Flood Risk Assessment and Drainage Strategy

EAS

Colesdale Farm

Northaw

Hertfordshire

Document History

JOB NUMBER: 2088/2019

DOCUMENT REF: Colesdale Farm FRA and Drainage Strategy

REVISIONS: D- Final

Revision	Comments	Ву	Checked	Authorised	Date
А	Client Draft	RC	LW	SA	08/04/19
В	For Submission	RC	LW	SA	09/04/19
С	Draft- Layout Updates	RC	LW	SA	24/10/19
D	Final	RC	LW	SA	25/10/19

Contents

1	Introduction	4		Proposed Drainage Strategy	16		
2	Policy Context	5	7	Maintenance of Drainage Strateg	У	19	
	Introduction	5	8	Summary and Conductor	21		
	National Planning Policy Framework	5	0	Summary and Conclusion	21		
	Welwyn Hatfield Local Plan	6	9	Appendices	23		
3	Existing Site Assessment	8		Appendix: A - Location Plan Appendix: B – Site Layout			
	Site Description	8		Appendix: C – Flood Map for Planning			
	Geology	8		Appendix: D – Topographical Survey			
	Sewer records	8		Appendix: E – Thames Water Sewer			
	Existing Drainage	9		Records			
	Site Visit	9		Appendix: F – Surface Water Flow Path			
				Overlaid With Site Layout			
4	Potenital Sources of Flooding	10		Appendix: G- Exisiting Run Off			
	Fluvial	10		Calculations			
	Surface Water	10		Appendix: H- Greenfield Runoff Rate			
	Groundwater	12		Appendix: I- WINDES Permeable Paving			
	Sewer Flooding	12		Calculations			
	g a constant of			Appendix: J- Land Ownership			
5	Mitigation Measures	13		Confirmation			
	3	_		Appendix: K- WINDES Pond Calculations	S		
6	Drainage Strategy	14		Appendix: L- LIDAR Data			
	Pre-development Runoff Rate	14		Appendix: M- SuDs Layout			
	Relevant SUDS Policy	14		Appendix: N- Thames Water Pre-			
	Site Specific SUDS	15		Development Enquiry Response			

1 Introduction

- 1.1 EAS has been commissioned to prepare a Flood Risk Assessment (FRA) to support an outline application for proposed residential development at Colesdale Farm, Northaw Road West, Potters Bar, EN6 4QZ, Hertfordshire. A site location plan is enclosed in **Appendix A**.
- 1.2 Proposals include the development of 34 residential dwellings with associated parking, car ports and public open space. The development proposals are enclosed in **Appendix B**.
- 1.3 The site is located in Flood Zone 1 and covers an area of 1.31 hectares; therefore a full Flood Risk Assessment has been prepared.
- 1.4 This report also considers the proposed surface water drainage for the site and looks at other risks of flooding such as from surface water.
- 1.5 This document includes:
 - Section 2 describes relevant policy;
 - Section 3 describes site description, including site levels, proximity to watercourses etc;
 - Section 4 describes potential sources of flooding;
 - Section 5 outlines the likely mitigation measures;
 - Section 6 describes the existing site hydrology and outlines a surface water drainage strategy
 - Section 7 details the likely maintenance tasks required for the drainage systems
 - Section 8 provides a summary and conclusions

2 Policy Context

Introduction

2.1 This section sets out the policy context. The contents of this FRA are based on the advice set out in The National Planning Policy Framework (NPPF) published in February 2019 and the Planning Practice Guidance (PPG), published March 2014.

National Planning Policy Framework

2.2 Paragraph 164 footnote 50 of the NPPF states:

"A site-specific flood risk assessment should be provided for all developments in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use."

- 2.3 The flood zones are defined as:
 - Flood Zone 1 Land assessed as having a less than 1 in 1,000 (<0.1%) annual probability of flooding from fluvial sources;
- Flood Zone 2 Land assessed as having between a 1 in a 100 and 1 in 1,000 (1% to 0.1%) annual probability of flooding from fluvial sources;
- Flood Zone 3a Land assessed as having a 1 in 100 or greater (>1%) annual probability of flooding from fluvial sources, or at least 0.5% annual probability of tidal flooding;
- Flood Zone 3b Land where water has to flow or be stored in times of flood.
- 2.4 Paragraph 155 discusses the suitability of development location, particularly with regards to future risks induced by climate change:

"Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere".

