

Our Ref: MG/AJL/47875

Your Ref:

13 April 2017

Mr Alastair Clark Ball Hall (Project Management) Ltd 780 The Crescent Colchester Business Park Colchester Essex CO4 9YQ

Dear Alastair

Re: Queenswood School – Surface Water Drainage Strategy

We have reviewed the Hertfordshire Lead Local Flood Authority (LLFA) comments on the proposal to use soakaways and also our own Ground Investigation Report which concludes that due to ground water ingress, that soakaways may not be suitable for surface water disposal at this site.

This investigation suggests that ground water is generally 1.5m – 2.7m below ground level or deeper. There is one result in TP4 which has ground water higher than this at 0.6m or so. This inconsistent set of results suggests that water is perched on very local impermeable geological features.

A site visit was undertaken to review the existing surface water drainage. The sports hall is currently served by two rainwater pipes on the western elevation which connect to a piped system which flows to the north. On the northern boundary of the site there is a ditch which appears to serve the site and also appears to flow from this area in both easterly and westerly directions. The ditch has not been maintained for some time and a significant build-up of organic material and detritus was noted. This material will need to be removed. The drainage system serving this part of the school is noted as being heavily silted and this too will need to be cleansed.

It is proposed to provide enhancements to this existing surface water drainage system to serve the extended sports hall. This new system will be restricted in outflow to the existing brownfield 1 in 1 year run off rate to accord with national and local surface water policy. Calculations have been undertaken for the existing surface water system which shows that the peak runoff rate would be 21.3 l/s. to accommodate this restriction for the extended sports hall a hydrobrake will be retro fitted on the existing drainage system. This will require some water to be stored within the site in a planned manner.

The depth of the existing drainage system and the floor level of the sports hall are only 600mm different. This, together with the number of existing trees makes

Cont'd.../

847 The Crescent, Colchester, Essex CO4 9YQ

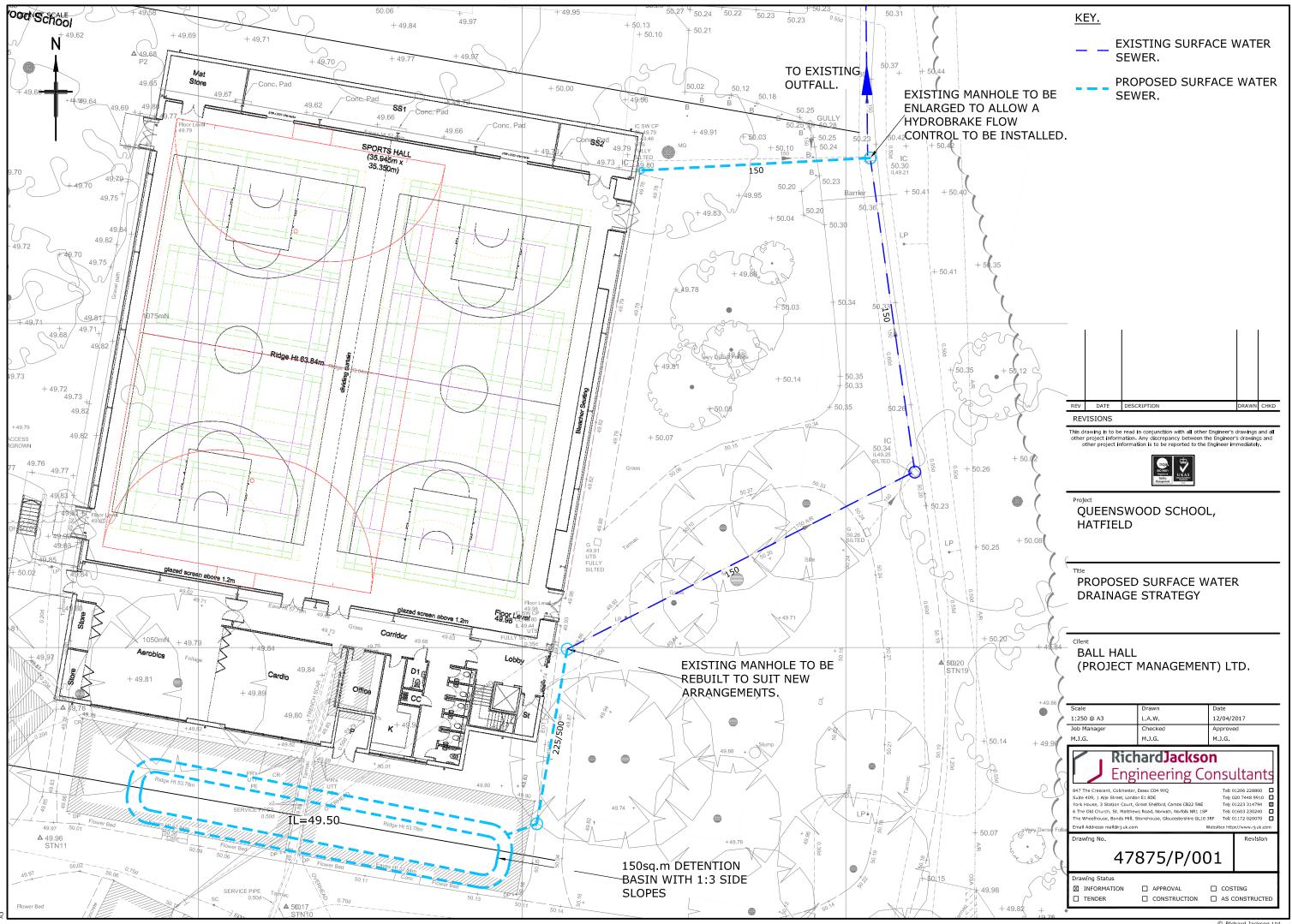
Telephone: 01206 228800 www.rj.uk.com the provision of any surface water storage extremely challenging. However, the proposed scheme will also include the removal of some temporary accommodation buildings currently located to the south of the sports hall. This opens a small area up that is without trees. A detention basin is proposed in this location to store water.

