CONSULTING Structural Engineers Consulting Civil Engineers

UNIVERSITY OF HERTFORDSHIRE

BUSINESS AND SOCIAL HUB

Drainage Strategy Report

Ref: 180149/J Courtney Approved By: T Gavaza Date: 8th October 2018 Version: P2

• London 1-5 Offord Street London N1 1DH Telephone 020 7700 6666

Norwich 6 Upper King Street Norwich NR3 1HA Telephone 01603 628 074

Cambridge

16 Signet Court Swann Road Cambridge CB5 8LA Telephone 01223 656 058

design@conisbee.co.uk www.conisbee.co.uk

CCÀS

Directors Tim Attwood BSc CEng MIStructE Bob Stagg BSc (Hons) CEng FIStructE MICE Tom Beaven BEng (Hons) CEng MIStructE Allan Dunsmore BEng (Hons) CEng MIStructE MICE Richard Dobson MEng CEng MIStructE Paul Hartfree IEng MICE MCIHT FGS

ġ

UŘAS

Associates

David Richards BEng (Hons) ACGI CEng MIStructE Garv Johns Terry Girdler BSc (Hons) Eng MSc CEng FICE MIStructE Conservation accredited engineer (CARE) Ben Heath BEng CEng MIStructE Tom Lefever BEng (Hons) CEng C.WEM MICE MCIWEM Nigel Nicholls IEng AMIStructE Denis Kealy BEng (Hons) CEng MIEI MIStructE Tapiwa Gavaza BSc (Civils Hons) MSc CEng CEnv MICE MIEMA Kevin Clark BSc (Hons) PhD DIC CEng MICE

Consultant Alan Conisbee BA BAI CEng MIStructE Conservation accredited engineer (CARE) Chris Boydell BSc CEng MIStructE MICE

Conisbee is a trading name of Alan Conisbee and Associates Limited Registered in England No. 3958459

Table of Contents

1.0	Executive summary3						
2.0	Limitations3						
3.0	Existing Site Conditions and Drainage						
3.1	Existing Site Conditions						
3.2	Geotechnical and Groundwater Information3						
3.3	Existing Drainage						
4.0	Proposed Surface Water Drainage Strategy3						
4.1	Surface Water Drainage strategy						
4.2	The site details based on Hertfordshire form :						
4.2.3	Design checks						
4.3	Surface Water Drainage strategy description4						
5.0	Proposed Foul Water Drainage Strategy5						
Appen	dix A Topographical survey6						
Appen	Appendix B Drainage Strategy Layouts7						
Appendix C MicroDrainage calculation8							
Appendix D Sustainable Drainage Maintenance Plan9							

EXECUTIVE SUMMARY 1.0

Conisbee have been appointed by Willmott Dixon Construction Limited to prepare a drainage strategy for the proposed new social and business centre on the University of Hertfordshire de Havilland campus.

This design report provides an overview of the drainage principles to be used for the proposed development.

The development comprises of a new three storey building and associated hard landscaping to provide access to the building.

The site is currently 'greenfield' and the surface water discharge rates from the site will be reduced to as close the Q1 greenfield rate as viable. Surface water attenuation will be provided for all storms up to the 1 in 100 year + 40% climate change event.

The site is located in EA Flood Zone 1 and a flood risk assessment is not required for the site.

LIMITATIONS 2.0

The conclusions and recommendations contained within this report are based upon information provided by others and upon the assumption that all relevant information received is accurate and correct.

We have not visited the site in the preparation of the report.

EXISTING SITE CONDITIONS AND DRAINAGE 3.0

3.1 **Existing Site Conditions**

The site is located with the University of Hertfordshire's de Havilland campus (NGR 521026, 208466).

The existing site is a rectangular grassed area of open space, consisting of a series of undulations approximately 1.2m high from trough to crest.

Based on the existing topographical survey (Appendix A), the site slopes by approximately 1.3m from the southern boundary to the northern. The area to be developed is roughly 2014m² and is currently entirely permeable.

Based on flood maps from The Environment Agency, the site is located in Flood Zone 1 with low probability of flooding. Environment Agency mapping also indicates that the site is in an area with a low risk of flooding from surface water.

Geotechnical and Groundwater Information 3.2

Intrusive ground investigations have been carried out on the site and confirmed that the geological sequence comprises: Made Ground (0.6m to 2.6m thick) overlying Lowestoft Formation (up to 21.2 m thick), the bedrock consists of chalk.

The Lowestoft Formation is described as a mixture of granular and cohesive material. The cohesive and granular layers are interbedded, the cohesive layers are found at 1.2m to 2.7m bgl and 11.3 to 16.8m bgl. The granular layers are found at 2.6 to 12.5m bgl and 16.1 to 22.8m bgl.

Groundwater monitoring has been carried out as part of the investigations and the findings indicate that the water table in the Lowestoft Formation is at a depth of 3.47 to 13.73m bgl.

Existing Drainage 3.3

A utility survey of the site has been carried out which has identified existing storm and foul drainage along the southern edge of the site, this is part of the wider drainage network serving the de Havilland Campus and is assumed to connect into the Thames Water sewers at the boundary of the university site.

PROPOSED SURFACE WATER DRAINAGE STRATEGY 4.0

Surface Water Drainage strategy 4.1

The Surface Water Drainage strategy for the site has been developed based upon the following design standards aimed at providing a Sustainable Drainage System:

- Building Regulations Part H
- BS EN 752, BS EN 12056
- National Planning Policy Framework (NPPF, March 2012)
- National Planning Practice Guidance NPPG
- The SuDS Manual CIRIA 753
- SuDS Design Guidance for Hertfordshire March 2015 V2-Publication date 1st April 2015
- Lead Local Flood Authority SuDS Policy Statement Revision 1 March 2017
- LLFA Summary Guidance for developers
- Sustainable Drainage Systems Non-statutory technical standards for sustainable drainage systems March 2015

In line with the current best practice for SuDS hierarchy, the development targets various methods of source control in order to limit surface water peak flows at the source and therefore reduce the overall discharge from the site

The following section set out the technical details of the existing site and proposed development in accordance with the requirements of the SuDs Design Guidance for Hertfordshire.

The site details based on Hertfordshire form : 4.2

> Site name University of Hertfordshire Social Hub Total site area 0.2014Ha Site area which is positively drained 0.1937ha Developed area 0.2014 ha Predevelopment use Greenfield

Existing Impermeable Area = $0m^2$ Proposed impermeable area = $1937m^2$ Net increase in the impermeable area after development = $1937m^2$

Site constraints

- Limited space adjacent to the proposed building.
- Cohesive soils underlying the development site.