2.5 Paragraph 156 of the National Planning Policy Framework (NPPF) sets out how:

"Strategic policies should be informed by a strategic flood risk assessment, and should manage flood risk from all sources. They should consider cumulative impacts in, or affecting, local areas susceptible to flooding, and take account of advice from the Environment Agency and other relevant flood risk management authorities, such as lead local flood authorities and internal drainage boards".

- 2.6 Paragraphs 165 NPPF discusses the application of sustainable drainage systems:
 - "Major developments should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:
 - Take account of advice from the lead local flood authority;
 - Have appropriate proposed minimum operational standards;
 - Have maintenance arrangements in place to ensure an acceptable standard of operation of the lifetime of the development; and
 - Where possible, provide multifunctional benefits."
- 2.7 The Flood Map for Planning (available at https://flood-map-for-planning.service.gov.uk/) shows the area of the site in which the property is to be located is located in Flood Zone 1. The Flood Map for Planning is enclosed in **Appendix C**.

Welwyn Hatfield Local Plan

- 2.8 Welwyn Hatfield Borough Council is in the process of completing their Local Development Framework and the Core Strategy, to guide development in the borough until 2029. As the Local Plan has not been finalised yet, the relevant document which outlines the Council's plans for development within the borough is the 'Emerging Core Strategy (2012)'.
- 2.9 Emerging Core Strategy Policy CS 1: *Delivering Sustainable Development* highlight's the requirement for adaption and mitigation principles to be included in the design and construction of new development. This includes water efficiency measures and the use of sustainable drainage systems (SuDS).
- 2.10 Emerging Core Strategy Policy CS11: *Protection of Critical Assets* notes the importance of the water environment, stating: "The boroughs floodplains will be protected by avoiding development in Flood Zones 2 and 3 unless it is for a compatible use."
- 2.11 The Welwyn Hatfield Emerging Core Strategy Sustainability Appraisal Report was produced in September 2012 and outlines the sustainability aims of the borough. This document notes that the borough has relatively few areas within the EA medium and high flood risk zones, but the impact of climate change is likely to exacerbate the frequency and severity of flooding events. The long-term objective is therefore to avoid locating new development in flood risk areas and avoid development that will increase flood risk elsewhere. It is also stated that the capacity of the surface water drainage systems of new developments should be capable of accommodating more development; therefore use of sustainable drainage systems is necessary where possible.
- 2.12 Policies CS1, CS11 and the Sustainability Appraisal Report were considered during the preparation of this FRA, and the proposed SuDs discussed within this report will

demonstrate that the proposed development will be consistent with the core strategy aims for the borough.

Welwyn Hatfield Borough Council Strategic Flood Risk Assessment (SFRA)

- 2.13 The Welwyn Hatfield Borough Level 1 SFRA was published in May 2009, and provides an overview of the flooding issues within the borough. This report was updated and replaced in May 2016 by the Level 1 and 2 Strategic Flood Risk Assessment.
- 2.14 Figure 2 of the SFRA notes the site to be located within the Lee-Stort/Thames Catchment.
- 2.15 Figure 5 confirms the site is located in Flood Zone 1.
- 2.16 Figure 7 show historic flood events across the district. The site is shown not to have been affected by any recorded historic flood events.
- 2.17 Figure 10 highlights areas across the district which are potential sources of overland flow. The site is shown not to be located within such an area however the land adjacent to the western boundary of the site is shown to be located in an area which could be a source of overland flow.
- 2.18 Figure 11 of the SFRA indicates the site has not previously experienced groundwater flooding. Likewise, Figure 14 shows the site is not located within a postcode where there have been recorded sewer flooding incidents.
- 2.19 Figure 15C highlights that the Northaw Brook has a low flooding frequency.

3 Existing Site Assessment

Site Description

- 3.1 The site is located Colesdale Farm, Northaw Road West, Potters Bar, Hertfordshire. The site currently consists of areas of hardstanding and agricultural/industrial warehouses with several cottages located to the south of the site.
- 3.2 A site plan is located in **Appendix B**.
- 3.3 To the north east and west the site is bounded by agricultural land. To the south, the site is bounded by the B156.
- 3.4 The site is located approximately 1km south west of the centre of Cuffley.