The attached calculations show that this detention basin will provide sufficient capacity for the surface water system to store water up to the 1 in 100 year plus 20% climate change event. 20% climate change has been selected to accord with a 50 year life for the scheme in line with Planning Policy Guidance advice.

The flow rates for the 1 in 100 year event have been restricted by the hydrobrake flow control to 20.8 l/s which is below the peak rate in the current 1 in 1 year event without climate change.

The detention basin's location and the configuration of the existing pipes within trees means that it is not possible to arrange an online solution. Hence the detention basin will be off line in part. However, if soil conditions allow soakage into the ground. Within 5m of the building an impermeable liner is proposal to avoid impact on the foundations of the building.

A drawing 47875/P/001 of these arrangements together with calculations of the existing 1 in 1 year event and proposed 1 in 100 year and climate change event are enclosed. In an extreme event that water will flow over the topography to the north west and eventually reach the ditch system noted above.


These proposals comply with LLFA policy for brownfield sites by reducing run off rates from those which currently could occur.

Yours sincerely

M. J. Galdes

Mark Geddes

on behalf of Richard Jackson Limited

Richard Jackson Plc		Page 1
26 HIGH ST. HADLEIGH	Queenswood Sch 47175	
IPSWICH SUFFOLK	Existing 1 in 1 year	4
IP7 5AP		Micro
Date 12/04/2017 13:09	Designed by MJG	Desinage
File existing 1 in 1.srcx	Checked by	Diali lage
Micro Drainage	Source Control 2015.1	