Type of discharge Sewer

4.2.1 Flow control

Flow control type **fixed** Greenfield flow Q1 0.3 I/s for the site Greenfield flow Q100 1.2 l/s for the site SAAR 697 mm Soil 0.3

Table 1 Existing and proposed volumes and discharge rates compared for 360 minutes storm.

Return period	Existing discharge volumes m ³	Existing discharge rate I/s	Proposed discharge volumes m ³	Proposed discharge rate I/s
1 in 1	12.7	0.3	17.2	2
1 in 30	28.1	0.8	55.7	2
1 in 100	36.5	1.2	82.2	2

4.2.2 Site storage volume

Source control provided **NO** Approach used to calculate storage 2 Storage - 1 in 1 year **20m³** for the site Storage – 1 in 30 year 60m³ for the site Storage - 1 in 100 year plus CC **126m³** for the site Long term storage not required Total site storage **126 m³**

4.2.3 Design checks

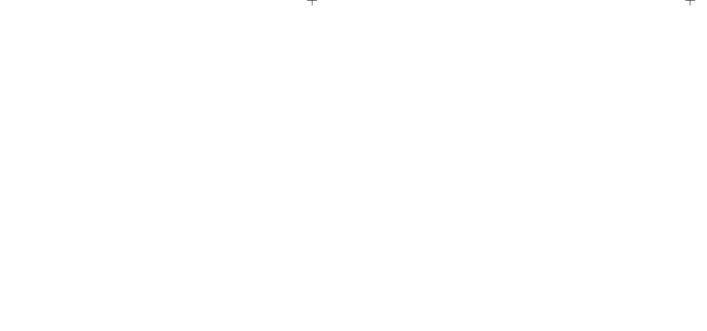
Time taken for 50% of storage to drain down 552min All SuDS storage located outside Q100 floodplain Yes Provision for blockage / design exceedance Yes

4.3 Surface Water Drainage strategy description

In accordance with Hertfordshire guidance a variety of SUDS measures have been considered to attenuate and treat surface water from the site before discharging it to the surface water sewer. The layout of the site and the surrounding campus present a significant constraint which needs to be borne in mind when assessing the suitable SUDS options for the scheme. Primarily there is a steep fall across the plot which combined with the lack of open space prohibits the use of traditional above ground solutions such as swales and ponds. Permeable paving has also been considered for the scheme but as can be seen from the proposed drainage plan there are existing services present beneath the proposed hard paved areas, these services would either interfere directly with the permeable pavement when it was being laid, or else the paving would considerably complicate future access and maintenance.

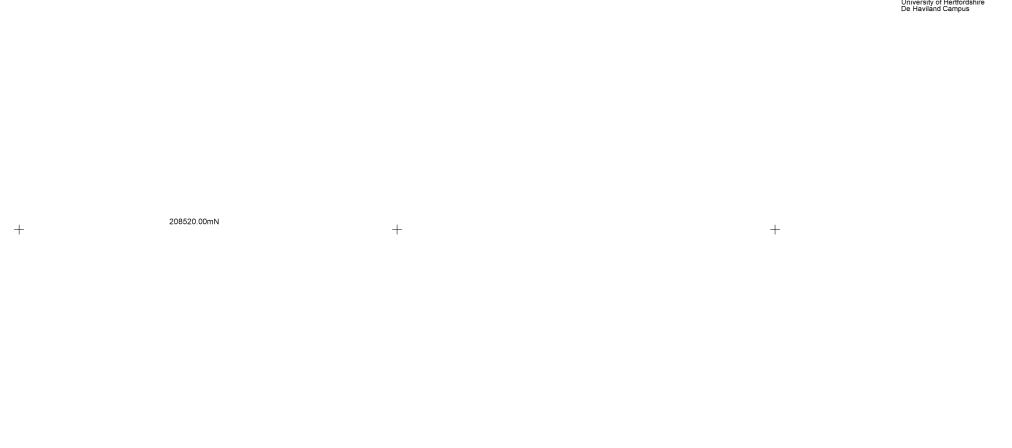
For the reasons discussed above it is considered that a below ground attenuation tank is the only suitable SUDS option to attenuate storm water on the site. A MicroDrainage Source Control model has been constructed for the site and used to size the tank to provide sufficient storage for all storm events up to the 1 in 100 year +40% storm.

In line with Hertfordshire guidance the discharge rates will be restricted to as close to the 1 in 1 year greenfield runoff rate as possible. Hertfordshire guidance recognises that at low flow rates flow controls can be prone to blockage which causes problems with potential robustness and long term maintenance, and increases the risk of flooding to the site. On this basis it is not considered that 0.3l/s is a sustainable discharge rate and it is proposed to limit the site to 2l/s, which is the lowest discharge rate which can be achieved without an unacceptable risk of blockage, this rate has been agreed with the LLFA. This discharge rate can be achieved by a hydrobrake with a 69mm orifice size.


A calculation for the attenuation is provided in Appendix C. The proposed drainage strategy is included in Appendix B.

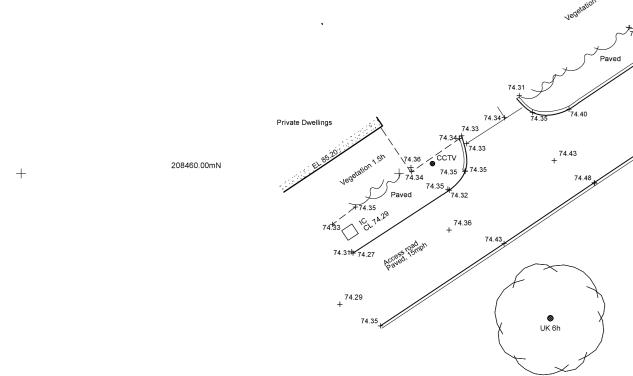
To ensure the long term maintenance of the scheme a Sustainable Drainage Maintenance Plan has been prepared for the site and is included in Appendix D.

