where	e applicable.			*= UKAS accredite	ed (liquid eluate ana	lysis only)
Stated limits are for guidance only and i2 cannot be held responsible	for any discrepance	ies with current lee	gislation		** = MCERTS accr	edited	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	Results	10-	37050						
		15-							
					Client:	HARRIGROU	JP		
Location		Stanbor	ough Park		1 1611				
Lab Reference (Sample Number)		1198898	/ 1198899		Landfill	Waste Acceptane Limits	ce Criteria		
Sampling Date						Stable Non-			
Sample ID		TP	106 3			reactive			
Depth (m)		0.6	0-0.60		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill		
Solid Waste Analysis									
TOC (%)**	0.5				3%	5%	6%		
Loss on Ignition (%) **	3.0						10%		
BTEX (μg/kg) **	< 10				6000				
Sum of PCBs (mg/kg) **	0.93			+	1				
Mineral Oil (mg/kg)	< 10			+	500				
Total PAH (WAC-17) (mg/kg)	6.7				100				
pH (units)**	11.1					>6			
Acid Neutralisation Capacity (mol / kg)	100					To be evaluated	To be evaluated		
Eluate Analysis	10:1			10:1	Limit values for compliance leaching test				
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg		using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	< 0.0011			< 0.0110	0.5	2	25		
Barium *	0.0589			0.493	20	100	300		
Cadmium *	< 0.0001			< 0.0008	0.04	1	5		
Chromium *	0.0035			0.029	0.5	10	70		
Copper *	0.010			0.084	2	50	100		
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2		
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30		
Nickel *	0.0032			0.027	0.4	10	40		
Lead *	< 0.0010			< 0.010	0.5	10	50		
Antimony *	< 0.0017		-	< 0.017	0.06	0.7	5		
Selenium *	< 0.0040			< 0.040	0.1	0.5	7		
Zinc * Chloride *	0.0024			0.020	4 800	50 4000	200		
Fluoride	2.0			1.1	10	150	25000 500		
Sulphate *	33			280	1000	20000	50000		
TDS*	390			3300	4000	60000	100000		
Phenol Index (Monhydric Phenols) *	0.010			< 0.10	1	-	-		
DOC	6.18			51.8	500	800	1000		
Leach Test Information					İ	1			
Stone Content (%)	39			1					
Sample Mass (kg)	2.0								
Dry Matter (%)	87								
Moisture (%)	13								
Results are expressed on a dry weight basis, after correction for moi	sture content where	e applicable.			*= UKAS accredite	ed (liquid eluate ana	lysis only)		
Stated limits are for guidance only and i2 cannot be held responsible	for any discrepend	es with current leg	islation		** = MCERTS accr	ediited			

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	Results	10.	37050		1			
inciport no.		19-	5,050					
					Client:	HARRIGROU	IP	
Location		Stanbo	rough Park					
Lab Reference (Sample Number)		119890	0 / 1198901		Landfill Waste Acceptance Criteria			
Sampling Date		115050	57 1150501			Limits Stable Non-		
Sampling Date Sample ID		TF	2109 1		-	reactive		
Depth (m)	0.15-0.15			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill		
Solid Waste Analysis								
TOC (%)**	3.4				3%	5%	6%	
Loss on Ignition (%) **	6.6						10%	
BTEX (μg/kg) **	< 10		_		6000			
Sum of PCBs (mg/kg) **	< 0.007				1			
Mineral Oil (mg/kg)	< 10				500			
Total PAH (WAC-17) (mg/kg) pH (units)**	13 7.9				100			
			-	-		>6		
Acid Neutralisation Capacity (mol / kg)	5.4					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit values for compliance leaching test			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0056			0.0516	0.5	2	25	
Barium *	0.0105			0.0968	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	< 0.0004			< 0.0040	0.5	10	70	
Copper *	0.0069			0.064	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0029			0.0273	0.5	10	30	
Nickel *	0.0021			0.019	0.4	10	40	
Lead *	0.0013			0.012	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040	-	-	< 0.040	0.1	0.5	7	
Zinc *	0.0030			0.028	4	50	200	
Chloride * Fluoride	1.4	-	-	13 10	800 10	4000 150	25000 500	
Sulphate *	3.7			35	1000	20000	50000	
TDS*	81			750	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	8.79			81.3	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.2							
Dry Matter (%)	92							
Moisture (%)	8.2							
Results are expressed on a dry weight basis, after correction for mois	sture content where	e applicable.			*= UKAS accredite	ed (liquid eluate ana	lysis only)	
Stated limits are for guidance only and i2 cannot be held responsible	for any discrepenc	ioc with current lo	niclation		** = MCERTS accr	odiitod		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

Project / Site name: Stanborough Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1198896	TP105	4	0.50-0.50	Brown loam and sand with gravel and vegetation.
1198898	TP106	3	0.60-0.60	Brown clay and sand with gravel and stones.
1198900	TP109	1	0.15-0.15	Brown loam and clay with gravel and vegetation.

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance ^{***}	L046-PL	W	NONE
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	w	NONE
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L047-PL	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	w	ISO 17025
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	NONE

Iss No 19-37050-1 Stanborough Park GE22715

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon (Automated) in soil		In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests"	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
TP105	4	1 L	19-37050	1198897	a			
TP105	4	4 S	19-37050	1198896	a			
TP106	:	3 L	19-37050	1198899	a			
TP106		3 S	19-37050	1198898	а			
TP109	-	1 L	19-37050	1198901	a			
TP109	-	1 S	19-37050	1198900	а			

John Keay Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: johnk@harrisongroupuk.com

Analytical Report Number : 19-37740

Project / Site name:	Stanborough Park	Samples received on:	16/04/2019
Your job number:	GL22715	Samples instructed on:	16/04/2019
Your order number:		Analysis completed by:	25/04/2019
Report Issue Number:	1	Report issued on:	25/04/2019
Samples Analysed:	3 leachate samples - 7 soil samples		

Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	waters	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Project / Site name: Stanborough Park

Lab Sample Number				1202537	1202538	1202539	1202540	1202541
Sample Reference				WS101	WS103	WS105	WS108	WS111
Sample Number				ES2	ES2	ES1	ES3	ES1
Depth (m)				0.60-0.60	0.40-0.40	0.20-0.20	0.60-0.60	0.20-0.20
Date Sampled				12/04/2019	12/04/2019	12/04/2019	12/04/2019	12/04/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	36	< 0.1
Moisture Content	%	N/A	NONE	13	9.2	8.2	5.8	8.1
Total mass of sample received	kg	0.001	NONE	0.77	1.1	1.2	1.3	1.4
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile & Amosite	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	Not-detected	-	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	-	-	-	-
General Inorganics	_			_	_	_		_
pH - Automated	pH Units	N/A	MCERTS	10.6	8.8	11.2	-	8.4
Total Sulphate as SO ₄	mg/kg	50	MCERTS	6000	320	6100	260	680
Sulphide	mg/kg	1	MCERTS	34	< 1.0	1.0	< 1.0	< 1.0
Total Chloride	mg/kg	5	NONE	35	< 5	71	35	35
Total Sulphur	mg/kg	50	MCERTS	2500	180	2700	160	390
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.6	0.4	0.3	-	1.6