Local Watercourses

- 3.5 The Hempshill Brook, noted to be an EA 'Main River' is located approximately 220m north east of the site. An ordinary water course, a tributary of the Hempshill Brook, is located approximately 500m north of the site and appears to discharge into the Hempshill Brook.
- 3.6 The Northaw Brook, also noted to be an EA 'Main River', is located approximately 450m south of the site. The Northaw Brook and Hempshill Brook, have a confluence approximately 470m south east of the site.
- 3.7 There is a small pond located approximately 15m north east of the site.

Geology

3.8 The online British Geological Survey (BGS) mapping shows the site to be located in an area with a bedrock of Lambeth Group - Clay, Silt And Sand with no superficial deposits recorded. This type of geology is not usually particularly permeable.

Site Levels

- 3.9 A topographical survey enclosed in **Appendix D** shows the site falls to the north east. Levels along the western perimeter are around 64m AOD. Levels along the southern boundary of the site are around 61m AOD. Levels in the north-eastern corner fall to a low of 59m AOD. Levels in the central region of the site are around 62m AOD.
- 3.10 There is a shallow ditch along the northern boundary which falls toward the east. This is likely to be a field drain to collect runoff from both the site and the fields to the north and direct it towards the Hempshill Brook to the east.

Sewer records

3.11 Thames Water records, enclosed in **Appendix E**, show a 225mm foul sewer flowing south following the course of the Hempshill Brook. There appears to be a small section of

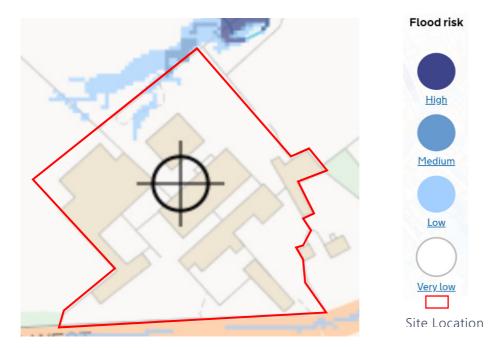
combined sewer in the field to the east of the site, which discharges to the Hempshill Brook. There are no public surface water sewers nearby.

Existing Drainage

3.12 There is no formal drainage system in place on site. All buildings drain unrestricted to the ground and follow the natural topography towards the shallow ditch on the northern boundary.

Site Visit

3.13 A site visit was carried out in February 2019. The ditch on the northern boundary was inspected and it was noted to be shallow and overgrown. There also appeared to be a slight bund in this area to prevent water from the ditch from reaching the site. The ditch was followed to the east where it ran along the field boundary. It was determined that this was a historic field drain to catch surface water flowing over the fields and direct it to the Hempshill Brook. The Hempshill Brook was inspected and although the topographic survey does not extend this far, it was clear that this was significantly lower than the site.


4 Potenital Sources of Flooding

Fluvial

4.1 A copy of the Flood Map for Planning is enclosed in **Appendix C**. The site is shown to be located within Flood Zone 1, at low risk of fluvial flooding.

Surface Water

- 4.2 Surface water flooding refers to flooding caused when the intensity of rainfall, particularly in urban areas, can create runoff which temporarily overwhelms the capacity of the local drainage systems or does not infiltrate into the ground. The water ponds on the ground and flows towards low-lying land. This source of flood risk is also known as 'pluvial'.
- 4.3 Figure 4.1 below is an extract from the Long-Term Flood Map from the GOV.UK website.
- 4.4 The majority of the site is shown to be at 'very low' risk of surface water flooding meaning each year this area has a chance of flooding of less than 0.1% (1 in 1000).
- 4.5 There is a marginal area in the north of the site shown to be at low risk of surface water flooding meaning that each year this area has a chance of flooding of between 0.1% and 1% (1 in 100 and 1 in 1000).
- 4.6 Figure 4.2, an extract from the Long-Term Flood Map shows a surface water flow path located within the site flowing towards a ditch located along the northern perimeter of the site. The velocity is shown to be above 0.25 m/s with depths below 300mm. The site layout has been overlaid with the extract from the Long-Term Flood Map (Appendix F) and shows all properties are located outside of the flow path. This means the proposed dwellings will not block the existing flowpath and will not be at risk of surface water flooding as a result of the flowpath.
- 4.7 Given the above, the risk from surface water flooding can be considered low.