Summary of Results for 1 year Return Period

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	49.717	0.507	20.3	1.6	ОК
30	min	Summer	49.609	0.399	18.5	1.3	O K
60	min	Summer	49.425	0.215	14.8	0.6	O K
120	min	Summer	49.359	0.149	10.2	0.3	O K
180	min	Summer	49.337	0.127	7.9	0.3	O K
240	min	Summer	49.322	0.112	6.5	0.2	O K
360	min	Summer	49.302	0.092	4.9	0.2	ОК
480	min	Summer	49.292	0.082	4.0	0.1	O K
600	min	Summer	49.287	0.077	3.4	0.1	O K
720	min	Summer	49.282	0.072	2.9	0.1	O K
960	min	Summer	49.275	0.065	2.4	0.1	O K
1440	min	Summer	49.265	0.055	1.8	0.1	O K
2160	min	Summer	49.258	0.048	1.3	0.1	O K
2880	min	Summer	49.253	0.043	1.1	0.1	O K
4320	min	Summer	49.247	0.037	0.8	0.0	O K
5760	min	Summer	49.244	0.034	0.7	0.0	O K
7200	min	Summer	49.241	0.031	0.6	0.0	O K
8640	min	Summer	49.238	0.028	0.5	0.0	O K
10080	min	Summer	49.237	0.027	0.4	0.0	O K
15	min	Winter	49.777	0.567	21.3	1.6	O K
30	min	Winter	49.542	0.332	17.2	1.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	31.547	0.0	9.9	11
30	min	Summer	20.414	0.0	12.9	19
60	min	Summer	12.800	0.0	16.1	34
120	min	Summer	7.858	0.0	19.8	64
180	min	Summer	5.877	0.0	22.2	92
240	min	Summer	4.776	0.0	24.1	122
360	min	Summer	3.550	0.0	26.8	184
480	min	Summer	2.865	0.0	28.9	240
600	min	Summer	2.426	0.0	30.6	300
720	min	Summer	2.117	0.0	32.0	364
960	min	Summer	1.708	0.0	34.4	482
1440	min	Summer	1.263	0.0	38.2	724
2160	min	Summer	0.934	0.0	42.4	1076
2880	min	Summer	0.754	0.0	45.6	1464
4320	min	Summer	0.557	0.0	50.5	2176
5760	min	Summer	0.449	0.0	54.3	2936
7200	min	Summer	0.380	0.0	57.5	3624
8640	min	Summer	0.332	0.0	60.3	4312
10080	min	Summer	0.296	0.0	62.7	5112
15	min	Winter	31.547	0.0	11.1	11
30	min	Winter	20.414	0.0	14.4	19

©1982-2015 XP Solutions

Richard Jackson Plc		Page 2
26 HIGH ST. HADLEIGH	Queenswood Sch 47175	
IPSWICH SUFFOLK	Existing 1 in 1 year	4
IP7 5AP		Micco
Date 12/04/2017 13:09	Designed by MJG	Desipage
File existing 1 in 1.srcx	Checked by	Drainage
Micro Drainage	Source Control 2015.1	•

Summary of Results for 1 year Return Period

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	49.377	0.167	12.2	0.4	ОК
120	min	Winter	49.336	0.126	7.7	0.3	O K
180	min	Winter	49.314	0.104	5.8	0.2	O K
240	min	Winter	49.301	0.091	4.8	0.2	O K
360	min	Winter	49.288	0.078	3.5	0.1	O K
480	min	Winter	49.282	0.072	2.9	0.1	O K
600	min	Winter	49.276	0.066	2.4	0.1	O K
720	min	Winter	49.271	0.061	2.1	0.1	O K
960	min	Winter	49.265	0.055	1.7	0.1	O K
1440	min	Winter	49.257	0.047	1.3	0.1	O K
2160	min	Winter	49.250	0.040	1.0	0.0	O K
2880	min	Winter	49.246	0.036	0.8	0.0	O K
4320	min	Winter	49.241	0.031	0.6	0.0	O K
5760	min	Winter	49.238	0.028	0.5	0.0	O K
7200	min	Winter	49.236	0.026	0.4	0.0	O K
8640	min	Winter	49.235	0.025	0.4	0.0	O K
10080	min	Winter	49.233	0.023	0.3	0.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	12.800	0.0	18.1	34
		Winter	7.858	0.0	22.2	64
180	min	Winter	5.877	0.0	24.9	94
240	min	Winter	4.776	0.0	27.0	122
360	min	Winter	3.550	0.0	30.1	188
480	min	Winter	2.865	0.0	32.3	252
600	min	Winter	2.426	0.0	34.2	300
720	min	Winter	2.117	0.0	35.8	376
960	min	Winter	1.708	0.0	38.6	476
1440	min	Winter	1.263	0.0	42.8	730
2160	min	Winter	0.934	0.0	47.4	1108
2880	min	Winter	0.754	0.0	51.1	1468
4320	min	Winter	0.557	0.0	56.6	2180
5760	min	Winter	0.449	0.0	60.9	2992
7200	min	Winter	0.380	0.0	64.4	3488
8640	min	Winter	0.332	0.0	67.5	4368
10080	min	Winter	0.296	0.0	70.2	5088