Project / Site name: Stanborough Park

Lab Sample Number				1202537	1202538	1202539	1202540	1202541
Sample Reference				WS101	WS103	WS105	WS108	WS111
Sample Number				ES2	ES2	ES1	ES3	ES1
Depth (m)				0.60-0.60	0.40-0.40	0.20-0.20	0.60-0.60	0.20-0.20
Date Sampled				12/04/2019	12/04/2019	12/04/2019	12/04/2019	12/04/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.26	-	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.2	-	0.55
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.1	-	0.52
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.58	-	0.25
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.45	-	0.29
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.51	-	0.31
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.32	-	0.19
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.47	-	0.27
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.23	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.28	-	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	5.37	-	2.38
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	9.1	14	-	14
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	0.8	1.7	-	0.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	0.2	< 0.2	-	0.3
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	-	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	23	25	-	23
Copper (aqua regia extractable)	mg/kg	1	MCERTS	36	13	20	-	20
Lead (aqua regia extractable)	mg/kg	1	MCERTS	43	17	27	-	37
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	-	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	16	17	18	-	17
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.1	< 1.0	-	1.1
The s (second sec			MOTOTO	150	50			61

Monoaromatics & Oxygenates

Zinc (aqua regia extractable)

Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	< 1.0

MCERTS

1

< 1.0 150

1.1 59

55

mg/kg mg/kg

61

Project / Site name: Stanborough Park

Lab Sample Number				1202537	1202538	1202539	1202540	1202541
Sample Reference				WS101	WS103	WS105	WS108	WS111
Sample Number				ES2	ES2	ES1	ES3	ES1 0.20-0.20
Depth (m)				0.60-0.60	0.40-0.40	0.20-0.20	0.60-0.60	
Date Sampled				12/04/2019	12/04/2019	12/04/2019	12/04/2019	12/04/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								-
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	13	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	36	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	10	< 8.0	14	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	100	< 8.0	91	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	110	< 10	150	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	8.4	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	25	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	36	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	77	< 10	120	-	37
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	85	< 10	190	-	45

Project / Site name: Stanborough Park

Lab Sample Number				1202545	1202546		
Sample Reference				WS108	WS109		
Sample Number				ES2	ES2		
Depth (m)		0.30-0.30	0.40-0.40				
Date Sampled	12/04/2019	12/04/2019					
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	-	-		T
Moisture Content	%	N/A	NONE	-	-		
Total mass of sample received	kg	0.001	NONE	-	-		
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	ľ	1
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	1	1
Asbestos Quantification Total	%	0.001	ISO 17025	-	-		
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	-	-	T	1
Tetal Culshata as CO		E0	MCEDTC		1	1	1

pH - Automated	pH Units	N/A	MCERTS	-	-		
Total Sulphate as SO₄	mg/kg	50	MCERTS	-	-		
Sulphide	mg/kg	1	MCERTS	-	-		
Total Chloride	mg/kg	5	NONE	-	-		
Total Sulphur	mg/kg	50	MCERTS	-	-		
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	-		

Project / Site name: Stanborough Park

Lab Sample Number				1202545	1202546		
Sample Reference				WS108	WS109		
Sample Number				ES2	ES2		
Depth (m)				0.30-0.30	0.40-0.40		
Date Sampled				12/04/2019	12/04/2019		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	-	-		
Acenaphthylene	mg/kg	0.05	MCERTS	-	-		
Acenaphthene	mg/kg	0.05	MCERTS	-	-		
Fluorene	mg/kg	0.05	MCERTS	-	-		
Phenanthrene	mg/kg	0.05	MCERTS	-	-		
Anthracene	mg/kg	0.05	MCERTS	-	-		
Fluoranthene	mg/kg	0.05	MCERTS	-	-		
Pyrene	mg/kg	0.05	MCERTS	-	-		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-		
Chrysene	mg/kg	0.05	MCERTS	-	-		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-		

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-		

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Boron (water soluble)	mg/kg	0.2	MCERTS	-	-		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	-		
Chromium (hexavalent)	mg/kg	4	MCERTS	-	-		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	-		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	-		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	-		

Monoaromatics & Oxygenates

Benzene	ug/kg	1	MCERTS	-	-		
Toluene	µg/kg	1	MCERTS	-	-		
Ethylbenzene	µg/kg	1	MCERTS	-	-		
p & m-xylene	µg/kg	1	MCERTS	-	-		
o-xylene	µg/kg	1	MCERTS	-	-		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-		

Project / Site name: Stanborough Park

Lab Sample Number				1202545	1202546	1	1
Sample Reference				WS108	WS109		
Sample Number				ES2	ES2		
Depth (m)				0.30-0.30	0.40-0.40		
Date Sampled				12/04/2019	12/04/2019		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	I	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-		
						-	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	Į	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-		

Analytical Report Number: 19-37740 Project / Site name: Stanborough Park Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1202537	WS101	0.60-0.60	109	Loose Fibres	Chrysotile & Amosite	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Stanborough Park

Lab Sample Number				1202542	1202543	1202544	
Sample Reference				WS108	WS109	WS111	
Sample Number				ES4	ES4	ES2	
Depth (m)				1.50-1.50	1.50-1.50	0.50-0.50	
Date Sampled				12/04/2019	12/04/2019	12/04/2019	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				

General Inorganics

General Inorganics							
Total Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	
Complex Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	
Free Cyanide	µg/l	10	ISO 17025	< 10	< 10	< 10	
Sulphate as SO ₄	mg/l	0.1	ISO 17025	4.4	59.2	13.8	
Chloride	mg/l	0.15	ISO 17025	2.4	1.3	1.1	
Ammoniacal Nitrogen as N	µg/l	15	NONE	36	9600	33	
Total Organic Carbon (TOC)	mg/l	0.1	NONE	7.18	6.12	5.90	
Hardness - Total	mgCaCO3/I	1	NONE	54.8	193	77.4	

Heavy Metals / Metalloids

Arsenic (dissolved)	µg/l	1.1	ISO 17025	2.5	7.3	< 1.1	
Boron (dissolved)	µg/l	10	ISO 17025	< 10	25	29	
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08	
Chromium (dissolved)	µg/l	0.4	ISO 17025	2.8	< 0.4	1.0	
Copper (dissolved)	µg/l	0.7	ISO 17025	6.7	3.0	20	
Lead (dissolved)	µg/l	1	ISO 17025	< 1.0	< 1.0	2.1	
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	
Nickel (dissolved)	µg/l	0.3	ISO 17025	3.1	1.1	1.8	
Selenium (dissolved)	µg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0	
Zinc (dissolved)	µg/l	0.4	ISO 17025	8.7	2.9	5.8	
Calcium (dissolved)	mg/l	0.012	ISO 17025	20	74	28	
Magnesium (dissolved)	mg/l	0.005	ISO 17025	1.2	1.8	1.9	

Project / Site name: Stanborough Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1202537	WS101	ES2	0.60-0.60	Light brown sand with gravel and plastic.
1202538	WS103	ES2	0.40-0.40	Light brown clay and sand with gravel.
1202539	WS105	ES1	0.20-0.20	Light brown sand with gravel.
1202540	WS108	ES3	0.60-0.60	Light brown sandy clay with gravel and stones.
1202541	WS111	ES1	0.20-0.20	Brown loam and sand with vegetation and gravel.
1202545	WS108	ES2	0.30-0.30	-
1202546	WS109	ES2	0.40-0.40	-

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in leachate	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	w	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	w	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride in leachate	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Chloride in soil	Determination of acid soluble chloride in soil by extraction with nitric acid, addition of silver nitrate followed by titration against thiocyanate.	In-house method	L075-PL	D	NONE
Complex cyanide in leachate	Determination of complex cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L040-PL	w	ISO 17025
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Free cyanide in leachate	Determination of free cyanide by distillation followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	w	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS

Iss No 19-37740-1 Stanborough Park GL22715

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025	
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS	
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS	
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025	
Total Hardness of leachates	Determination of hardness in leachates by calculation from calcium and magnesium.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	w	NONE	
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS	
Total organic carbon in leachate Determination of dissolved organic carbon in leachate by TOC/DOC NDIR analyser.		In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	NONE	
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS	
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS	
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS	

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID Sam	nple Type Jo	ob	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
WS105	1 S	19	9-37740	1202539	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
WS105	1 S	19	9-37740	1202539	b	TPHCWG (Soil)	L088/76-PL	b

John Keay Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: johnk@harrisongroupuk.com

Analytical Report Number : 19-37741

Project / Site name:	Stanborough Park	Samples received on:	16/04/2019
Your job number:	GL22715	Samples instructed on:	16/04/2019
Your order number:		Analysis completed by:	30/04/2019
Report Issue Number:	1	Report issued on:	30/04/2019
Samples Analysed:	2 10:1 WAC Samples		

Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils leachates waters asbestos	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		19-	37741					
-								
					Client:	HARRIGROU	JP	
Location		Stanbo	rough Park		-			
			-		Landfill	Waste Acceptane	ce Criteria	
Lab Reference (Sample Number)	1202547 / 1202548					Limits		
Sampling Date	12/04/2019				Stable Non- reactive			
Sample ID Depth (m)	WS108 2 0.30-0.30			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill		
Solid Waste Analysis								
TOC (%)**	1.1				3%	5%	6%	
Loss on Ignition (%) **	3.3						10%	
BTEX (µg/kg) **	< 10				6000			
Sum of PCBs (mg/kg) **	< 0.007		_		1			
Mineral Oil (mg/kg)	< 10		+	+	500			
Total PAH (WAC-17) (mg/kg)	< 0.9		_		100			
pH (units)**	7.7					>6		
Acid Neutralisation Capacity (mol / kg)	1.0					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit values for compliance leaching test			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic *	0.0070			0.0662	0.5	2	25	
Barium *	0.0073			0.0699	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0019			0.018	0.5	10	70	
Copper *	0.0038			0.036	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30	
Nickel *	0.0010			0.0094	0.4	10	40	
Lead *	0.0018		-	0.017	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium * Zinc *	< 0.0040			< 0.040 0.038	0.1	0.5	7 200	
Chloride *	0.0040		+	10	800	4000	25000	
Fluoride	0.20			1.9	10	150	500	
Sulphate *	1.6			15	1000	20000	50000	
TDS*	31			290	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	6.89			65.5	500	800	1000	
Leach Test Information				1				
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.3							
Dry Matter (%)	96							
Moisture (%)	3.6							
		<u> </u>						
Results are expressed on a dry weight basis, after correction for mois					*= UKAS accredit	ed (liquid eluate ana	lysis only)	
Stated limits are for guidance only and i2 cannot be held responsible	for any discrepand	ies with current leg	gislation		** = MCERTS accr	edited		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	Reputes	19-	37741					
-								
					Cliente			
					Client:	HARRIGROU	16	
Location		Stanbor	rough Park					
Lab Reference (Sample Number)					Landfill Waste Acceptance Criteria			
			9 / 1202550			Limits		
Sampling Date Sample ID			04/2019		-	Stable Non- reactive		
Depth (m)	0.40-0.40			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill		
Solid Waste Analysis								
TOC (%)**	1.0	-	_		3%	5%	6%	
Loss on Ignition (%) **	2.8		-	-			10%	
BTEX (μg/kg) **	< 10		_		6000			
Sum of PCBs (mg/kg) ** Mineral Oil (mg/kg)	< 0.007				1 500			
Mineral Oli (mg/kg) Total PAH (WAC-17) (mg/kg)	< 10		+	1	100			
pH (units)**	7.6		+			>6		
Acid Neutralisation Capacity (mol / kg)	5.6					To be evaluated	To be evaluated	
Actu Neutralisation Capacity (nor / kg)	5.0							
Eluate Analysis	10:1			10:1		es for compliance l		
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (m			
Arsenic *	0.0018			0.0160	0.5	2	25	
Barium *	0.0074			0.0675	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0006			0.0051	0.5	10	70	
Copper *	0.0038			0.035	2	50	100	
Mercury *	< 0.0005	-	-	< 0.0050	0.01	0.2	2	
Molybdenum *	0.0008		_	0.0071	0.5	10	30	
Nickel * Lead *	< 0.0003		_	< 0.0030 0.042	0.4	10	40	
Antimony *	0.0046	ł	-	< 0.042	0.5	10	50 5	
Selenium *	< 0.0017	ł	-	< 0.017	0.00	0.7	7	
Zinc *	0.0016			0.015	4	50	200	
Chloride *	1.2			11	800	4000	25000	
Fluoride	0.82			7.5	10	150	500	
Sulphate *	1.6			15	1000	20000	50000	
TDS*	64			590	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	5.80			52.9	500	800	1000	
Leach Test Information				1				
Stone Content (%)	< 0.1	1	1	1		1		
Sample Mass (kg)	1.2							
Dry Matter (%)	88							
Moisture (%)	12							
Results are expressed on a dry weight basis, after correction for mois	sture content where	applicable.	1	1	*= UKAS accredit	ed (liquid eluate ana	lvsis only)	
	for any discrepenc				** = MCERTS accr		,	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

Project / Site name: Stanborough Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1202547	WS108	ES2	0.30-0.30	Brown loam and sand with gravel.
1202549	WS109	ES2	0.40-0.40	Brown loam and sand with gravel and vegetation.

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	W	NONE	
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE	
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS	
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025	
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE	
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025	
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L047-PL	D	MCERTS	
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025	
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE	
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE	
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	w	ISO 17025	
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS	
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS	
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025	
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	w	NONE	

Iss No 19-37741-1 Stanborough Park GL22715

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
soil		In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests"	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Martin Cooper Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: GL@harrisongroupuk.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 19-38993

Replaces Analytical Report Number : 19-38993, issue no. 1

Project / Site name:	Stanborough Park	Samples received on:	26/04/2019
Your job number:	GL22715	Samples instructed on:	26/04/2019
Your order number:		Analysis completed by:	09/05/2019
Report Issue Number:	2	Report issued on:	09/05/2019
Samples Analysed:	14 soil samples - 3 leachate samples		

Signed:

Zina Abdul Razzak Assistant Quality/Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils leachates waters asbestos	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Stanborough Park