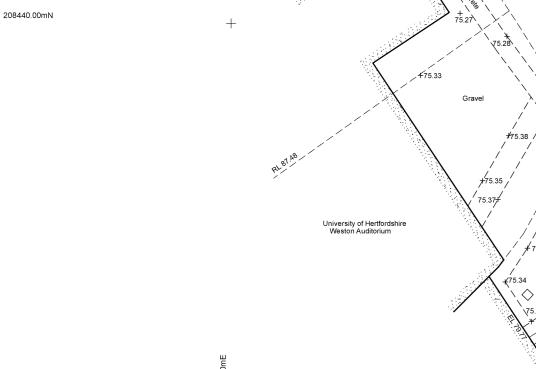
5.0 PROPOSED FOUL WATER DRAINAGE STRATEGY

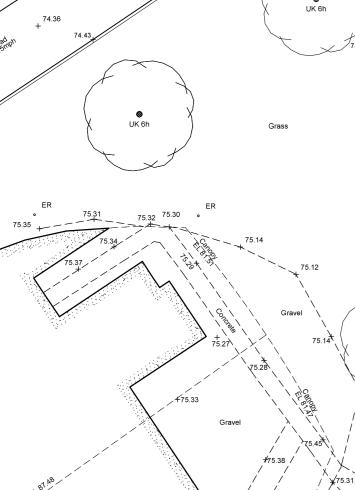

Foul water from the new building will be connected into the existing drainage serving the de Havilland campus.

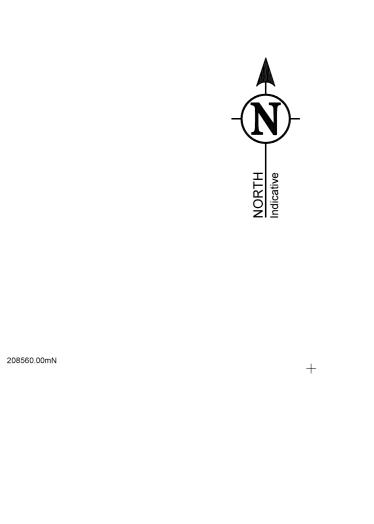
APPENDIX A TOPOGRAPHICAL SURVEY




+


208540.00mN +





208540.00mN +

208520.00mN

208500.00mN +

208480.00mN +

208460.00mN +

+

208420.00mN

TOPOGRAPHICAL & MEASURED BUILDING SURVEYS ABBREVIATIONS & SYMBOLS
 AH
 Arch Head Height
 FH
 Fire Hydrant
 RSJ
 Rolled Steel Joist

 AR
 Assumed Route
 FBD
 Floor Board Direction
 SI
 Sign Post

	Assumed Route	100	TIOUL DOULD DISCUOL	01	olgi i l ost
AV	Air Valve	FH	Fire Hydrant	SP	Arch Spring Point Height
BB	Belisha Beacon	FL	Floor Level	SV	Stop Valve
BH	Bore Hole	FP	Flag Pole	SW	Surface Water
BL	Bed Level	FW	Foul Water	SY	Stay
во	Bollard	GG	Gully Grate	Тас	Tactile Paving
BrP	Brace Post	GV	Gas Valve	тс	Telecom Cover
BS	Bus Stop	нн	Head Height	тн	Trial Pit
BU	Bush	IC	Inspection Cover	THL	Threshold Level
B/W	Barbed Wire Fence	IL	Invert Level	TL	Traffic Light
ΒХ	Box (Utilities)	I/R	Iron Railings	ToW	Top of Wall
C/B	Close Board Fence	KO	Kerb Outlet	TP	Telegraph Pole
СН	Cill Height	LP	Lamp Post	ΤV	Cable TV Cover
CL	Cover Level	МН	Manhole	UB	Universal Beam
C/L	Chain Link Fence	MP	Marker Post	UC	Unknown Cover
C-Lev	Ceiling Level	NB	Name Board	UK	Unknown Tree
Col	Column	OHL	Overhead Line (approx)	USB	Under Side Beam
C/P	Chestnut Paling Fence	Pan	Panel Fence	UTL	Unable To Lift
CR	Cable Riser	PB	Post Box	VP	Vent Pipe
DC	Drainage Channel	PM	Parking Meter	WB	Waste Bin
ЭΗ	Door Head Height	PO	Post	WH	Weep Hole
DP	Down Pipe	P/R	Post & Rail Fence	WL	Water Level
DR	Drain	P/W	Post & Wire Fence	WM	Water Meter
EL	Eaves Level	P/Wall	Partition Wall	WO	Wash Out
EP	Electric Pole	RE	Rodding Eye	(XXX)	Floor to Ceiling Height
ER	Earth Rod	RL	Ridge Level	\bigcirc	
ET	EP+Transformer	RP	Reflector Post	(XX)F/C	Floor to False Ceiling Ht
FB	Flower Bed	RS	Road Sign	\smile	
FBD	Floor Board Direction	RSD	Roller Shutter Door	\triangle	Survey Control Station

DRAWING NOTE Topographical Surveys

Trees are drawn to scale showing the average canopy spread. Descriptions and heights should be used as a guide only. All building names, descriptions, number of storeys, construction type including roof line details are indicative only and taken externally from ground level. All below ground details including drainage, voids and services have been identified from above ground and therefore all details relating to these features including; sizes, depth, description etc will be approximate only. All critical dimensions and connections should be checked and verified prior to starting

work. Detail, services and features may not have been surveyed if obstructed or not reasonably visible at the time of the survey. Measured Building Surveys

Measurements to internal walls are taken to the wall finishes at approx 1m above the floor level and the wall assumed to be vertical. Cill heights are measured as floor to the cill and head heights are measured from cill to the top of window. General

The contractor must check and verify all site and building dimensions, levels, utilities and drainage details and connections prior to commencing work. Any errors or discrepancies must be notified to Survey Solutions immediately. The accuracy of the digital data is the same as the plotting scale implies. All dimensions are in metres unless otherwise stated.

The survey control listed is only to be used for topographical surveys at the stated scale. All control must be checked and verified prior to use. © Land Survey Solutions Limited holds the copyright to all the information contained within this document and their written consent must be obtained before copying or using the data other than for the purpose it was originally supplied.

Do not scale from this drawing.

