

35 New Bridge Street, London, EC4V 6BW. United Kingdom T: +44 (0)20 7280 3240 F: +44 (0)20 7283 9248 E: liz.holland@rpsgroup.com W: www.rpsgroup.com

Our Ref: HLEI50224/002L Date: 28th March 2017

Mr. Andrew Holloway Taylor Wimpey North Thames Imperial Place 2 Maxwell Road Borehamwood Hertfordshire WD6 1JN

Dear Mr. Holloway,

Re: Infiltration Testing - Chequersfield, Welwyn Garden City, Hertfordshire AL7 4TX

Please find below the results of infiltration testing recently undertaken at the above site. The purpose of the investigation was to confirm the suitability of the shallow geology beneath the site for soakaway drainage upon its redevelopment as residential dwellings.

Background

A Ground Investigation Report was issued for the site by Soiltechnics Limited in January 2016 (ref: STM3370A-G01). As part of the investigation, five window sample boreholes (DTS01 to DTS05) were advanced to a depth of 4.00m below ground level (bgl). Encountered ground conditions comprised Made Ground (ranging in thickness from 2.40m to an unproven thickness of 4.00m). The Kesgrave Catchment Subgroup was encountered beneath the Made Ground in three of the boreholes. This stratum was described as comprising sand and gravel.

As part of the investigation groundwater/ground gas monitoring wells were installed in boreholes DTS01 and DTS04. Monitoring well DTS01 was screened across the Made Ground and monitoring well DTS04 was screened across the Made Ground and Kesgrave Catchment Subgroup. Copies of the Soiltechnics borehole logs are provided in Appendix A.

In January 2010, RPS undertook two rounds of ground gas monitoring at the site (report ref: HLEI48353/001L). An additional monitoring well was observed adjacent to the west of well DTS04. This well was denoted by RPS as monitoring well BHA. No further information is available regarding the

drilling or installation of this monitoring well. Given this absence of information, it is not possible to determine infiltration rates in this monitoring well.

<u>Aim</u>

The purpose of the testing was to determine the permeability of shallow soils to assist in the design of infiltration drainage.

<u>Methodology</u>

The infiltration tests were carried out on 13th March 2017. The approximate locations of the two monitoring wells are shown on Figure 1. Three falling head tests were undertaken in each monitoring wells.

Each of the monitoring wells were filled with water (delivered via a bowser) to ground level, with the depth to water recorded at regular intervals using a dip meter.

Recorded Groundwater Levels

Prior to the start of each of the tests, the depth to groundwater was recoded using a dip meter. The following results were recorded:

- Monitoring well DTS01: The depth to groundwater was recorded at approximately 3.91m bgl. The base of the well was recorded at approximately 4.00m bgl; and
- Monitoring well DTS04: This monitoring well was dry. The base of the well was recorded at approximately 3.75m bgl.

In between each of the falling head tests for monitoring well DTS04, the base of the well appeared to have silted up. Prior to the third test, the base was recorded at approximately 3.43m bgl.

Infiltration Testing

The infiltration test calculations are presented in Appendix B. The calculated infiltration rates for each of the falling head tests are provided in Table 1 below:

Monitoring well		Infiltration rate (m/s)	
Wontoring wen	Test 1	Test 2	Test 3
DTS01	1.09 x 10 ⁻⁴	8.80 x 10 ⁻⁵	5.16 x 10 ⁻⁵
DTS04	4.56 x 10 ⁻⁵	3.16 x 10 ⁻⁵	3.48 x 10 ⁻⁵