Richard Jackson Plc		Page 3
26 HIGH ST. HADLEIGH	Queenswood Sch 47175	
IPSWICH SUFFOLK	Existing 1 in 1 year	4
IP7 5AP		Micro
Date 12/04/2017 13:09	Designed by MJG	Desipage
File existing 1 in 1.srcx	Checked by	Dialilade
Micro Drainage	Source Control 2015.1	

Rainfall Details

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	1	Cv (Summer) (0.750
Region	England and Wales	Cv (Winter) (0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.422	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+0

Pipe Network

Volume in Pipe Network (m^3) 1 Dia of Outfall Pipe (m) 0.2 Slope of Outfall Pipe (1:X) 150 Roughness of Outfall Pipe (mm) 0.600

Time Area Diagram

Total Area (ha) 0.168

Time (mins) Area From: To: (ha) 0.168

Richard Jackson Plc		Page 4
26 HIGH ST. HADLEIGH	Queenswood Sch 47175	
IPSWICH SUFFOLK	Existing 1 in 1 year	4
IP7 5AP		Micco
Date 12/04/2017 13:09	Designed by MJG	Desinago
File existing 1 in 1.srcx	Checked by	niamage
Micro Drainage	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 50.300

<u>Pipe Structure</u>

Diameter (m) 0.150 Length (m) 60.000 Slope (1:X) 150.000 Invert Level (m) 49.210

Pipe Outflow Control

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 150.0 Coefficient of Contraction 0.600 Length (m) 40.000 Upstream Invert Level (m) 49.210 Roughness k (mm) 0.600

Richard Jackson Plc	Page 1	
26 HIGH ST. HADLEIGH	Queenswood Sch 47175	
IPSWICH SUFFOLK	Proposed 1 in 100 + 20%	4
IP7 5AP		Micco
Date 12/04/2017 13:39	Designed by MJG	Desipage
File proposed 1 in 100 plus	Checked by	Drainage
Micro Drainage	Source Control 2015.1	