Contains public sector information licensed under the Open Government Licence v3.0.

Figure 4.1: Extract from EA Surface Water Flood Map Source: https://flood-warning-information.service.gov.uk/long-term-floodrisk/map?easting=529692&northing=201836

Contains public sector information licensed under the Open Government Licence v3.0.

Figure 4.2: Extract from EA Surface Water Flood Map Source: https://flood-warning-information.service.gov.uk/long-term-floodrisk/map?easting=529692&northing=201836

Groundwater

- 4.8 The EA groundwater mapping located in MAGIC Maps (available at: http://magic.defra.gov.uk/MagicMap.aspx) shows the site is not located in a source protection zone.
- 4.9 The SFRA notes the site has not previously experienced groundwater flooding.
- 4.10 There are no local borehole records available.
- 4.11 Given the above, and the local geology, the risk of flooding from groundwater is considered low

Sewer Flooding

4.12 The SFRA notes the site is not located within a postcode which has experienced sewer flooding. Given the distance to the nearest public sewer, the risk of sewer flooding is considered to be low.

Artificial

4.13 The GOV.UK website does not indicate the site to be within a reservoir flood risk extent. There are no other artificial sources in the area, therefore the risk of flooding to the site from artificial sources is considered to be low.

5 Mitigation Measures

- 5.1 As the site is located in Flood Zone 1, no specific measures are considered necessary to address fluvial flood risk.
- 5.2 To mitigate the surface water flood risk identified along the northern perimeter of the site, it is recommended the ditch which is present along the northern boundary is made formal, improving conveyance and preventing any surface from the field directly north from entering the site. The addition of a French filter drain and bund along the northern perimeter of the site running parallel to the ditch will also prevent any surface water flowing into the site.
- 5.3 This, combined with an effective drainage system, will reduce the surface water flood risk. The use of lined permeable paving is likely to remove the surface water flow path currently identified flowing towards the ditch within the site.

6 Drainage Strategy

Pre-development Runoff Rate

6.1 The existing site covers an area of approximately 1.31 ha with an impermeable area of 1.22 ha consisting of roof area and hardstanding. Using the Modified Rational Method detailed in Butler, D and Davies, J. (2006), Urban Drainage, 2nd ed., SPON, the surface water runoff for the existing site has been calculated as follows:-

Q = CiA where Q = maximum flow rate (I/s)

C= PIMP/PR

i= rainfall intensity (mm/hr),

A=area (ha)

- 6.2 It should be noted that a fixed rainfall intensity of 50mm/hr is used in this case, which has been recommended by Butler & Davies (2006) to avoid using inappropriately high intensities for very low concentration times, i.e. small sites.
- 6.3 Using the Modified Rationale Method (Butler and Davies, 2006), and a measured impermeable area on the existing site of 12224.77m2, the total rate of runoff from the impermeable areas of the existing site is estimated to be 16.87 l/s. The run off calculations are enclosed in Appendix G.
- 6.4 To improve the existing situation runoff from the proposed development should therefore be restricted to the greenfield rate to reduce flood risk in the area.
- 6.5 Greenfield runoff rates calculations have been carried out using the WINDES MicroDrainage software. The ICP SUDS Mean Annual Flood method was used. Greenfield runoff rates at the site for QBAR, 1 year, 30 year and 100-year events are summarised below per hectare and for the total proposed impermeable area of 0.50 hectares:
 - o QBAR -4.3 l/s/ha (2.15l/s)
 - o 1 in 100 year- 13.7l/s/ha (6.85l/s)
 - o 1 in 30 year- 9.7 l/s/ha (4.85l/s)
 - o 1 in 1 year-3.7 l/s/ha (1.85l/s)
- 6.6 The WINDES MicroDrainage runoff output is included in **Appendix H.**

Relevant SUDS Policy

6.7 SUDS mimic the natural drainage system and provide a method of surface water drainage which can decrease the quantity of water discharged, and hence reduce the risk of