Table 1: Calculated Infiltration Rates

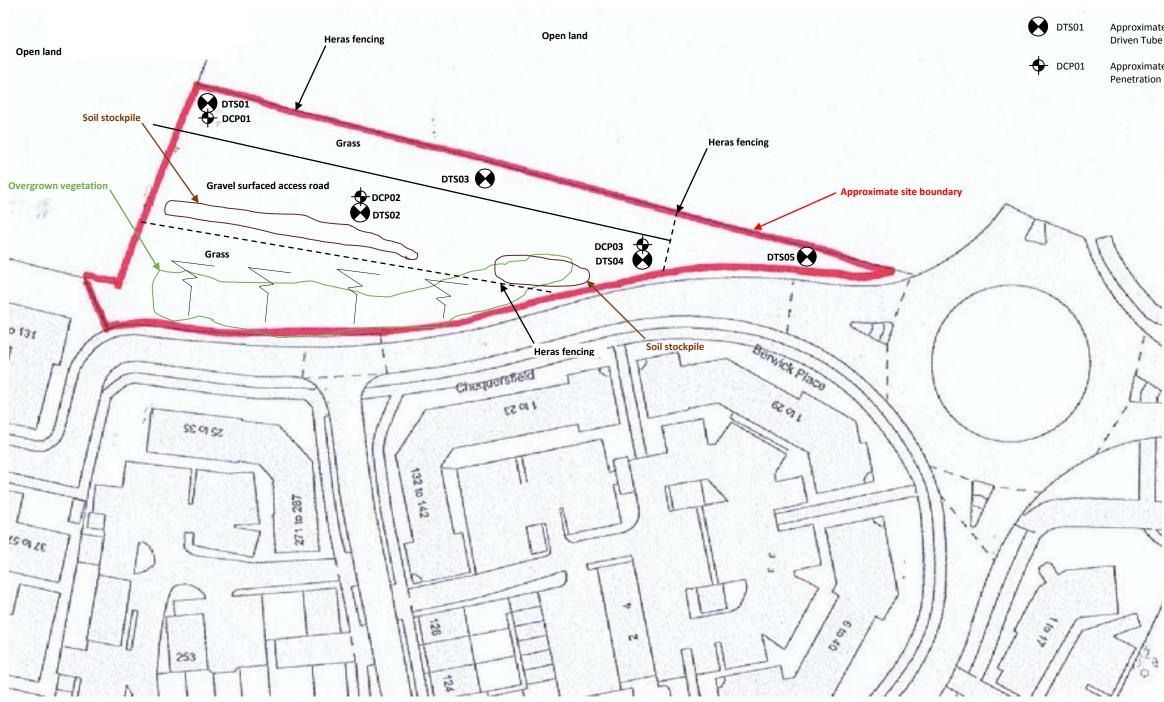
Conclusions

The testing indicates that infiltration rates were broadly consistent across the two monitoring wells.

Overall, the testing indicates that the ground in which the falling head testing was undertaken could potentially be suitable for soakaway drainage, however, the feasibility of this drainage, along with the size and type of soakaway should be assessed by a specialist drainage engineer.

I trust the above is satisfactory, however, please do not hesitate to contact me should you wish to discuss further.

Yours sincerely For RPS Health, Safety & Environment


Liz Holland Senior Consultant

Enc: Figure 1: Monitoring Well Location Plan Appendix A: Soiltechnics Borehole Logs Appendix B: Falling Head Test Calculations

FIGURES

Key

Title

Scale

Plan showing existing site features and location of exploratory positions

Report ref: STM3370A-G01

Approximate location of borehole formed by Driven Tube Sampling techniques

Approximate location of Dynamic Cone Penetration testing

January 2016

Soiltechnics Borehole Logs

Land at Chequersfield,

Welwyn Garden City

soiltechnics

environmental and geotechnical consultants

			DEDTU	WATER	TEST F	RESULTS		SAMPLIN	١G
WELL	DESCRIPTION	LEGEND	(m)	STRIKE	TYPE/ DEPTH (m)	RESULT	FROM (m)	TO (m)	TYPE
	Soft low strength brown slightly gravelly sandy CLAY. Gravel consists of flint and railway ballast. MADE GROUND						0.10		ES
	Medium dense orange brown occasionally grey clayey silty gravelly SAND. Gravel consists of flint. MADE GROUND		0.35				0.40		ES
	Soft low strength orange brown slightly gravelly silty sandy CLAY. Gravel consists of flint and concrete. MADE GROUND		0.70		PP 0.90	25	0.90		D
	Loose to medium dense brown, dark grey and orange brown slightly		1.20		PP 1.10	50			
	clayey gravelly SAND. Gravel consists of flint and concrete. MADE GROUND						1.50		D
	Soft low strength brown to dark brown slightly gravelly sandy CLAY. Gravel consists of flint and occasional coal. MADE GROUND		1.80		PP 1.90	25			
					PP 2.10	25			
					PP 2.30	50			
	Soft low strength orange brown slightly gravelly very sandy CLAY. Gravel consists of flint.		2.60		PP 2.50 PP 2.70	50 50	2.90		
	MADE GROUND				PP 2.90	50	2.80		D
					PP 3.10 PP 3.30	50 25			
					PP 3.50	25			
	Loose to medium dense orange brown slightly clayey silty SAND and		3.80		PP 3.70	25	2 00		
	GRAVEL. Gravel consists of flint. MADE GROUND BOREHOLE TERMINATED AT 4.00m		4.00				3.90		D
		-							

Notes: Standpipe installed to 4m depth. For Dynamic Cone Penetration testing, refer to DCP01.