UOH-WDC-V0-XX-DR-SU-0001-Topographical Survey

The coordinate system established for this survey is related to Ordnance Survey (OS) national grid at a single point using Smartnet, then orientated to grid north with a scale factor of 1.000

The level datum established for this survey is related to Ordnance Survey (OS) using GPS Smartnet. To avoid discrepancies any coordinated data used in conjunction with this survey must be derived directly from this control data. CONTROL CO-ORDINATES STATIONS EASTINGS NORTHINGS LEVEL DESCRIPTION
 ST01
 521026.967

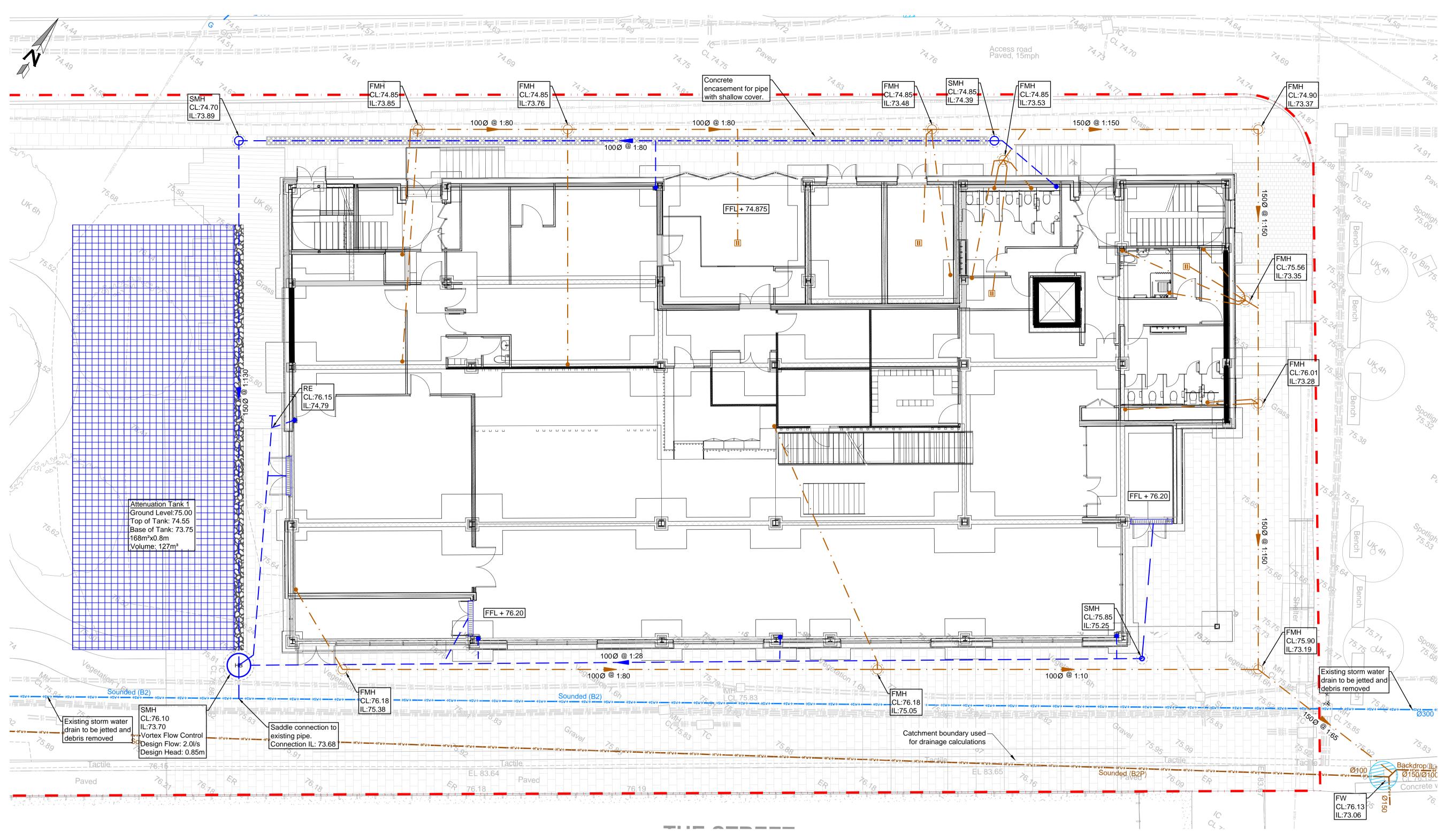
 ST02
 521026.431

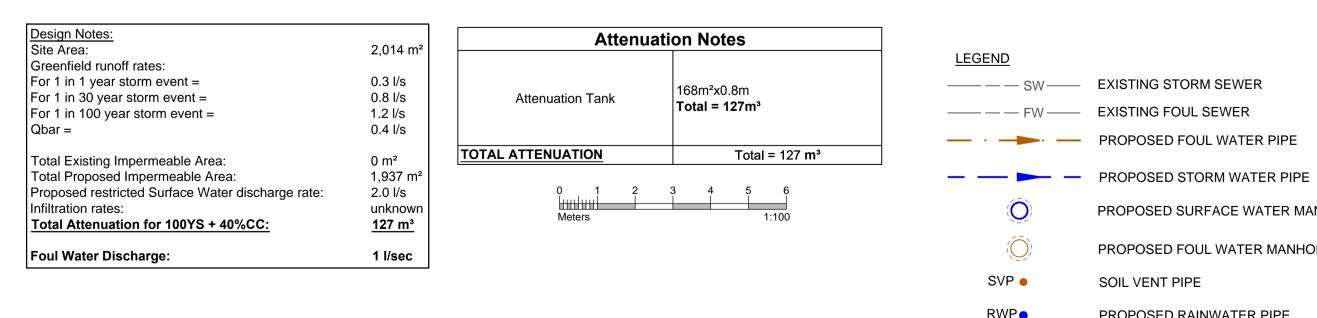
 ST03
 521063.522

 ST04
 521109.506
 208453.057 76.180 208466.318 76.334 208511.271 74.696 208536.773 75.465 Pk nail Pk nail Pk nail Pk nail DRAWN APPR DATE REV DESCRIPTION

3U Ipswich Coventry Yeovil Norwich Perth Nottingham Brentwood Tel No: 0845 0405 969 Fax No: 0845 0405 970

enquiries@survey-solutions.co.uk www.survey-solutions.co.uk LAND SURVEYING BUILDING SURVEYING UNDERGROUND SURVEYING


PROJECT TITLE THE UNIVERSITY OF HERTFORDSHIRE, DE HAVILLAND CAMPUS ,HATFIELD, AL10 9AB DRAWING DETAIL TOPOGRAPHICAL SURVEY


Sheet 1 of 1 CLIENT

Original Sheet Size A0H

CLIENT	scale 1:200			
SURVEYOR MA	SURVEY DATE 2/7/2018	DWG STATUS FINAL		
DRAWING NUM		REVISION	ISSUE DATE 3/7/2018	

APPENDIX B DRAINAGE STRATEGY LAYOUTS

PROPOSED FOUL WATER PIPE

PROPOSED SURFACE WATER MANHOLE

PROPOSED FOUL WATER MANHOLE

SOIL VENT PIPE

PROPOSED RAINWATER PIPE

CHANNEL DRAIN

ATTENUATION TANK

GENERAL NOTES

- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS AND SPECIALIST DRAWINGS AND SPECIFICATIONS
- DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER 2. OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY.