Summary of Results for 100 year Return Period (+20%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	49.398	0.098	18.5	29.4	ОК
30	min	Summer	49.412	0.112	20.1	33.7	O K
60	min	Summer	49.408	0.108	19.6	32.3	O K
120	min	Summer	49.395	0.095	18.2	28.4	O K
180	min	Summer	49.381	0.081	16.5	24.2	O K
240	min	Summer	49.369	0.069	15.0	20.7	O K
360	min	Summer	49.352	0.052	12.6	15.5	O K
480	min	Summer	49.340	0.040	11.0	11.9	O K
600	min	Summer	49.330	0.030	9.7	9.1	O K
720	min	Summer	49.323	0.023	8.8	7.0	O K
960	min	Summer	49.313	0.013	7.4	3.8	O K
1440	min	Summer	49.301	0.001	6.0	0.3	O K
2160	min	Summer	49.300	0.000	4.5	0.0	O K
2880	min	Summer	49.300	0.000	3.6	0.0	O K
4320	min	Summer	49.300	0.000	2.6	0.0	O K
5760	min	Summer	49.300	0.000	2.1	0.0	O K
7200	min	Summer	49.300	0.000	1.7	0.0	O K
8640	min	Summer	49.300	0.000	1.4	0.0	O K
10080	min	Summer	49.300	0.000	1.3	0.0	O K
15	min	Winter	49.414	0.114	20.1	34.2	O K
30	min	Winter	49.428	0.128	20.3	38.3	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	120.653	0.0	41.1	15
30	min	Summer	78.493	0.0	55.0	24
60	min	Summer	48.611	0.0	67.2	42
120	min	Summer	29.095	0.0	81.5	76
180	min	Summer	21.273	0.0	89.9	106
240	min	Summer	16.942	0.0	95.3	138
360	min	Summer	12.241	0.0	103.3	200
480	min	Summer	9.724	0.0	109.7	262
600	min	Summer	8.128	0.0	114.6	322
720	min	Summer	7.017	0.0	118.6	384
960	min	Summer	5.561	0.0	125.3	502
1440	min	Summer	4.002	0.0	135.4	736
2160	min	Summer	2.875	0.0	145.9	0
2880	min	Summer	2.272	0.0	153.8	0
4320	min	Summer	1.628	0.0	165.3	0
5760	min	Summer	1.285	0.0	173.9	0
7200	min	Summer	1.068	0.0	180.7	0
8640	min	Summer	0.918	0.0	186.5	0
10080	min	Summer	0.808	0.0	191.4	0
15	min	Winter	120.653	0.0	46.7	16
30	min	Winter	78.493	0.0	61.5	26

©1982-2015 XP Solutions

Richard Jackson Plc		Page 2
26 HIGH ST. HADLEIGH	Queenswood Sch 47175	
IPSWICH SUFFOLK	Proposed 1 in 100 + 20%	4
IP7 5AP		Micco
Date 12/04/2017 13:39	Designed by MJG	Desipage
File proposed 1 in 100 plus	Checked by	nianada
Micro Drainage	Source Control 2015.1	

Summary of Results for 100 year Return Period (+20%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
60	min	Winter	49.422	0.122	20.2	36.7	ОК
120	min	Winter	49.398	0.098	18.5	29.5	ОК
180	min	Winter	49.379	0.079	16.3	23.6	ОК
240	min	Winter	49.364	0.064	14.3	19.1	O K
360	min	Winter	49.343	0.043	11.4	12.9	O K
480	min	Winter	49.329	0.029	9.6	8.7	O K
600	min	Winter	49.319	0.019	8.2	5.8	ОК
720	min	Winter	49.312	0.012	7.3	3.5	O K
960	min	Winter	49.301	0.001	6.0	0.4	O K
1440	min	Winter	49.300	0.000	4.5	0.0	O K
2160	min	Winter	49.300	0.000	3.3	0.0	O K
2880	min	Winter	49.300	0.000	2.6	0.0	O K
4320	min	Winter	49.300	0.000	1.9	0.0	O K
5760	min	Winter	49.300	0.000	1.5	0.0	O K
7200	min	Winter	49.300	0.000	1.2	0.0	O K
8640	min	Winter	49.300	0.000	1.1	0.0	O K
10080	min	Winter	49.300	0.000	0.9	0.0	O K

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
60	min	Winter	48.611	0.0	76.2	44
120	min	Winter	29.095	0.0	92.0	78
180	min	Winter	21.273	0.0	101.0	112
240	min	Winter	16.942	0.0	106.9	144
360	min	Winter	12.241	0.0	116.0	208
480	min	Winter	9.724	0.0	122.6	268
600	min	Winter	8.128	0.0	128.2	330
720	min	Winter	7.017	0.0	132.8	390
960	min	Winter	5.561	0.0	140.5	502
1440	min	Winter	4.002	0.0	151.7	0
2160	min	Winter	2.875	0.0	163.5	0
2880	min	Winter	2.272	0.0	172.2	0
4320	min	Winter	1.628	0.0	185.2	0
5760	min	Winter	1.285	0.0	194.7	0
7200	min	Winter	1.068	0.0	202.4	0
8640	min	Winter	0.918	0.0	208.9	0
10080	min	Winter	0.808	0.0	214.4	0