Ground level (mAOD)

Co-ordinates 523575, 211330

Title Driven tube sampler borehole record Surface breaking No

DTS01

Appendix B

Groundwater observations

No groundwater encountered.

Date of excavation (range if applicable) 24/11/2015

Location plan on drawing number 01

Land at Chequersfield,

Welwyn Garden City

soiltechnics

environmental and geotechnical consultants

					тест			SAMPLIN	
WELL	DESCRIPTION	LEGEND		WATER	TYPE/	RESULTS	FROM		
			(m)	STRIKE	DEPTH (m)	RESULT	(m)	TO (m)	TYPE
	Vegetation onto soft low strength brown sandy gravelly CLAY. Gravel								
	consist of brick, concrete, flint and ash.						0.00		50
	MADE GROUND						0.20		ES
			0.45						
	Firm medium strength light brown slightly gravelly sandy CLAY. Gravel		0.45		PP 0.50	50	0.50		ES
	consists of chalk and flint.								
	MADE GROUND		0.70						
	Medium dense to very dense brown slightly clayey gravelly SAND. Gravel								
	consists of flint, clinker and brick. MADE GROUND						0.90		D
	MADE GROUND								-
			1 20						
	Very dense becoming medium dense orange brown slightly clayey		1.20						
$ \cdot $	gravelly SAND. Gravel consists of flint.								
	MADE GROUND								
							1.50		D
	Madi and an all the second CAND Construction (1.80						
	Medium dense dark grey silty clayey gravelly SAND. Gravel consists of flint.								
	MADE GROUND								
	MADE GROOND								
							2 20		5
							2.30		D
	Medium dense orange brown silty SAND and GRAVEL. Gravel consists of	-	2.40						
$ \cdot $	rounded to angular medium to coarse flint.	-							
	KESGRAVE CATCHMENT SUBGROUP	_							
		_							
		-							
		-							
			* •						
		_							
$ \cdot $									
		_					2 50		5
		7					3.50		D
			4						
		_							
		_							
[·l]·	BOREHOLE TERMINATED AT 4.00m		4.00						
		_							
		-							
		-							
		-							
		_							
		-							
		_							
		7							
		-							
		_							

Notes: Standpipe installed to 4m depth. For Dynamic Cone Penetration testing, refer to DCP03.

Ground level (mAOD) **Co-ordinates** Title Surface breaking 523636, 211296 Driven tube sampler borehole record No Groundwater observations Date of excavation (range if applicable) Appendix В No groundwater encountered. 24/11/2015 Location plan on drawing number **DTS04** 01

APPENDIX B

Falling Test Calculations

	Va	ariable H	lead Permeability Test	
Project No.:	HLEI50224		TEST RESPONSE ZONE DET	All S'
Project Name:	Chequersfield			
Client:	Taylor Wimpe		Top (mbgl):	1.00
Borehole No.:	DTS01 - Test	1	Bottom (mbgl):	4.00
Compiled By	MA		Length (m):	3.00
Date	13/03/2017		Diameter (m):	0.050
Checked By	LH		Initial Standing Water Level	3.91
Date	21/03/2017	116701-	(m below top of casing):	
Elapsed	Depth to Water*	Ht/Ho	Height of casing or standpipe :	0.00
Time			above ground level (m)	Folling
(mins)	(m)	4.00	Falling or Rising Head Test?	Falling
0.333333333	1.3	1.00	1.00 T	
0.5	1.66	0.86		
1	1.96	0.75		
1.5 2	2.53 2.8	0.53 0.43		
2.5	2.0 3.15	0.43		
2.5	3.15	0.29		
3.5	3.49	0.23		
4	3.59	0.12		
4.5	3.68	0.09	0.10 -	
5	3.74	0.07		
6	3.79	0.05		
7	3.86	0.02	•	
8	3.88	0.01	Ht/Ho	
9	3.9	0.00	≖ \	
10	3.91			
			0.01	\
			0.01 -	
				$\langle \rangle$
				\setminus
			0.00	
			0.00 5.00	10.00
			Time (min)	
			Cross Sectional Area of Test Zone	A= 0.00196
			Shape Factor (Case B)	F= 0.13750
			Time to reach Ht/Ho = 0.37 (sec)	T= 131
			Permeability (m/s)	K= 1.09E-04
			<u>Comments</u>	
	DDC			
	RPS			
3	5 New Bridge Stree	et		
	London			
	EC4V 6BW			