- flooding. In addition to reducing flood risk, these features can improve water quality and provide biodiversity and amenity benefits.
- 6.8 The SUDS management train incorporates a hierarchy of techniques and considers all three SUDS criteria of flood reduction, pollution reduction, and landscape and wildlife benefits. In decreasing order of preference, the preferred means of disposal of surface water runoff is:
 - o Discharge to ground.
 - o Discharge to a surface water body.
 - o Discharge to a surface water sewer.
 - o Discharge to a combined sewer.
- 6.9 The philosophy of SuDS is to replicate as closely as possible the natural drainage from a site predevelopment and to treat runoff to remove pollutants, resulting in a reduced impact on the receiving watercourses. The benefits of this approach are as follows:
 - o Reducing runoff rates, thus reducing the flood risk downstream;
 - Reducing pollutant concentrations, thus protecting the quality of the receiving water body;
 - o Groundwater recharge;
 - Contributing to the enhanced amenity and aesthetic value of development areas;
 and
 - Providing habitats for wildlife in developed areas, and opportunity for biodiversity
 enhancement

Site Specific SUDS

6.10 The various SUDS methods have been considered in relation to site-specific constraints. Table 1 outlines the constraints and opportunities to each of the SUDS devices in accordance with the hierarchical approach outlined in The SUDS Manual CIRIA C753. It also indicates what could and could not be incorporated within the development, based upon site-specific criteria.

Device	Description	Constraints / Comments	Appropriate
Living roofs (source control)	Provide soft landscaping at roof level which reduces surface water runoff.	Unlikely to be viable due to the pitch of the roof proposed.	No
Infiltration devices & Soakaways (source control)	Store runoff and allow water to percolate into the ground via natural infiltration.	Unlikely due to geology of Lambeth Group - Clay, Silt and Sand.	No

Pervious surfaces (source control)	Storm water is allowed to infiltrate through the surface into a storage layer, from which it can either infiltrate and/or slowly release to sewers.	It is proposed to use lined permeable paving for the internal road and footpaths within the development.	Yes
Rainwater harvesting (source control)	Reduces the annual average rate of runoff from the Site by reusing water for nonpotable uses e.g. toilet flushing, recycling processes.	May be possible to include these in design. Features such as water butts could be incorporated into design.	Possibly
Swales (permeable conveyance)	Broad shallow channels that convey / store runoff, and allow infiltration (ground conditions permitting).	Not included due to spatial limitations of the site.	No
Filter drains & perforated pipes (permeable conveyance)	Trenches filled with granular materials (which are designed to take flows from adjacent impermeable areas) that convey runoff while allowing infiltration.	Not proposed for this development. The required attenuation is achieved using lined permeable paving.	No
Infiltration basins (end of pipe treatment)	Depressions in the surface designed to store runoff and allow infiltration.	Unlikely due to geology of Lambeth Group - Clay, Silt And Sand	No
Wet ponds & constructed wetlands (end of pipe treatment)	Provide water quality treatment & temporary storage above the permanent water level.	An attenuation pond has been included to attenuate the outfall from the permeable paving.	Yes
Attenuation Underground (end of pipe treatment	Oversized pipes or geo- cellular tanks designed to store water below ground level.	Not proposed for this development. The required attenuation has been provided by lined permeable paving.	No

Table 1: Site-Specific Sustainable Drainage Techniques

6.11 Infiltration methods are unlikely to be suitable at the site given the geology of Lambeth Group - Clay, Silt And Sand. An attenuation strategy with a restricted outfall to the Hempshill Brook has been proposed. This will require a new pipe connection across the fields to the east, which are understood to be within the same ownership as the site and therefore will not require any third-party consents.

Proposed Drainage Strategy

Public Open Space Footpath

6.12 It is proposed not to formally drain the footpath linking the north an east of the site via the proposed pond feature. It is anticipated the footpath will consist of free drainage gravel and drain directly to the surrounding ground. The topographic survey indicates the natural fall of the ground is to the north east, therefore runoff would ultimately flow in this direction towards the ditch on the field boundary where it would be directed away from the site.