Image: constraint of the second sec	Status NONE NONE ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 MCERTS MCERTS	TP102 ES1 0.13-0.13 08/04/2019 None Supplied - - - - - - - - - - - - - - - - - - -	TP105 ES1 0.02-0.02 08/04/2019 None Supplied - - - - - - - - - - - - - - - - - - -	TP106 ES1 0.20-0.20 08/04/2019 None Supplied - - - - - - - - - - - - - - - - - - -	WS101 ES1 0.40-0.40 12/04/2019 None Supplied < 0.1 20 1.3 -	WS106 ES3 0.60-0.60 10/04/2019 None Supplied < 0.1 7.3 1.2 Chrysotile Detected < 0.001 < 0.001 < 0.001 11.1 - - - 0.5
s N/A 550 0.1 0.001 0.001 0.001 0.001 0.001 5 50 0.1	NONE NONE NONE ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	0.13-0.13 08/04/2019 None Supplied - - - - Not-detected - - - - - - - - - - - - -	0.02-0.02 08/04/2019 None Supplied - - - - Not-detected - - - - - - - - - - - - -	0.20-0.20 08/04/2019 None Supplied - - - - - - - - - - - - -	0.40-0.40 12/04/2019 None Supplied < 0.1 20 1.3 - 	0.60-0.60 10/04/2019 None Supplied < 0.1 7.3 1.2 Chrysotile Detected < 0.001 < 0.001 11.1 - - - 0.5
s N/A 550 0.1 0.001 0.001 0.001 0.001 0.001 5 50 0.1	NONE NONE NONE ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	08/04/2019 None Supplied	08/04/2019 None Supplied Not-detected	08/04/2019 None Supplied	12/04/2019 None Supplied	10/04/2019 None Supplied < 0.1 7.3 1.2 Chrysotile Detected < 0.001 < 0.001 < 0.001 11.1 - - - 0.5
s N/A 550 0.1 0.001 0.001 0.001 0.001 0.001 5 50 0.1	NONE NONE NONE ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied < 0.1 7.3 1.2 Chrysotile Detected < 0.001 < 0.001 - - - - 0.5
s N/A 550 0.1 0.001 0.001 0.001 0.001 0.001 5 50 0.1	NONE NONE NONE ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	< 0.1 20 1.3 - - - - - - - - - - - - -	 < 0.1 7.3 1.2 Chrysotile Detected < 0.001 < 0.001 < 0.001 < 1.1.1 - /ul>
s N/A 550 0.1 0.001 0.001 0.001 0.001 0.001 5 50 0.1	NONE NONE NONE ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- Not-detected - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - Chrysotile Detected 0.002 0.002 - - - - - - - - -	20 1.3 - - - - - - - - - - - - -	7.3 1.2 Chrysotile Detected < 0.001 < 0.001 - - - - 0.5
N/A 0.001 N/A N/A 0.001 0.001 s N/A 50 1 5 0.01 0.05 0.05	NONE NONE ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- Not-detected - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - Chrysotile Detected 0.002 0.002 - - - - - - - - -	20 1.3 - - - - - - - - - - - - -	7.3 1.2 Chrysotile Detected < 0.001 < 0.001 - - - - 0.5
0.001 N/A N/A 0.001 0.001 5 5 50 0.1 0.05 0.05	NONE ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- Not-detected - - - - - - - - - - - - - - - - - - -	- Not-detected - - - - - - - - - - - - - - - -	- Chrysotile Detected 0.002 0.002		1.2 Chrysotile Detected < 0.001 < 0.001 11.1 - - - 0.5
s N/A 0.001 0.001 50 1 50 0.1 0.05 0.05	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- Not-detected - - - - - - - - - - - - - - - - - - -	- Not-detected - - - - - - - - - - - - - - - - - - -	Chrysotile Detected 0.002 - - - - - - - - - -		Chrysotile Detected < 0.001 < 0.001 11.1 - - - 0.5
N/A 0.001 0.001 s N/A 50 1 5 0.1 0.05 0.05	ISO 17025 ISO 17025 ISO 17025 ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- - - - - - - - -	- - - - - - - - -	Detected 0.002 0.002 - - - - - - - -		Detected < 0.001 < 0.001 - - - - - 0.5
N/A 0.001 0.001 s N/A 50 1 5 0.1 0.05 0.05	ISO 17025 ISO 17025 ISO 17025 ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- - - - - - - - -	- - - - - - - - -	Detected 0.002 0.002 - - - - - - - -		Detected < 0.001 < 0.001 - - - - - 0.5
s N/A 50 1 55 50 0.1 0.05 0.05	ISO 17025 ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	- - - - - - - - -	- - - - - - - - -	0.002 0.002 - - - - - -	- - - - - - - - -	< 0.001 < 0.001 - - - - - 0.5
0.001 s N/A 50 1 5 50 0.1 0.1	ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS		- - - - - -	0.002 - - - - - -		< 0.001
s N/A 50 1 5 50 0.1 0.05 0.05	MCERTS MCERTS MCERTS NONE MCERTS MCERTS MCERTS		- - - - - -			11.1 - - - 0.5
50 1 5 50 0.1 0.05 0.05	MCERTS MCERTS NONE MCERTS MCERTS MCERTS		- - - - -	- - - - -		- - - - 0.5
50 1 5 50 0.1 0.05 0.05	MCERTS MCERTS NONE MCERTS MCERTS MCERTS		- - - - -	- - - - -		- - - - 0.5
50 1 5 50 0.1 0.05 0.05	MCERTS MCERTS NONE MCERTS MCERTS MCERTS		- - - - -	- - - - -		- - - - 0.5
1 50 0.1 0.05 0.05	MCERTS NONE MCERTS MCERTS MCERTS MCERTS		- - - - -	-		- - - 0.5
5 50 0.1 0.05 0.05	NONE MCERTS MCERTS MCERTS MCERTS	- -	-		-	- - 0.5
50 0.1 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	- -	-	-	-	- 0.5
0.1	MCERTS MCERTS MCERTS	-	-	-	-	0.5
0.05	MCERTS MCERTS	-	-		-	
0.05	MCERTS			-	-	1
0.05	MCERTS			-	-	1
0.05	MCERTS			-	-	
		-			1	< 0.05
			-	-	-	< 0.05
0.05	MCERTS	-	-	-	-	< 0.05
0.05	MCERTS	-	-	-	-	< 0.05
0.05	MCERTS	-	-	-	-	0.48
0.05	MCERTS	-	-	-	-	< 0.05
0.05	MCERTS	-	-	-	-	0.95
0.05	MCERTS	-	-	-	-	0.91
0.05	MCERTS	-	-	-	-	0.51
0.05	MCERTS	-	-	-	-	0.30
0.05	MCERTS	-	-	-	-	0.32
0.05	MCERTS	-	-	-	-	0.27
0.05	MCERTS	-	-	-	-	0.36
			-		-	< 0.05
						< 0.05
0.05	MCERTS	-	-	-	-	< 0.05
	105070					4.10
0.8	MCERTS	-	-	-	-	4.10
1	MCEDITC					20
			-			1.5
			-		-	1.5 < 0.2
						< 4.0
		-	-			23
		-	-		-	17
						56
						< 0.3
					-	
					-	15 < 1.0
1		-	-	-		< 1.0 45
	g 0.05 g 0.05 g 0.05 g 0.05 g 0.05 g 0.2 gg 1 gg 1 gg 1 gg 1 gg 0.3 gg 1 gg 1	g 0.05 MCERTS g 0.2 MCERTS g 0.2 MCERTS g 0.2 MCERTS g 0.2 MCERTS g 1 MCERTS	g 0.05 MCERTS - g 0.05 MCERTS - g 0.05 MCERTS - g 0.05 MCERTS - g 0.8 MCERTS - g 0.2 MCERTS - g 0.2 MCERTS - g 0.2 MCERTS - g 1 MCERTS -	g 0.05 MCERTS - - g 0.05 MCERTS - - - g 0.8 MCERTS - - - g 0.2 MCERTS - - - g 0.2 MCERTS - - - g 0.2 MCERTS - - - g 1 MCERTS - -	g 0.05 MCERTS - - - g 1 MCERTS - - - g 0.2 MCERTS - - - g 0.2 MCERTS - - - g 1 MCERTS - - -	g 0.05 MCERTS -