GENERAL DRAINAGE NOTES

- 1. Invert levels and positions of existing drains / chambers / sewers where new connections are to be made must be checked and confirmed to the engineer prior to the commencement of any works
- 2. All drainage works shall be carried out in accordance with the requirements of the local authority, the environment agency and in conjunction with all relevant British Standards, codes of practice and 'Sewers for Adoption' 7th edition and any addendums as appropriate.
- 3. All drainage shall comply with the typical details and the requirements of BS EN 752 and part H of the building regulations.
- 4. Any part of the existing drainage system to be retained as part of the new scheme shall be cleaned and inspected. Any structural defects shall be repaired using appropriate and approved means.
- 5. For setting-out dimensions of SVP's, RWP's etc, refer to architect's or mechanical engineer's drawings. positions shown are indicative and subject to final design.
- 6. All foul and RWP connections shall be 100mm diameter unless otherwise specified. 7. All precast concrete units used in the drainage works shall be
- manufactured using sulphate resisting cement.
- 8. Manhole covers and frames shall be to BS EN 124 and shall be kitemarked. Covers and frames shall be heavy duty D400 in carriageways and vehicular areas and medium duty B125 in footways and soft landscaping. In block/concrete paved areas covers shall be recessed fabricated steel. All recessed covers shall in accordance with the FACTA association gradings.
- 9. All internal inspection chambers to be recessed, double sealed with screw down covers.
- 10. Cover levels are to be adjusted locally to suit finished ground levels.
- 11. At least one soil pipe at the head of each foul run shall vent to the atmosphere.
- 12. Existing drainage to be removed is to be broken out to bed level and void backfilled with granular material, compacted in layers not exceeding 250mm.
- 13. All drain runs from SVP's, stub stacks or FW gullies to be laid at 1:40 gradient unless otherwise stated. All RWP's to be laid 1:80 min unless otherwise stated.
- 14. All manholes / inspection chambers in block paved areas, to have recessed covers. MH covers in paved areas to have cover & frame orientated 'square' with paving to minimise cut slabs or blocks.
- 15. All private drainage to be laid to levels shown using flexibly jointed pipes, either UPVC to BS 4660 and BS 5481 or vitrified clayware to BS EN 295. pipes below structural building slabs or basements shall be cast iron to BS 437.
- 16. Rodding eyes, etc are to be laid to manufacturers minimum cover and depth to allow adequate fall from adjoining unit.
- 17. All proposed trees to have appropriate tree barrier details linking pits to ensure roots are directed away from drainage.
- 18. Where new sewers are constructed within 5m of a new or existing tree the sewer shall be concrete encased against root intrusion. refer to drainage details.
- 19. All new drainage to be jetted and CCTV surveyed on completion. Contractor to make sure that the drainage is fully operational. Refer to drainage maintenance manual for maintenance details
- 20. All runs connecting into the public drainage network to be vitrified clay, extra length to BS EN 295 or BS65 with plain sleeved or socketed flexible joints.
- 21.CDM note: all pipework, silt traps, catchpits, trapped gullies and attenuation tanks to be regularly inspected every three months and cleared out on a regular frequency for the first nine months. After this period the frequency can be reduced to every six months. Porous surface to be regularly swept three times a year to remove the silt.
- 22. This drawing is to be read in conjunction with all relevant Conisbee drawings.
- 23.Health and safety: the works shall be carried out by specialist competent and experienced contractors who are members of a recognised national organisation.operatives shall have received full and appropriate training for the operations they are to undertake. all work shall be carried out in accordance with all pertinent health and safety regulations.

NOT FOR CONSTRUCTION

Rev	Date	Description	Drawn	Check
P1	14.08.18	Issued for information	JC	TG
P2	13.09.18	Issued for Stage 3	WB	JC
P3	09.10.18	Revised following LLFA comments	WB	JC

10 10 Consulting Structural Engineers

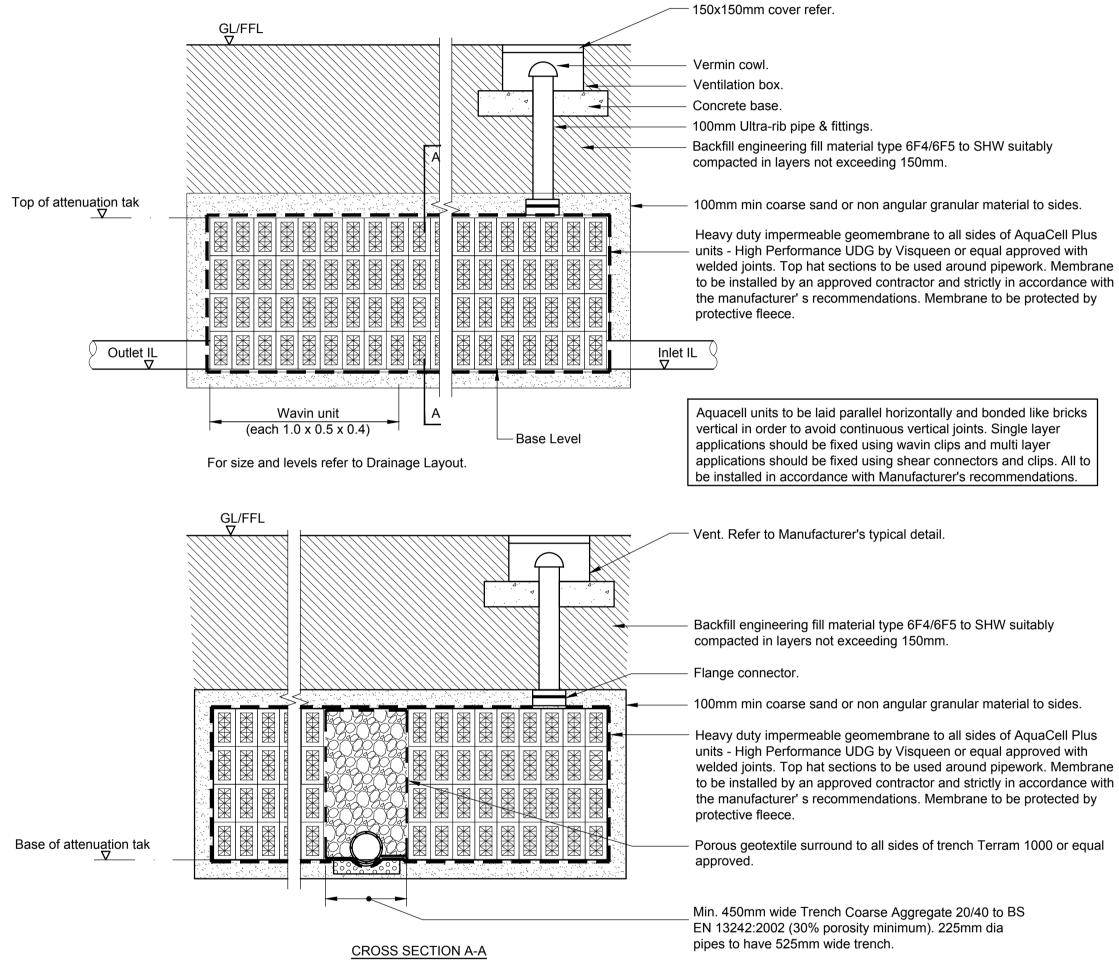
London • Cambridge • Norwich 1-5 Offord St London N1 1DH Telephone 020 7700 6666