Lined Permeable Paving

- 6.13 It is proposed that the internal road, footpaths and parking areas will be constructed using lined permeable paving. The roof area of the properties and car ports will be directed into the sub-base of the permeable paving. The permeable paving will therefore be sized to manage runoff from the roofs as well as from the roads and parking areas.
- 6.14 WINDES MicroDrainage was used to estimate the sub-base depth required for the permeable paving in order to provide adequate attenuation for surface water runoff for rainfall events up to and including a 1 in 100yr +40%CC storm.
- 6.15 WINDES MicroDrainage estimated that whilst restricting the outfall from the sub-base of the permeable area to 2.3 l/s via a 35mm orifice plate the sub-base would require a minimum depth of 372mm. The WINDES calculations are enclosed in **Appendix I.**
- 6.16 The following typical construction would be expected for the permeable paving (based on guidance from Marshalls for the popular Priora Paving system):
 - o 80mm paving course
 - o 50mm laying course (generally a 6mm aggregate)
 - o 80mm layer of perforated Asphalt Concrete (DBM)
 - A calculated depth of course grade aggregate (generally 250mm 350mm of a 30mm aggregate)
 - o An additional sub-base / capping layer if required
- 6.17 The depth of the course graded aggregate layer will be designed to meet both structural and attenuation requirements.
- 6.18 Unlike other attenuation systems, the pollutants carried within the surface water run-off are filtered out as they pass through the course grade aggregate and sub-base. Once trapped they are then broken down over time; figures from the Construction Industry Research and Information Association have shown that 60-95% of suspended solids and 70-90% of hydrocarbons are removed by permeable pavements; as such no further filtration of pollutants will be required.

Attenuation Pond

- 6.19 It is proposed that the restricted outfall from the permeable paving will be directed to an attenuation pond in the north eastern corner of the site.
- 6.20 The attenuation pond provides a number of benefits such as filtering runoff and removing many urban pollutants, has high ecological, aesthetic and amenity benefits and can be designed to cater for all storm events. The pond will be designed to have a permanent water level of at least 200mm depth; the attenuation volume will be provided above the permanent water level
- 6.21 The pond will have an outfall to the proposed surface water sewer which will cross the field to the east. Following comments from a previous submission, the LLFA asked for

- confirmation of land ownership. **Appendix J** contains confirmation of the relevant parties regarding landownership and consent.
- 6.22 The new pipe will discharge to the Hempshill Brook at greenfield runoff rates. The outfall from the pond will have a flow control chamber containing a control device such as a Hydrobrake which will restrict outfall to the proposed pipe connection to a maximum of 2.1l/s for all events up to and including the 1 in 100 plus 40% climate change event. This will achieve the QBAR greenfield runoff rate for the proposed development.
- 6.23 The cover level is at 60.7m AOD with a proposed depth of 1.0m. A permanent body of water to provide an aesthetic feature has been included into the design with a water level of 200m, resulting in an invert level of 59.9m AOD. The maximum surface area of the pond is 105.9 m². This is based on a pond with 1:3 side slopes. The shape and design of the pond can be determined at detailed design stage, but at this stage the WINDES calculations provide an indication of the required volume within the pond. The volume available in the pond is 45m³ which would manage the runoff from the lined permeable paving. The WINDES calculations are enclosed in **Appendix K**.
- 6.24 LIDAR data available at (https://environment.data.gov.uk/DefraDataDownload/?Mode=survey) shows that the base of the Hempsill Brook is approximately 51m AOD therefore a gravity connection from the site to the Brook can be achieved. The LIDAR data can be viewed in Appendix L.
- 6.25 A total outfall from the attenuation pond and the lined permeable paving is 2.1l/s for all events up to and including the 1 in 100 year plus 40% climate change events. This matches the 1 in 30 greenfield runoff rate and a significant reduction compared to the existing situation.
- 6.26 The SuDS layout is enclosed in Appendix M.

Foul Water Drainage

6.27 A Thames Water predevelopment capacity check was undertaken and it was confirmed there is capacity in the nearby foul sewer (which is adjacent to the Hempshill Brook) to accept flows from the proposed development. The Thames Water response in enclosed in **Appendix N**.

7 Maintenance of Drainage Strategy

- 7.1 The maintenance of the SuDs features will remain private and the responsibility of the site owner or an appointed management/maintenance company.
- 7.2 Regular inspections and maintenance should be carried out for each of these elements, particularly after periods of heavy rainfall. Maintenance tasks and frequency are detailed in the CIRIA SUDS Manual (C753) and have been summarised below in Tables 2 and 3.