	Va	ariable I	Head Permeability Test	
Project No.:	HLEI50224		TEST RESPONSE ZONE DETAIL	S.
Project Name:	Chequersfield			
Client:	Taylor Wimpe		Top (mbgl):	1.00
Borehole No.:	DTS01 - Test	2	Bottom (mbgl):	4.00
Compiled By	MA		Length (m):	3.00
Date Checked Dir	13/03/2017 LH		Diameter (m): Initial Standing Water Level	0.050
Checked By Date	21/03/2017		(m below top of casing):	3.91
Elapsed	Depth	Ht/Ho	Height of casing or standpipe :	
Time	to Water*		above ground level (m)	0.00
(mins)	(m)		Falling or Rising Head Test?	Falling
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 7 8 9 10 11	1.25 1.64 2 2.48 2.83 3.05 3.31 3.45 3.54 3.64 3.71 3.77 3.82 3.86 3.89 3.9 3.91	1.00 0.85 0.72 0.54 0.41 0.32 0.23 0.17 0.14 0.10 0.08 0.05 0.03 0.02 0.01 0.00	<pre>1.00 event function</pre>	0.13750 162
			Permeability (m/s) K=	8.80E-05
	RPS 35 New Bridge Stree London EC4V 6BW		<u>Comments</u>	

	Vari	able He	ad Permeability Test	
Project No.:	HLEI50224		TEST RESPONSE ZONE DET	All S:
Project Name:	Chequersfield			
Client:	Taylor Wimpey		Top (mbgl):	1.00
Borehole No.:	DTS01 - Test 3	3	Bottom (mbgl):	4.00
Compiled By	MA 13/03/2017		Length (m):	3.00
Date Checked By	LH		Diameter (m): Initial Standing Water Level	0.050
Date	21/03/2017		(m below top of casing):	3.91
Elapsed	Depth	Ht/Ho	Height of casing or standpipe :	
Time	to Water*		above ground level (m)	0.00
(mins)	(m)		Falling or Rising Head Test?	Falling
0.25	0.44	1.00	5 5	_
0.5	0.92	0.86	1.00 -	1
1	1.32	0.75		
1.5	1.55	0.68		
2	1.66	0.65		
2.5	1.84	0.60	·	
3	2.05	0.54		
3.5	2.23	0.48		
4	2.44	0.42		
4.5	2.59	0.38	0.10	
5	2.74	0.34	0.10	
6	2.98	0.27		
7	3.19	0.21		
8	3.37	0.16	우 목 목 목 목 목 목 목 목 목 목 목 목 목 목 목 목 목 목 목	
9	3.49	0.12	Htt/Ho	
10	3.58	0.10	-	
11	3.67	0.07		
12	3.72	0.05		
13	3.74	0.05	0.01	
14	3.77	0.04		
15 17.5	3.8 3.86	0.03 0.01		
22.5	3.00	0.01		
22.5	3.9	0.00		
25	5.91			
			0.00	
			0.00 10.00 20.00	0 30.00
			Time (min)	
			Cross Sectional Area of Test Zone	A= 0.00196
			Shape Factor (Case B)	F = 0.00196 F= 0.13750
			Time to reach Ht/Ho = 0.37 (sec)	T = 0.13750 T = 277
			100 = 0.37 (Sec)	- 211
			Permeability (m/s)	K= 5.16E-05
			<u>Comments</u>	
	RPS			
	ICI D			
35	New Bridge Street			
	London			
	EC4V 6BW			

	Va	ariable H	lead Permeability Test	
Project No.:	HLEI50224		ALS:	
Project Name:	Chequersfield			
Client:	Taylor Wimpe		Top (mbgl):	1.00
Borehole No.:	DTS04 - Test	1	Bottom (mbgl):	4.00
Compiled By	MA 13/03/2017		Length (m):	3.00 0.050
Date Checked By	LH		Diameter (m): Initial Standing Water Level	
Date	21/03/2017		(m below top of casing):	3.75
Elapsed	Depth	Ht/Ho	Height of casing or standpipe :	0.00
Time	to Water*		above ground level (m)	0.00
(mins)	(m)		Falling or Rising Head Test?	Falling
0.5	1.44	1.00		
1	1.9	0.80	1.00 🗗	
1.5	2.12	0.71		
2	2.35	0.61	₽ <u></u>	
2.5	2.51	0.54	С С	
3	2.56	0.52		
3.5	2.62	0.49		
4	2.75	0.43		
5	2.87	0.38		
6	2.98	0.33		
7	3.04	0.31		
8	3.11	0.28		
9	3.15	0.26		
10	3.2	0.24	9H 0.10 -	
12.5	3.26	0.21	H H H H H H H H H H H H H H H H H H H	
16	3.35	0.17		
17.5 20	3.37 3.4	0.16 0.15		
20	3.4 3.43	0.15		
22.5	3.43 3.45	0.14		
30	3.45	0.13		
35	3.5	0.12		
40	3.52	0.10		
45	3.55	0.09		
50	3.56	0.08		
55	3.57	0.08		
			0.01	
			0.00 20.00 40.00	60.00
				00.00
			Time (min)	
			Cross Sectional Area of Test Zone	A= 0.00196
				F= 0.13750
				Γ= 313
				0.0
			Permeability (m/s)	K= 4.56E-05
			<u>Comments</u>	
	DDC			
	RPS		Monitoring well silted up to 3.57m bgl during te	est.
3	35 New Bridge Stree	et		
	London			
	EC4V 6BW			