Project / Site name: Stanborough Park

Lab Sample Number				1210042	1210043	1210044	1210045	1210046
Sample Reference				TP102	TP105	TP106	WS101	WS106
Sample Number				ES1	ES1	ES1	ES1	ES3
Depth (m)				0.13-0.13	0.02-0.02	0.20-0.20	0.40-0.40	0.60-0.60
Date Sampled				08/04/2019	08/04/2019	08/04/2019	12/04/2019	10/04/2019
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	ug/kg	1	MCERTS	-	-	-	-	< 1.0
Toluene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
o-xylene	µg/kg	1	MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-	< 1.0

Petroleum Hydrocarbons

PCB Congener 169

PCB Congener 189

Total PCBs

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	28
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	37
PCBs		i	1					
PCB Congener 077	mg/kg	0.001	NONE	-	-	-	< 0.001	-
PCB Congener 081	mg/kg	0.001	NONE	-	-	-	< 0.001	-
PCB Congener 105	mg/kg	0.001	NONE	-	-	-	< 0.001	-
PCB Congener 114	mg/kg	0.001	NONE	-	-	-	< 0.001	-
PCB Congener 118	mg/kg	0.001	NONE	-	-	-	< 0.001	-
PCB Congener 123	mg/kg	0.001	NONE	-	-	-	< 0.001	-
PCB Congener 126	mg/kg	0.001	NONE	-	-	-	< 0.001	-
PCB Congener 156	mg/kg	0.001	NONE	-	-	-	< 0.001	-
PCB Congener 157	mg/kg	0.001	NONE	-	-	-	< 0.001	-
PCB Congener 167	mg/kg	0.001	NONE	-	-	-	< 0.001	-
DCD C		0.001					0.004	1

< 0.001 < 0.001

< 0.012

0.001

0.001

mg/kg 0.012 NONE

mg/kg

mg/kg

NONE

NONE

Project / Site name: Stanborough Park

Lab Gaunda Number				1010047	1210040	1210040	1210051	1210052
Lab Sample Number Sample Reference				1210047 WS109	1210048 HP1	1210049 TP101	1210051 TP103	1210053 TP107
Sample Reference Sample Number				ES3	ES1	ES2	ES1	ES2
Depth (m)				0.70-0.70	0.20-0.20	0.50-0.50	0.20-0.20	0.40-0.40
Date Sampled				12/04/2019	23/04/2019	23/04/2019	23/04/2019	23/04/2019
Time Taken				None Supplied				
				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	9.6	13	7.8	8.1	5.5
Total mass of sample received	kg	0.001	NONE	0.44	1.7	1.3	1.2	2.0
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics							1	
pH - Automated	pH Units	N/A	MCERTS	7.7	7.9	8.4	9.3	7.8
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	870	-	-	250
Sulphide	mg/kg	1	MCERTS	-	< 1.0	-	-	1.1
Total Chloride	mg/kg	5	NONE	-	280	-	-	390
Total Sulphur	mg/kg	50	MCERTS	-	560	-	-	190
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.9	3.8	0.8	2.8	0.8
Considered PAUs								
Speciated PAHs		0.05	MOTOTO	0.05	. 0.05	. 0.05	. 0.05	. 0.05
Naphthalene	mg/kg	0.05	MCERTS	< 0.05 < 0.05				
Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.40	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.13	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.2	0.51	0.75	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	0.99	0.48	0.80	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.68	0.23	0.51	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.55	0.28	0.36	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.52	0.24	0.45	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.47	0.23	0.36	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.61	0.23	0.48	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.26	< 0.05	0.25	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.46	< 0.05	0.42	< 0.05
Total PAH					-	-	-	-
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	6.23	2.20	4.38	< 0.80
Heavy Metals / Metalloids							1	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	11	10	13	11	13
Boron (water soluble)	mg/kg	0.2	MCERTS	0.6	1.1	0.9	2.0	0.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.5	0.4	0.3	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	18	24	18	23
Copper (aqua regia extractable)	mg/kg	1	MCERTS	26	17	31	19	6.0
Lead (aqua regia extractable)	mg/kg	1	MCERTS	31	36	25	23	14
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	15	12	19	13	19
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.7	< 1.0	1.7	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	48	59	110	54	29

Project / Site name: Stanborough Park

Lab Sample Number				1210047	1210048	1210049	1210051	1210053
Sample Reference				WS109	HP1	TP101	TP103	TP107
Sample Number				ES3	ES1	ES2	ES1	ES2
Depth (m)				0.70-0.70	0.20-0.20	0.50-0.50	0.20-0.20	0.40-0.40
Date Sampled				12/04/2019	23/04/2019	23/04/2019	23/04/2019	23/04/2019
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	5.2	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	11	< 10	12	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	47	13	40	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	59	16	57	< 10
PCBs								
PCB Congener 077	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 081	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 105	mg/kg	0.001	NONE	-	-	-	-	-

PCB Congener 081	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 105	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 114	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 118	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 123	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 126	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 156	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 157	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 167	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 169	mg/kg	0.001	NONE	-	-	-	-	-
PCB Congener 189	mg/kg	0.001	NONE	-	-	-	-	-
Total PCBs	mg/kg	0.012	NONE	-	-	-	-	-

Project / Site name: Stanborough Park

Lab Sample Number				1210055	1210056	1210057	1210058	
Sample Reference Sample Number				TP110 ES1	TP110 ES3	WS102 ES3	WS108 ES3	
•				0.20-0.20	0.60-0.60	1.00-1.30	0.60-0.60	
Depth (m)				23/04/2019	23/04/2019	10/04/2019	12/04/2019	
Date Sampled Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
	-		1	None Supplieu	None Supplieu	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	39	36	
Moisture Content	%	N/A	NONE	12	9.5	6.1	5.8	
Total mass of sample received	kg	0.001	NONE	1.8	1.7	1.2	1.3	
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	
General Inorganics							· · · · · · · · · · · · ·	
pH - Automated	pH Units	N/A	MCERTS	8.0	8.1	8.2	6.9	
Total Sulphate as SO₄	mg/kg	50	MCERTS	1000	-	-	-	
Sulphide	mg/kg	1	MCERTS	1.1	-	-	-	
Total Chloride	mg/kg	5	NONE	71	-	-	-	
Total Sulphur	mg/kg	50	MCERTS	640				
Total Organic Carbon (TOC)	%	0.1	MCERTS	3.3	2.9	0.3	0.8	
Speciated PAHs								
Naphthalene		0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthylene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	
Phenanthrene	mg/kg	0.05	MCERTS	1.4	0.47	< 0.05	< 0.05	
Anthracene	mg/kg	0.05	MCERTS	0.30	< 0.05	< 0.05	< 0.05	
Fluoranthene	mg/kg	0.05	MCERTS	4.6	1.6	< 0.05	< 0.05	
Pyrene	mg/kg	0.05	MCERTS	4.2	1.6	< 0.05	< 0.05	
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.9	0.78	< 0.05	< 0.05	
Chrysene	mg/kg	0.05	MCERTS	2.4	0.96	< 0.05	< 0.05	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.6	1.1	< 0.05	< 0.05	
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.5	0.44	< 0.05	< 0.05	_
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.4	0.89	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.3	0.48	< 0.05	< 0.05	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.37	< 0.05	< 0.05	< 0.05	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2.0	0.73	< 0.05	< 0.05	
Total PAH					1		-	
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	25.0	9.05	< 0.80	< 0.80	
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	22	23	9.3	36	
Boron (water soluble)	mg/kg	0.2	MCERTS	1.8	1.3	0.4	0.5	_
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.5	0.4	0.5	< 0.2	
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	23	25	26	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	76	18	17	7.4	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	120	45	14	7.9	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.6	< 0.3	< 0.3	< 0.3	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	20	33	19	
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.8	< 1.0	1.8	< 1.0	
Zinc (aqua regia extractable)	5. 5		MCERTS	140	60	42	27	