Maintenance Schedule	Required Action	Frequency		
Regular maintenance	Brushing and vacuuming.	Three times per year at end of winter, mid-summer, after autumn leaf fall, or as required based on site specific observations of clogging or manufacturer's recommendations.		
Occasional maintenance	Stabilise and mow contributing and adjacent areas.	As required.		
	Removal of weeds.	As required.		
	Remediate any landscaping which, through vegetation maintenance of soil slip, has been raised to within 50mm of the level of the paving.	As required		
Remedial actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance of	As required		
	a hazard to the user. Rehabilitation of surface and upper subsurface.	As required (if infiltration performance is reduced as a result of significant clogging.)		
	Initial inspection			
Monitoring	Inspect for evidence of poor operation and/or weed growth. If required, take remedial action.	Monthly for 3 months after installation. 3 monthly, 48 hours after large storms. Annually.		
wontoning	Inspect silt accumulation rates and establish appropriate brushing frequencies.	Aimaury.		
	Monitor inspection chambers.	Annually.		

 Table 2: Maintenance tasks for permeable paving (Source: CIRIA C753, The SUDS Manual)

Maintenance Schedule	Required Action	Frequency	
Regular Maintenance	Litter and debris removal Grass cutting to retain grass height within specified design range. Manage other vegetation and remove nuisance plants. Inspect inlets, outlets and overflows for blockages and clear if required.	Monthly, or as required Monthly (during growing season) or as required. Monthly (at start, then as required). Monthly	
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies.	Half yearly	
Occasional Maintenance	Check for poor vegetation growth due to lack of sunlight or dropping of leaf litter, and cut back adjacent vegetation where possible. Re-seed areas of poor vegetation growth. Alter plant types to better suit conditions if required.	Annually Annually, or if bare soil is exposed over 10% or more of the swale treatment area.	
Remedial Actions	Repair erosion or other damage by re-turfing or reseeding. Re-level uneven surfaces and re-instate design levels. Scarify and spike topsoil level to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface. Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip. Remove or dispose of oils or petrol residues using safe standard practices.	As required. As required. As required. As required.	
Monitoring	Inspect inlets, outlets and overflows for blockages, and clear if required. Inspect infiltration surface for ponding, compaction, silt accumulation. Record areas where water is ponding for >48 hours. Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly Monthly, or when required. Half yearly.	

Table 3: Maintenance tasks and frequencies for ponds (The SUDS Manual C753, CIRIA)

8 Summary and Conclusion

- 8.1 EAS has been commissioned to prepare a Flood Risk Assessment (FRA) to support an outline application for residential development at Colesdale Farm, Northaw Road West, Potters Bar, EN6 4QZ, Hertfordshire
- 8.2 Proposals include the development of 34 residential dwellings with associated parking, car ports and public open space.
- 8.3 The site is located in Flood Zone 1, at low risk of flooding from fluvial sources.
- 8.4 A minor surface water flow path has been identified along the northern boundary of the site where flow enters a ditch located along the boundary and continues to flow towards the Hempshill Brook. A surface water flow path is also sourced from the field directly north of the site. All properties are located outside of the surface water flow path.
- 8.5 Mitigation measures including an effective drainage system is likely to remove the surface water flow path sourced on the site. It is recommended the ditch is formalised to improve conveyance to prevent the flow path from the field to the north entering the site. A bund or French drain could also be introduced along the northern perimeter which is parallel to the ditch. It is also recommended that the finished floor levels of the dwellings located in the northern part of the site are raised by 300mm.
- 8.6 It is proposed that surface water runoff from all roof areas, including car port roof area, will be directed to the lined permeable paving. The internal road, footpaths and parking areas will be constructed using lined permeable paving. WINDES estimated that whilst restricting the outfall from the sub-base of the permeable area to 2.3 l/s via a 35mm orifice plate the sub-base would require a minimum depth of 372mm.
- 8.7 The lined permeable paving will outfall into an attenuation pond located in the low point in the north eastern corner of the site. The pond will have an outfall to the new pipe which crosses the field to the east and discharges to the Hempshill Brook. The outfall will have a flow control chamber containing a control device such as a Hydrobrake which will restrict outfall to the ditch to a maximum of 2.1 l/s for all events up to and including the 1 in 100 plus 40% climate change event.
- 8.8 A total outfall from the site is 2.1 l/s for all events up to and including the 1 in 100 year plus 40% climate change events, matching QBAR greenfield run off rate, providing a significant improvement to the existing situation.
- 8.9 The proposed drainage features are to remain private and the responsibility of the site owner or an appointed management company. Maintenance tasks associated with the permeable paving and pond have been included in this report.