	Va	ariable H	lead Permeability Test	
Project No.:	HLEI50224		TEST RESPONSE ZONE DETAI	LS:
Project Name:	Chequersfield			
Client:	Taylor Wimpe		Top (mbgl):	1.00
Borehole No.:	DTS04 - Test	2	Bottom (mbgl):	4.00
Compiled By	MA 13/03/2017		Length (m): Diameter (m):	3.00 0.050
Date Checked By	LH		Initial Standing Water Level	
Date	21/03/2017		(m below top of casing):	3.57
Elapsed	Depth	Ht/Ho	Height of casing or standpipe :	0.00
Time	to Water*		above ground level (m)	0.00
(mins)	(m)		Falling or Rising Head Test?	Falling
$\begin{array}{c} 0.5 \\ 1 \\ 1.5 \\ 2.5 \\ 3 \\ 3.5 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 13.5 \\ 16 \\ 20 \\ 25 \\ 30 \\ 35 \\ 45 \\ 50 \end{array}$	$ \begin{array}{c} 1.16\\ 1.48\\ 1.58\\ 1.82\\ 1.97\\ 2.11\\ 2.22\\ 2.41\\ 2.52\\ 2.64\\ 2.71\\ 2.79\\ 2.87\\ 3.04\\ 3.12\\ 3.2\\ 3.27\\ 3.32\\ 3.36\\ 3.4\\ 3.43\\ \end{array} $	1.00 0.87 0.83 0.73 0.66 0.61 0.56 0.48 0.44 0.39 0.36 0.32 0.29 0.22 0.19 0.15 0.12 0.10 0.09 0.07 0.06		
			0.01	
			0.00 20.00 40.00	60.00
			Time (min)	
			Cross Sectional Area of Test Zone A Shape Factor (Case B) F Time to reach Ht/Ho = 0.37 (sec) T Permeability (m/s) K	= 0.13750 = 452
			<u>Comments</u>	
	RPS 35 New Bridge Stree London EC4V 6BW	t	Monitoring well silted up to 3.43m bgl during the	e test.

	Va	ariable H	lead Permeability Test	
Project No.:	HLEI50224		TEST RESPONSE ZONE DETAILS	
Project Name:	Chequersfield			
Client:	Taylor Wimpe		Top (mbgl):	1.00
Borehole No.:	DTS04 - Test	3	Bottom (mbgl):	4.00
Compiled By	MA		Length (m):	3.00
Date	13/03/2017 LH		Diameter (m): Initial Standing Water Level	0.050
Checked By Date	21/03/2017		(m below top of casing):	3.43
Elapsed	Depth	Ht/Ho	Height of casing or standpipe :	
Time	to Water*		above ground level (m)	0.00
(mins)	(m)		Falling or Rising Head Test?	Falling
0.5 1 1.5 2 3 3.5 4.5 5 6 7 8 10.5 12 14.5 16 20 26 30 40 45 50	0.62 0.87 1.09 1.37 1.62 1.77 1.96 2.07 2.34 2.4 2.55 2.77 2.9 3.01 3.05 3.18 3.26 3.33 3.4 3.42 3.43	$\begin{array}{c} 1.00\\ 0.91\\ 0.83\\ 0.73\\ 0.64\\ 0.59\\ 0.52\\ 0.48\\ 0.39\\ 0.37\\ 0.31\\ 0.23\\ 0.19\\ 0.15\\ 0.14\\ 0.09\\ 0.06\\ 0.04\\ 0.01\\ 0.00\\ \end{array}$	PH 0.10 0.01 0.00 0.00 0.00 0.00 0.00 0.00	60.00
			Cross Sectional Area of Test Zone A= Shape Factor (Case B) F=	0.00196 0.13750
			Time to reach Ht/Ho = 0.37 (sec) T=	410
			Permeability (m/s) K=	3.48E-05
3	RPS 35 New Bridge Stree London EC4V 6BW		<u>Comments</u>	