Project / Site name: Stanborough Park

Lab Sample Number				1210055	1210056	1210057	1210058	
Sample Reference				TP110	TP110	WS102	WS108	
Sample Number				ES1	ES3	ES3	ES3	
Depth (m)				0.20-0.20	0.60-0.60	1.00-1.30	0.60-0.60	
Date Sampled					23/04/2019	10/04/2019	12/04/2019	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	9.3	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	28	24	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	100	62	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	130	95	< 10	< 10	
PCBs								
PCB Congener 077	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 081	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 105	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 114	mg/kg	0.001	NONE	-	-	-	-	

PCB Congener 081	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 105	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 114	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 118	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 123	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 126	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 156	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 157	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 167	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 169	mg/kg	0.001	NONE	-	-	-	-	
PCB Congener 189	mg/kg	0.001	NONE	-	-	-	-	
Total PCBs	ma/ka	0.012	NONE	-	-	-	-	

Analytical Report Number: 19-38993 Project / Site name: Stanborough Park Your Order No:

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1210044	TP106	0.20-0.20	132	Bitumen	Chrysotile	0.002	0.002
1210046	WS106	0.60-0.60	119	Bitumen	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Stanborough Park

Lab Sample Number				1210050	1210052	1210054	
Sample Reference	TP101	TP103	TP107				
Sample Number	ES3	ES2	ES3				
Depth (m)				0.70-0.70	0.50-0.50	0.70-0.70	
Date Sampled				23/04/2019	23/04/2019	23/04/2019	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				

General Inorganics							
pH	pH Units	N/A	ISO 17025	8.1	8.1	8.0	
Sulphate as SO ₄	mg/l	0.1	ISO 17025	10.4	6.5	1.0	
Hardness - Total	mgCaCO3/I	1	NONE	17.4	38.8	25.8	

Speciated PAHs

Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
cenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
luorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Inthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
luoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	
ndeno(1,2,3-cd)pyrene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	µg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	

Total PAH							
Total EPA-16 PAHs	µg/l	0.2	NONE	< 0.2	< 0.2	< 0.2	

Heavy Metals / Metalloids

µg/l	1.1	ISO 17025	4.4	< 1.1	3.9		
µg/l	10	ISO 17025	< 10	19	< 10		
µg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08		
µg/l	0.4	ISO 17025	1.0	0.7	1.9		
µg/l	0.7	ISO 17025	1.7	3.9	< 0.7		
µg/l	1	ISO 17025	3.4	3.6	2.5		
µg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5		
µg/l	0.3	ISO 17025	1.2	1.1	2.4		
µg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0		
µg/l	0.4	ISO 17025	4.3	8.5	3.6		
				-	-	-	-
mg/l	0.012	ISO 17025	5.9	14	9.4		
mg/l	0.005	ISO 17025	0.62	0.83	0.55		
	µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	µg/l 10 µg/l 0.08 µg/l 0.4 µg/l 0.7 µg/l 1 µg/l 0.5 µg/l 0.3 µg/l 4 µg/l 0.4	μg/l 10 ISO 17025 μg/l 0.08 ISO 17025 μg/l 0.4 ISO 17025 μg/l 0.4 ISO 17025 μg/l 0.7 ISO 17025 μg/l 1 ISO 17025 μg/l 0.5 ISO 17025 μg/l 0.5 ISO 17025 μg/l 0.3 ISO 17025 μg/l 4 ISO 17025 μg/l 0.4 ISO 17025 μg/l 0.4 ISO 17025 μg/l 0.4 ISO 17025	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	

Petroleum Hydrocarbons

TPH5 (C6 - C10)	µg/l	10	NONE	< 10	< 10	< 10	
TPH5 (C10 - C20)	µg/l	10	NONE	< 10	< 10	< 10	
TPH5 (C20 - C30)	µg/l	10	NONE	< 10	< 10	< 10	
TPH5 (C30 - C40)	µg/l	10	NONE	< 10	< 10	< 10	
TPH5 (C6 - C40)	µg/l	10	NONE	< 10	< 10	< 10	

Project / Site name: Stanborough Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1210042	TP102	ES1	0.13-0.13	-
1210043	TP105	ES1	0.02-0.02	-
1210044	TP106	ES1	0.20-0.20	-
1210045	WS101	ES1	0.40-0.40	Light brown sandy clay with gravel.
1210046	WS106	ES3	0.60-0.60	Light brown clay and sand with gravel and brick.
1210047	WS109	ES3	0.70-0.70	Brown clay and sand with gravel.
1210048	HP1	ES1	0.20-0.20	Brown loam and sand with gravel and vegetation.
1210049	TP101	ES2	0.50-0.50	Brown clay and loam with gravel.
1210051	TP103	ES1	0.20-0.20	Brown loam and sand with gravel and vegetation.
1210053	TP107	ES2	0.40-0.40	Brown sandy clay with gravel.
1210055	TP110	ES1	0.20-0.20	Brown loam and sand with gravel and vegetation.
1210056	TP110	ES3	0.60-0.60	Brown loam and sand with gravel and vegetation.
1210057	WS102	ES3	1.00-1.30	Brown clay and loam with gravel and stones.
1210058	WS108	ES3	0.60-0.60	Light brown sandy clay with gravel and stones.

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

			Method	Wet / Dry	Accreditation
Analytical Test Name	Analytical Method Description	Analytical Method Reference	number	Analysis	Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron in leachate	Determination of boron in leachate. Sample acidified and followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
BTEX in leachates (Monoaromatics)	Determination of BTEX in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chloride in soil	Determination of acid soluble chloride in soil by extraction with nitric acid, addition of silver nitrate followed by titration against thiocyanate.	In-house method	L075-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
NRA Leachate Prep	10:1 extract with de-ionised water shaken for 24 hours then filtered.	In-house method based on National Rivers Authority	L020-PL	W	NONE
PCBs WHO 12 in soil	Determination of PCBs (WHO-12 Congeners) by GC- MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
pH at 20oC in leachate	Determination of pH in leachate by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	w	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	w	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS

Iss No 19-38993-2 Stanborough Park GL22715

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total Hardness of leachates	Determination of hardness in leachates by calculation from calcium and magnesium.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	w	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS
TPH5 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	w	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
TP101	2 S	19-38993	1210049	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP101	2 S	19-38993	1210049	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP101	2 S	19-38993	1210049	b	TPHCWG (Soil)	L088/76-PL	b
TP103	1 S	19-38993	1210051	b	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	b
TP103	1 S	19-38993	1210051	b	Speciated EPA-16 PAHs in soil	L064-PL	b
TP103	1 S	19-38993	1210051	b	TPHCWG (Soil)	L088/76-PL	b
WS102	3 S	19-38993	1210057	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	С
WS106	3 S	19-38993	1210046	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	с
WS108	3 S	19-38993	1210058	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	С
WS109	3 S	19-38993	1210047	с	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	С

i2 Analytical Ltd.