Richard Jackson Plc		Page 3
26 HIGH ST. HADLEIGH	Queenswood Sch 47175	
IPSWICH SUFFOLK	Proposed 1 in 100 + 20%	4
IP7 5AP		Misson
Date 12/04/2017 13:39	Designed by MJG	Desinago
File proposed 1 in 100 plus	Checked by	Dialitatic
Micro Drainage	Source Control 2015.1	

Rainfall Details

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.422	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+20

Pipe Network

Volume in Pipe Network (m^3) 1 Dia of Outfall Pipe (m) 0.2 Slope of Outfall Pipe (1:X) 150 Roughness of Outfall Pipe (mm) 0.600

Time Area Diagram

Total Area (ha) 0.188

Time (mins) Area From: To: (ha)

Richard Jackson Plc		Page 4
26 HIGH ST. HADLEIGH	Queenswood Sch 47175	
IPSWICH SUFFOLK	Proposed 1 in 100 + 20%	4
IP7 5AP		Micco
Date 12/04/2017 13:39	Designed by MJG	Desinago
File proposed 1 in 100 plus	Checked by	Diali lage
Micro Drainage	Source Control 2015.1	

Model Details

Storage is Online Cover Level (m) 50.000

Tank or Pond Structure

Invert Level (m) 49.300

Depth	(m)	Area ((m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0	000	3.0	0.00	0	700	-	300.0	1	400	3	300.0	2	100	3	00.0
	100		0.0		800		300.0		500		300.0		200		00.0
0.	200	30	0.0	0.	900	3	300.0	1.	600	3	300.0	2.	300	3	0.00
0.	300	30	0.0	1.	000	3	300.0	1.	.700	3	300.0	2.	400	3	0.00
0.	400	30	0.0	1.	100	3	300.0	1.	.800	3	300.0	2.	500	3	0.00
0.	500	30	0.0	1.	200	3	300.0	1.	.900	3	300.0				
0.	600	30	0.0	1.	300	3	300.0	2.	.000	3	300.0				

Hydro-Brake Optimum® Outflow Control

Unit Reference MD-SHE-0206-2100-0600-2100 Design Head (m) 0.600 Design Flow (1/s) 21.0 Flush-Flo $^{\text{MD}}$ Calculated Objective Minimise upstream storage Diameter (mm) 206 Invert Level (m) 49.210 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.600 20.8 Flush-Flo $^{\text{TM}}$ 0.300 20.8 Kick-Flo $^{\text{R}}$ 0.491 18.9 Mean Flow over Head Range - 16.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flow	w (1/s)	Depth (m) Flo	ow (1/s)	Depth (m)	Flow (1/s)
0.100	7.1	1.200	28.9	3.000	45.0	7.000	67.6
0.200	19.8	1.400	31.2	3.500	48.5	7.500	70.0
0.300	20.8	1.600	33.2	4.000	51.7	8.000	72.3
0.400	20.3	1.800	35.2	4.500	54.8	8.500	74.6
0.500	19.1	2.000	37.0	5.000	57.7	9.000	76.8
0.600	20.8	2.200	38.8	5.500	60.4	9.500	78.9
0.800	23.8	2.400	40.4	6.000	63.0		
1.000	26.5	2.600	42.0	6.500	65.1		

©1982-2015 XP Solutions

Richard Jackson Plc		Page 1
26 HIGH ST. HADLEIGH	Queens wood school	
IPSWICH SUFFOLK	Sports Hall	4
IP7 5AP	Green Field Run off	Micro
Date 11/04/2017 17:48	Designed by MJG	Desipage
File	Checked by	niamade
Micro Drainage	Source Control 2015.1	•

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 Soil 0.150
Area (ha) 0.189 Urban 0.000
SAAR (mm) 687 Region Number Region 6

Results 1/s

QBAR Rural 0.1 QBAR Urban 0.1

Q100 years 0.2

Q1 year 0.1 Q30 years 0.2 Q100 years 0.2