Consulting Civil Engineers

www.conisbee.co.uk

Drawing Status

S2 - FOR INFORMATION	
Project	


UNIVERSITY OF HERTFORDSHIRE **BUSINESS AND SOCIAL HUB**

Title DRAINAGE STRATEGY

Date	AUG 2018				
Scale	1:100@A1				
Drawn	JC				
Engine	er TG				
Project No 180149					
Revision					

P3

Drawing No UHER-CON-00-GF-DR-C-1000

TYPICAL STORM WATER ATTENUATION TANK DETAIL SCALE NTS

GENERAL NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS, ENGINEERS AND SPECIALIST DRAWINGS AND SPECIFICATIONS
- 2. DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY.

DRAINAGE DETAIL NOTES

- 1. CDM NOTE: ALL PIPEWORK, SILT TRAPS, CATCHPITS, TRAPPED GULLIES, ATTENUATION TANKS AND PUMP CHAMBERS TO BE REGULARLY INSPECTED EVERY THREE MONTHS AND CLEARED OUT ON A REGULAR FREQUENCY FOR THE FIRST NINE MONTHS. AFTER THIS PERIOD THE FREQUENCY CAN BE REDUCED TO EVERY SIX MONTHS. PUMP SETS TO BE INSPECTED AND MAINTAINED IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE MANUFACTURER/PUMP PROVIDER. POROUS SURFACE TO BE REGULARLY SWEPT THREE TIMES A YEAR TO REMOVE THE SILT. GREASE TRAPS/INTERCEPTORS ARE TO BE INSTECTED/EMPTIED AT LEAST ONCE A MOTH AND, PREFERABLY, EVERY TWO WEEKS.
- 2. HEALTH AND SAFETY: THE WORKS SHALL BE CARRIED OUT BY SPECIALIST COMPETENT AND EXPERIENCED CONTRACTORS WHO ARE MEMBERS OF A RECOGNISED NATIONAL ORGANISATION.OPERATIVES SHALL HAVE RECEIVED FULL AND APPROPRIATE TRAINING FOR THE OPERATIONS THEY ARE TO UNDERTAKE. ALL WORK SHALL BE CARRIED OUT IN ACCORDANCE WITH ALL PERTINENT HEALTH AND SAFETY REGULATIONS.
- 3. REFER TO THE MANUFACTURER'S INSTALLATION GUIDANCE FOR ALL SPECIFIED PRODUCTS.

NOT FOR CONSTRUCTION

	0 0.5 1.0 Meters	1:20		
P1 14.08.18	Issued for information	RAD	JC	
Rev Date	Description	Drawn	Check	
Telephone (www.conisb Drawing Sta	itus			
SZ-FOR Project	INFORMATION	Date AUG	G 2018	
-	SITY OF HERTFORDSHIRE	Scale AS S		
BUSINE	SS AND SOCIAL HUB	Drawn	RAD	
Title		Engineer J		
SUDS D	ETAILS	Project No 180149		
Drawing No	ON-00-XX-DR-C-1300	Revision P1		

UHER-CON-00-XX-DR-C-1300

APPENDIX C MICRODRAINAGE CALCULATION

nisbee									Page 1
Offord	Street			Univ	ersity	of Hert	fordshi	re	
ington					al Hub				4.
ndon N1	1DH								
	2018 17:3	0		Desi	aned by	y john.c	ourtney		
le TANK.S					ked by				Drain
novyze					_	trol 201	7 1 2		
10 V y 2 C				DOUL		201	. / • ⊥ • ∠		
	Summary	of Resi	ilts f	or 10	0 vear	Return	Period	(+40%)	
	<u>Duninar y</u>	01 1(00)	AT CO I	01 10	<u>ycar</u>	Recurn	101104	(+100)	-
		Н	alf Dra	ain Tin	ne : 552	minutes.			
	Storm	Max	Max	M	ax	Max	Max	Max	Status
	Event	Level	Depth	Infilt	ration	Control D	Outflow	Volume	
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)	
15	min Summer	74.166	0.416		0.0	2.0	2.0	66.0	ОК
	min Summer				0.0	2.0	2.0		0 K
	min Summer				0.0	2.0		102.7	
120	min Summer	74.489	0.739		0.0	2.0	2.0		
180	min Summer	74.527	0.777		0.0	2.0	2.0	123.2	ΟK
240	min Summer	74.541	0.791		0.0	2.0	2.0	125.5	ОК
360	min Summer	74.540	0.790		0.0	2.0	2.0	125.3	ΟK
	min Summer				0.0	2.0		122.6	
600	min Summer	74.501	0.751		0.0	2.0	2.0	119.1	ОК
	min Summer				0.0	2.0		115.9	
	min Summer				0.0	2.0		110.0	
	min Summer				0.0	2.0		99.7	
	min Summer				0.0	2.0		85.8	
	min Summer				0.0	2.0	2.0		
	min Summer				0.0	2.0	2.0		
	min Summer min Summer				0.0	2.0 1.9	2.0 1.9		
	min Summer				0.0	1.9	1.9		
	min Summer				0.0	1.8	1.9		
	min Winter				0.0	2.0	2.0		ОК
		Storm Event		Rain m/hr)	Flooded Volume (m³)	Discharg Volume (m³)	e Time-Pe (mins		
	15	min Sur	nmer 14	2.375	0.0	69.	0	30	
		min Sur		2.110	0.0			44	
		min Sur		6.713	0.0			74	
		min Sur		3.760	0.0			130	
		min Sur		24.618	0.0			188	
		min Sur min Sur		9.574	0.0			246 364	
		min Sur min Sur		4.099	0.0 0.0			364 480	
		min Sur		9.329	0.0			530	
		min Sur		9.329	0.0			592	
		min Sur		6.364	0.0			720	
		min Sur		4.567	0.0			992	
		min Sur		3.274	0.0			408	
		min Sur		2.583	0.0			796	
		min Sur		1.847	0.0			512	
		min Su		1.455	0.0			184	
		min Su		1.208	0.0			388	
		min Sur		1.038	0.0			512	