Croxley Green

Business Park,

Watford,

t: 01923 225404 f: 01923 237404

Herts, WD18 8YS

7 Woodshots Meadow,

e: reception@i2analytical.com

t: 02075379233

Enfield

EN3 6JJ

Glenn Pursey

Harrison Group

Navigation Drive

South Ordnance Way

e: glennp@harrisongroupuk.com

Water Ways Business Centre

Analytical Report Number : 19-39000

Project / Site name:	Stanborough Park	Samples received on:	26/04/2019
Your job number:	GE22715	Samples instructed on:	26/04/2019
Your order number:		Analysis completed by:	07/05/2019
Report Issue Number:	1	Report issued on:	07/05/2019
Samples Analysed:	7 water samples		

Signed:

Katarzyna Lewicka Head of Reporting Section For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	soils leachates waters asbestos	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Stanborough Park

Lab Sample Number				1210088	1210089	1210090	1210091	1210092
Sample Reference				WS101	WS102	WS103	WS105	WS107
Sample Number				EW	EW	EW	EW	EW
Depth (m)				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Date Sampled				26/04/2019	26/04/2019	26/04/2019	26/04/2019	26/04/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.8	11.4	6.8	9.3	7.2
Sulphate as SO₄	μg/l	45	ISO 17025	50000	22200	98700	91000	13700
Sulphate as SO ₄	mg/l	0.045	ISO 17025	50.0	22.2	98.7	91.0	13.7
Total Sulphur	µg/l	15	NONE	17000	7400	33000	30000	4600
Sulphide	µg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloride	mg/l	0.15	ISO 17025	16	38	29	35	24
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	660	250	3300	250	< 15
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	8.77	6.60	10.1	8.44	3.97
Hardness - Total	mgCaCO3/I	1	ISO 17025	184	98.3	411	405	259
Speciated PAHs		0.01	ISO 17025	< 0.01	. 0.01	- 0.01	< 0.01	< 0.01
Naphthalene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01 < 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene Acenaphthene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l μg/l	0.01	ISO 17025 ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	µg/i µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	µg/i µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1.2.3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH	■							
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16

Project / Site name: Stanborough Park

Lab Sample Number				1210088	1210089	1210090	1210091	1210092
Sample Reference				WS101	WS102	WS103	WS105	WS107
Sample Number				EW	EW	EW	EW	EW
Depth (m)		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Date Sampled				26/04/2019	26/04/2019	26/04/2019	26/04/2019	26/04/2019
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (dissolved)	µg/l	0.15	ISO 17025	0.80	4.56	2.83	3.11	0.30
Boron (dissolved)	µg/l	10	ISO 17025	53	12	50	47	22
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02	< 0.02	0.09	0.08	< 0.02
Calcium (dissolved)	mg/l	0.012	ISO 17025	69	39	150	150	99
Chromium (dissolved)	µg/l	0.2	ISO 17025	0.8	4.5	0.6	0.6	0.4
Copper (dissolved)	µg/l	0.5	ISO 17025	1.9	28	< 0.5	< 0.5	1.2
Lead (dissolved)	µg/l	0.2	ISO 17025	0.4	0.7	0.2	0.2	< 0.2
Magnesium (dissolved)	mg/l	0.005	ISO 17025	2.6	0.028	8.6	8.7	3.1
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	0.08	< 0.05	< 0.05	< 0.05
Nickel (dissolved)	µg/l	0.5	ISO 17025	5.6	14	11	11	2.4
Selenium (dissolved)	µg/l	0.6	ISO 17025	1.3	2.8	2.2	2.1	2.0
Zinc (dissolved)	µg/l	0.5	ISO 17025	6.3	1.2	7.1	7.1	1.3

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH5 (C6 - C10)	µg/l	10	NONE	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
TPH5 (C10 - C20)	µg/l	10	NONE	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
TPH5 (C20 - C30)	µg/l	10	NONE	180	< 10.0	< 10.0	99.0	< 10.0
TPH5 (C30 - C40)	µg/l	10	NONE	87.0	< 10.0	< 10.0	50.0	< 10.0
TPH5 (C6 - C40)	µg/l	10	NONE	267	< 10.0	< 10.0	149	< 10.0

 ${\sf U}/{\sf S} = {\sf Unsuitable \ Sample} \qquad {\sf I}/{\sf S} = {\sf Insufficient \ Sample}$

The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Stanborough Park

Lab Sample Number				1210093	1210094		
Sample Reference				WS108	WS109		
Sample Number	EW	EW					
Depth (m)	None Supplied	None Supplied					
Date Sampled				26/04/2019	26/04/2019		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				

General Inorganics							
pH	pH Units	N/A	ISO 17025	7.3	7.2		
Sulphate as SO ₄	µg/l	45	ISO 17025	27500	18700		
Sulphate as SO ₄	mg/l	0.045	ISO 17025	27.5	18.7		
Total Sulphur	µg/l	15	NONE	9200	6200		
Sulphide	µg/l	5	NONE	< 5.0	< 5.0		
Chloride	mg/l	0.15	ISO 17025	18	18		
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	10000	17000		
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	16.0	17.3		
Hardness - Total	mgCaCO3/I	1	ISO 17025	309	444		

Speciated PAHs

Speciated FAIIs							
Naphthalene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Fluorene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Phenanthrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01		
Total PAH							
Total EPA-16 PAHs	µg/l	0.16	ISO 17025	< 0.16	< 0.16		

Project / Site name: Stanborough Park

Lab Sample Number				1210093	1210094		1
Sample Reference				WS108	WS109		
Sample Number				EW	EW		
Depth (m)				None Supplied	None Supplied		
Date Sampled				26/04/2019	26/04/2019		
Time Taken	None Supplied	None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	None Supplied	None Suppred		
Heavy Metals / Metalloids							
Arsenic (dissolved)	µg/l	0.15	ISO 17025	0.82	1.66		
Boron (dissolved)	µg/l	10	ISO 17025	23	15		
Cadmium (dissolved)	µg/l	0.02	ISO 17025	0.04	0.06		
Calcium (dissolved)	mg/l	0.012	ISO 17025	120	170		
Chromium (dissolved)	µg/l	0.2	ISO 17025	0.4	0.9		
Copper (dissolved)	µg/l	0.5	ISO 17025	2.9	2.3		
Lead (dissolved)	µg/l	0.2	ISO 17025	0.4	1.8		
Magnesium (dissolved)	mg/l	0.005	ISO 17025	4.0	4.7		
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05	< 0.05		
Nickel (dissolved)	µg/l	0.5	ISO 17025	4.7	11		
Selenium (dissolved)	µg/l	0.6	ISO 17025	1.7	2.9		
Zinc (dissolved)	µg/l	0.5	ISO 17025	2.3	7.7		

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0	< 1.0		
Toluene	µg/l	1	ISO 17025	< 1.0	< 1.0		
Ethylbenzene	µg/l	1	ISO 17025	< 1.0	< 1.0		
p & m-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0		
o-xylene	µg/l	1	ISO 17025	< 1.0	< 1.0		

Petroleum Hydrocarbons

TPH5 (C6 - C10)	µg/l	10	NONE	< 10.0	< 10.0		
TPH5 (C10 - C20)	µg/l	10	NONE	< 10.0	< 10.0		
TPH5 (C20 - C30)	µg/l	10	NONE	< 10.0	< 10.0		
TPH5 (C30 - C40)	µg/l	10	NONE	< 10.0	< 10.0		
TPH5 (C6 - C40)	µg/l	10	NONE	< 10.0	< 10.0		

 ${\sf U}/{\sf S} = {\sf Unsuitable \ Sample} \qquad {\sf I}/{\sf S} = {\sf Insufficient \ Sample}$