8640 min Summer 1.038

10080 min Summer 0.912

15 min Winter 142.375

0.0

0.0

©1982-2017 XP Solutions

0.0

289.9

297.3

69.0

4512

5240

30

Conisbee									Page 2
1-5 Offord Stre	et			Univ	ersity	of Herti	fordshi	re	
Islington				Soci	al Hub				4
London N1 1DH									
Date 08/10/2018	17:3	0		Desi	gned h	y john.co	ourtnev		
File TANK.SRCX		-			ked by		0.10 y		Drainad
Innovyze					-	trol 2017	7 1 2		
IIIIOVy2e				JOUL			• 1 • 2		
Sum	marv (of Resu	ults f	or 10)0 vear	Return i	Period	(+40%)	
								(,	-
Storm		Max	Max		lax	Max	Max	Max	Status
Event	t		-			Control Σ			
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)	
30 min	Winter	74.286	0.536		0.0	2.0	2.0	85.1	ОК
60 min					0.0	2.0		102.8	
120 min					0.0	2.0	2.0		
180 min					0.0	2.0	2.0		
240 min 360 min					0.0	2.0		126.3	
360 min 480 min					0.0	2.0		126.4	
480 min 600 min					0.0 0.0	2.0 2.0	2.0	124.1 120.4	
720 min					0.0	2.0	2.0		
960 min					0.0	2.0	2.0		
1440 min					0.0	2.0	2.0		
2160 min					0.0	2.0	2.0		
2880 min	Winter	74.078	0.328		0.0	2.0	2.0	52.1	ОК
4320 min	Winter	73.904	0.154		0.0	2.0	2.0	24.4	ОК
5760 min					0.0	1.8		11.0	
7200 min					0.0	1.6		5.8	
8640 min					0.0	1.4	1.4	3.8	
10080 min	Winter	/3./65	0.015		0.0	1.2	1.2	2.5	ОК
		Storm		Rain		l Discharge			
		Event	(п	m/hr)	Volume (m³)	Volume (m³)	(mins)	
					(111)	(111)			
		min Wi			0.0			44	
		min Wi						72	
					0.0			L28	
					0.0			L86	
	240	min Win min Win	iter 1	y.5/4	0.0 0.0			242 356	
	00C ∆ 20	min Wi min Wi	nter 1	1 177	0.0			166	
		min Wi						570	
		min Wi						548	
		min Wi						748	
		min Wi						060	
		min Wi	nter	3.274	0.0			504	
		min Wi	nter	2.583	0.0	240.4	18	356	
		min Wi						520	
	5760	min Wi	nter	1.455	0.0			L68	
		min Wi		1.208				752	
					0.0			188	
	10080	min Wi	nter	0.912	0.0	297.3	51	152	
			©1982-	-2017	XP So	lutions			

Conisbee		Page 3
1-5 Offord Street	University of Hertfordshire	
Islington	Social Hub	4 a
London N1 1DH		Micco
Date 08/10/2018 17:30	Designed by john.courtney	
File TANK.SRCX	Checked by	Drainage
Innovyze	Source Control 2017.1.2	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 1.000
Region	England and Wales	Cv (Winter) 1.000
M5-60 (mm)	20.000	Shortest Storm (mins) 15
Ratio R	0.436	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.194

							(mins) To:				
0	4	0.049	4	8	0.049	8	12	0.048	12	16	0.048

Conisbee					Page 4
1-5 Offord Street		Univers	ity of He	rtfordshire	
Islington		Social 1	Hub		4
London N1 1DH					Micco
Date 08/10/2018 17:30	C	Designe	d by john	.courtney	
File TANK.SRCX		Checked		1	Drainage
Innovyze			Control 20)17 1 2	
11110 1 / 20		Jourge .		517.1.2	
	M	odel Det	ails		
	Storage is Oni	line Cove:	r Level (m)	75.000	
	<u>Cellula</u>	<u>r Storag</u>	e Structu	re	
					2 0
	n Coefficient n Coefficient	Base (m/h	r) 0.00000	Safety Factor Porosity	
Depth (m) Area	(m ²) Inf. Are	a (m²) De	pth (m) Are	ea (m²) Inf. A	rea (m²)
0.000	167.0	0.0	1.300	0.0	0.0
	167.0	0.0	1.400	0.0	0.0
	167.0	0.0	1.500	0.0	0.0
	167.0	0.0	1.600	0.0	0.0
	167.0	0.0	1.700	0.0	0.0
	167.0	0.0	1.800	0.0	0.0
	167.0	0.0	1.900	0.0	0.0
	167.0	0.0	2.000	0.0	0.0
0.800 0.801	167.0	0.0	2.100 2.200	0.0 0.0	0.0
1.000	0.0 0.0	0.0	2.200	0.0	0.0 0.0
1.100	0.0	0.0	2.300	0.0	0.0
1.200	0.0	0.0	2.500	0.0	0.0
Ŀ	lydro-Brake®	Optimum	Outflow	<u>Control</u>	
	Unit	Reference	MD-SHE-00	69-2000-0850-2	000
		n Head (m)			850
	Design 1	Flow (l/s)			2.0
	I	Flush-Flo ^r	4	Calcula	ted
		-		upstream stor	-
	-	pplication		Surf	
	-	Available			Yes
		neter (mm)		7.0	69
Minimum		Level (m)			700
	utlet Pipe Diar ed Manhole Diar				100 200
	Control Poi	ints	Head (m) H	[] [] [] [] [] [] [] [] [] [] [] [] [] [] [
De	sign Point (Ca	lculated)	0.850	2.0	
		lush-Flo™		2.0	
		Kick-Flo®		1.6	
Me	an Flow over H	ead Range		1.8	
The hydrological calcu Hydro-Brake® Optimum a Hydro-Brake Optimum® b invalidated	s specified.	Should and	other type	of control dev	ice other than a

©1982-2017 XP Solutions

Conisbee		Page 5
1-5 Offord Street	University of Hertfordshire	
Islington	Social Hub	<u> </u>
London N1 1DH		Micco
Date 08/10/2018 17:30	Designed by john.courtney	
File TANK.SRCX	Checked by	Drainage
Innovyze	Source Control 2017.1.2	