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

					1
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX in water (Monoaromatics)	Determination of BTEX in water by headspace GC- MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	w	ISO 17025
Chloride in water	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	w	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	w	NONE
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	w	ISO 17025
Total Sulphur in water	Determination of total sulphur in water by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	NONE
TPH5 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Martin Cooper Harrison Group Water Ways Business Centre Navigation Drive South Ordnance Way Enfield EN3 6JJ

t: 02075379233

e: GL@harrisongroupuk.com

Analytical Report Number : 19-39487

Project / Site name:	Stanborough	Samples received on:	01/05/2019
Your job number:	GE22715	Samples instructed on:	01/05/2019
Your order number:		Analysis completed by:	09/05/2019
Report Issue Number:	1	Report issued on:	09/05/2019
Samples Analysed:	1 water sample		

Signed:

Zina Abdul Razzak Assistant Quality/Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	waters	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Stanborough

Lab Sample Number				1212446			
Sample Reference				WS104			
Sample Number				EW1			
Depth (m)				None Supplied			
Date Sampled				30/04/2019			
Time Taken				None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
General Inorganics							
pH	pH Units	N/A	ISO 17025	7.2			
Sulphate as SO₄	µg/l	45	ISO 17025	28900	Ī	T	1
Sulphate as SO ₄	mg/l	0.045	ISO 17025	28.9			
Total Sulphur	µg/l	15	NONE	9600			
Sulphide	µg/l	5	NONE	< 5.0			
Chloride	mg/l	0.15	ISO 17025	26			
Ammoniacal Nitrogen as N	µg/l	15	ISO 17025	490			
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	2.12			
Hardness - Total	mgCaCO3/I	1	ISO 17025	331			I
Speciated PAHs Naphthalene		0.01	ISO 17025	< 0.01			
Acenaphthylene	μg/l μq/l	0.01	ISO 17025 ISO 17025	< 0.01		-	
Acenaphthene	1.01	0.01	ISO 17025 ISO 17025	< 0.01		-	
Fluorene	μg/l μq/l	0.01	ISO 17025 ISO 17025	< 0.01		-	
Phenanthrene	μg/i μg/l	0.01	ISO 17025 ISO 17025	< 0.01			
Anthracene	μg/l	0.01	ISO 17025	< 0.01			
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Pyrene	µg/l	0.01	ISO 17025	< 0.01			
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01			
Chrysene	µg/l	0.01	ISO 17025	< 0.01	1	t	1
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	1	t	1
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	1	t	1
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	1	t	1
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	1	t	1
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	1	1	İ
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	1	t	1
	∎ µ9/1	0.01	130 17023	10.01			
Total PAH Total EPA-16 PAHs	µq/l	0.16	ISO 17025	< 0.16	1		r

Project / Site name: Stanborough

Lab Sample Number				1212446			
Sample Reference				WS104			
Sample Number				EW1			
Depth (m)				None Supplied			
Date Sampled		30/04/2019					
Time Taken				None Supplied			
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids						•	
Arsenic (dissolved)	µg/l	0.15	ISO 17025	0.40			
Boron (dissolved)	µg/l	10	ISO 17025	32			
Cadmium (dissolved)	µg/l	0.02	ISO 17025	< 0.02			
Calcium (dissolved)	mg/l	0.012	ISO 17025	130			
Chromium (dissolved)	µg/l	0.2	ISO 17025	< 0.2			
Copper (dissolved)	µg/l	0.5	ISO 17025	1.7			
Lead (dissolved)	µg/l	0.2	ISO 17025	< 0.2			
Magnesium (dissolved)	mg/l	0.005	ISO 17025	3.2			
Mercury (dissolved)	µg/l	0.05	ISO 17025	< 0.05			
Nickel (dissolved)	µg/l	0.5	ISO 17025	1.2			
Selenium (dissolved)	µg/l	0.6	ISO 17025	0.9			
Zinc (dissolved)	µg/l	0.5	ISO 17025	4.4			

Monoaromatics & Oxygenates

Benzene	µg/l	1	ISO 17025	< 1.0		
Toluene	µg/l	1	ISO 17025	< 1.0		
Ethylbenzene	µg/l	1	ISO 17025	< 1.0		
p & m-xylene	µg/l	1	ISO 17025	< 1.0		
o-xylene	µg/l	1	ISO 17025	< 1.0		

Petroleum Hydrocarbons

TPH5 (C6 - C10)	µg/l	10	NONE	< 10.0		
TPH5 (C10 - C20)	µg/l	10	NONE	< 10.0		
TPH5 (C20 - C30)	µg/l	10	NONE	< 10.0		
TPH5 (C30 - C40)	µg/l	10	NONE	< 10.0		
TPH5 (C6 - C40)	µg/l	10	NONE	< 10.0		

 ${\sf U}/{\sf S} = {\sf Unsuitable \ Sample} \qquad {\sf I}/{\sf S} = {\sf Insufficient \ Sample}$

Project / Site name: Stanborough

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

				1	1
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	w	ISO 17025
Boron in water	Determination of boron in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
BTEX in water (Monoaromatics)	Determination of BTEX in water by headspace GC- MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	w	ISO 17025
Chloride in water	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	w	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, AI=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	w	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	w	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	w	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PrW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	w	ISO 17025
Sulphide in water	Determination of sulphide in water by ion selective electrode.	In-house method	L029-PL	w	NONE
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	w	ISO 17025
Total Sulphur in water	Determination of total sulphur in water by acidification followed by ICP-OES.	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	NONE
TPH5 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Matthew Wilson Harrison Group Harrison Testing Services Unit 1 Alston Road Norwich Norfolk NR6 5DS

t: 01603 416333

e: laboratory@harrisongroupuk.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 19-39709

Project / Site name:	Stanborough Park	Samples received on:	03/05/2019
Your job number:	GL22715	Samples instructed on:	03/05/2019
Your order number:	PO-33543-GB	Analysis completed by:	10/05/2019
Report Issue Number:	1	Report issued on:	10/05/2019
Samples Analysed:	5 soil samples		

Signed:

Zina Abdul Razzak Senior Quality Specialist **For & on behalf of i2 Analytical Ltd.**

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :	waters	 4 weeks from reporting 2 weeks from reporting 2 weeks from reporting 6 months from reporting
Excel copies of reports are only valid when accompanied by this PDF certificate.		

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Stanborough Park Your Order No: PO-33543-GB

Lab Sample Number	1213680	1213681	1213682	1213683	1213684			
Sample Reference				TP101	TP103	TP107	TP110	TP110
Sample Number				1	3	2	1	4
Depth (m)				0.10-0.20	1.40-1.40	0.50-0.50	0.50-0.50	0.90-0.90
Date Sampled	30/04/2019	30/04/2019	30/04/2019	30/04/2019	30/04/2019			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	21
Moisture Content	%	N/A	NONE	6.0	11	4.9	12	12
Total mass of sample received	kg	0.001	NONE	0.31	0.22	2.0	1.8	2.0

pH - Automated	pH Units	N/A	MCERTS	8.0	8.1	8.2	8.1	8.5
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.022	0.11	0.012	0.011	0.014

Project / Site name: Stanborough Park

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1213680	TP101	1	0.10-0.20	Brown clay and loam with gravel and vegetation.
1213681	TP103	3	1.40-1.40	Brown clay and sand with gravel.
1213682	TP107	2	0.50-0.50	Brown sandy clay with gravel and vegetation.
1213683	TP110	1	0.50-0.50	Brown loam and clay with gravel and vegetation.
1213684	TP110	4	0.90-0.90	Light brown sandy clay with gravel and stones.

Project / Site name: Stanborough Park

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.