<u>Hydro-Brake® Optimum Outflow Control</u>

Depth (m) F	'low (l/s)	Depth (m) Fl	ow (1/s)	Depth (m) Flow	(l/s)	Depth (m)	Flow (l/s)
0.100	1.7	1.200	2.3	3.000	3.6	7.000	5.3
0.200	2.0	1.400	2.5	3.500	3.8	7.500	5.5
0.300	2.0	1.600	2.7	4.000	4.1	8.000	5.7
0.400	1.9	1.800	2.8	4.500	4.3	8.500	5.8
0.500	1.7	2.000	3.0	5.000	4.5	9.000	6.0
0.600	1.7	2.200	3.1	5.500	4.7	9.500	6.1
0.800	1.9	2.400	3.2	6.000	4.9		
1.000	2.2	2.600	3.3	6.500	5.1		

©1982-2017 XP Solutions

APPENDIX D SUSTAINABLE DRAINAGE MAINTENANCE PLAN

CONSULTING Structural Engineers Consulting Civil Engineers

University of Hertfordshire - Social Hub

Sustainable Drainage Maintenance Plan

• London 1-5 Offord Street London N1 1DH Telephone 020 7700 6666

Norwich

6 Upper King Street Norwich NR3 1HA Telephone 01603 628 074

Cambridge

16 Signet Court Swann Road Cambridge CB5 8LA Telephone 01223 656 058

design@conisbee.co.uk www.conisbee.co.uk

Directors

Tim Attwood BSc CEng MIStructE Bob Stagg BSc (Hons) CEng FIStructE MICE Tom Beaven BEng (Hons) CEng MIStructE Allan Dunsmore BEng (Hons) CEng MIStructE MICE Richard Dobson MEng CEng MIStructE Paul Hartfree IEng MICE MCIHT FGS

Associates

David Richards BEng (Hons) ACGI CEng MIStructE Gary Johns Terry Girdler BSc (Hons) Eng MSc CEng FICE MIStructE Conservation accredited engineer (CARE) Ben Heath BEng CEng MIStructE Tom Lefever BEng (Hons) CEng C.WEM MICE MCIWEM Nigel Nicholls IEng AMIStructE Denis Kealy BEng (Hons) CEng MIEI MIStructE Tapiwa Gavaza BSc (Civils Hons) MSc CEng CEnv MICE MIEMA Kevin Clark BSc (Hons) PhD DIC CEng MICE

Consultant

Alan Conisbee BA BAI CEng MIStructE Conservation accredited engineer (CARE) Chris Boydell BSc CEng MIStructE MICE

Conisbee is a trading name of Alan Conisbee and Associates Limited Registered in England No. 3958459

Ref: 180149/J Courtney Approved By: T Gavaza Date: 8 Oct 2018 Version: P1

Table of Contents

_

_

1.0	Introduction	3
2.0	Organisation Responsible	3
3.0	Conventional Drainage Systems	3
4.0	SuDS Features	4
5.0	SuDS Programme	5
6.0	Operation and Maintenance Manual Records	5

1.0 INTRODUCTION

The purpose of this document is to outline the proposed maintenance schedule for the drainage system and all SuDS features for the proposed Social Hub at the University of Hertfordshire Social Hub.

The maintenance schedule set out here complies with the CIRIA SuDS Manual (C753), which is identified as providing current best practice in the industry. The report does not replace manufacturers' requirements and these should be followed for each product in addition to the information in this document.

For the proposed extents of SuDS features on a plan drawing, please refer to the separate drainage layout plans and drainage strategy report.

2.0 ORGANISATION RESPONSIBLE

The University of Hertfordshire, will be responsible for undertaking maintenance of the proposed drainage for the whole life of the site.

3.0 CONVENTIONAL DRAINAGE SYSTEMS

3.1 Gullies, Silt Traps, Manholes, Catchpits & Pipework

On completion of construction, the internal surfaces of the sewers and manholes shall be thoroughly cleansed to remove all deleterious matter, without such matter being passed forward into the existing sewers.

All trapped gullies, silt traps, manholes and catchpits are to be regularly inspected every three months and cleared out on a regular frequency for the first nine months. After this period, the frequency can be reduced to every six months.

All drainage runs will be inspected once a year. The system is to be jetted clear if/when necessary.

3.2 Flow controls (including Hydrobrakes)

The manhole containing the flow control is to be regularly inspected once a year and any debris and silt are to be removed from the sump and manhole.

Hydrobrakes / vortex flow controls should be maintained in accordance with the manufacturer's requirements.

4.0 SUDS FEATURES

4.1 Introduction

The following SuDS measure is proposed for the Social Hub:-

• Below Ground Attenuation Tank

During the first year of the operation of all types of SuDS should be inspected at least monthly and after significant storm events to ensure that the system is functioning as designed and that no damage or faults are evident.

It is recommended that a report on the condition of the SuDS is undertaken further to an inspection at least once annually.

4.2 Below ground attenuation tank

Regular maintenance and inspection of below ground attenuation tanks are required to ensure the effective long term operation of attenuation tanks. The main activity is associated with dealing with debris and silt.

Before connecting a newly constructed upstream drainage system to an attenuation tank, the new drainage system should be jetted and cleaned thoroughly.

Table 1 provides the proposed operation and maintenance regime for the attenuation tanks. This is adapted from The SuDS Manual (C753).

Maintenance Schedule	Required Action	Frequency
	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months, then annually.
Regular	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter, remove and replace surface infiltration medium as necessary.	Annually
	Remove sediment from pre-treatment structures and/or internal forebays.	Annually, or as requested
Remedial	Repair/rehabilitate inlets, outlet, overflows and vents.	As required

Table 1: Operation and maintenance requirements for below ground attenuation tank

actions		
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed.	Annually
	Survey inside of the tank for sediment build –up and remove if necessary	Every 5 years or as required

5.0 SUDS PROGRAMME

The proposed SuDS for the site will come on line approximately Summer 2020.

The contractor should ensure that during the construction phase the SuDS are not damaged by construction works.

6.0 OPERATION AND MAINTENANCE MANUAL RECORDS

6.1 Documents to be handed over

Conisbee will provide this document to Willmott Dixon, who will provide the document to the construction contractor, Willmott Dixon will also include it in the Operation and Maintenance Manual to be handed over to the University of Hertfordshire.

The University of Hertfordshire will have copies of the drainage design drawings which show locations of the proposed SuDS and any 'as-builts' provided by the contractor.

6.2 Maintenance Records

The University of Hertfordshire will be provided with the standard proforma in Appendix B of The SuDS Manual to enable them to record the outcomes of inspections.