8.10 We believe that the development proposals comply with the guidance provided by the NPPF and local policies, and that no reason exists to object to the proposals in terms of flood risk or drainage.

9 Appendices

Appendix: A - Location Plan Appendix: B - Site Layout

Appendix: C – Flood Map for Planning Appendix: D – Topographical Survey

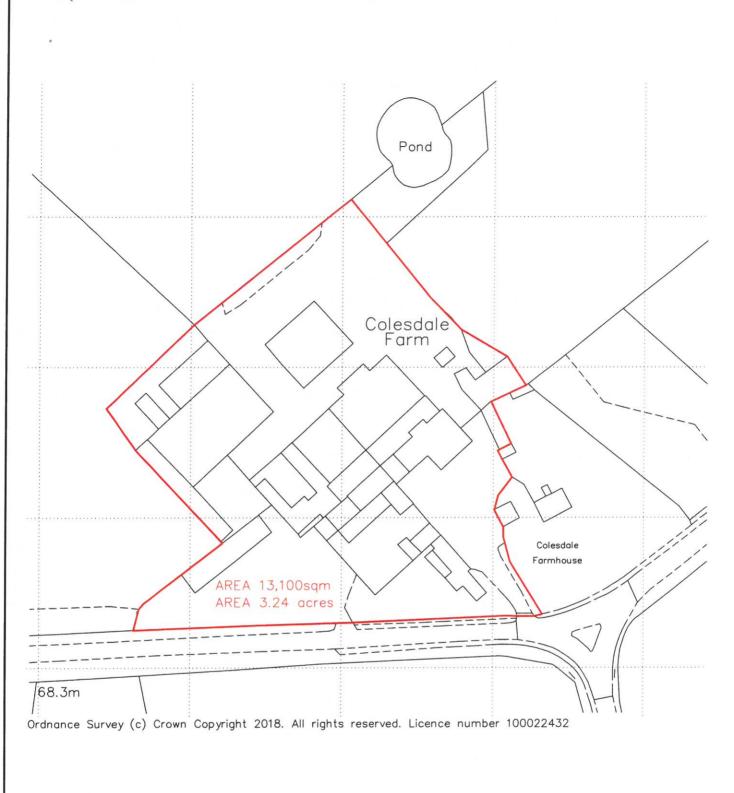
Appendix: E – Thames Water Sewer Records

Appendix: F – Surface Water Flow Path Overlaid With Site Layout

Appendix: G- Exisiting Run Off Calculations

Appendix: H- Greenfield Runoff Rate

Appendix: I- WINDES Permeable Paving Calculations


Appendix: J- Land Ownership Confirmation Appendix: K- WINDES Pond Calculations

Appendix: L- LIDAR Data Appendix: M- SuDs Layout

Appendix: N- Thames Water Pre-Development Enquiry Response

Appendix: A - Location Plan

LEVEL NOTE.	Dwg. Title AREA CALCULATION				THE SURVEY
NOTES,	Project Title COLESDALE FARM NORTHAW RD EN6 4QZ	Revisions	Date	A	Block B, 1st Floor Queens Road
	Client HUMPHREY	Date MARCH 2018 Drawn	APR		Barnet London EN5 4DL t:020 8449 9143 f:020 8449 9153
	BROSNAN	Scale 1:1250 Checke Dwg. No. 918100 Job No.		apr services land, building surveys & 3d laser scanning	www.aprservices.net Area Offices In: Salisbury and Plymouth

Appendix: B – Site Layout

NOTES:

AT ARCHITECTURE LIMITED

WWW.ATARCHITECTURELTD.COM

26 THE RIDE, THE GRANGE, DESBOROUGH, NN14 2HZ

ASHLEY.THOMPSON@AT-ARCHITECTURE.UK

NO DIMENSIONS TO BE SCALED FROM DRAWING ALL DIMENSIONS ARE APPROXIMATE AND TO BE CHECKED ON SITE

THIS DRAWING IS FOR PLANNING PURPOSES ONLY SUBJECT TO BUILDING CONTROL STANDARDS AND COMMENTS

COPYRIGHT RESERVED

PROJECT:

Colesdale Farm NORTHAW

DRAWING TITLE:

Proposed Site Plan

scale: stage: DATE:
1:1000 (A3) Planning March 2019

DRAWING

REVISION

A_1921 PL100

Appendix: C – Flood Map for Planning

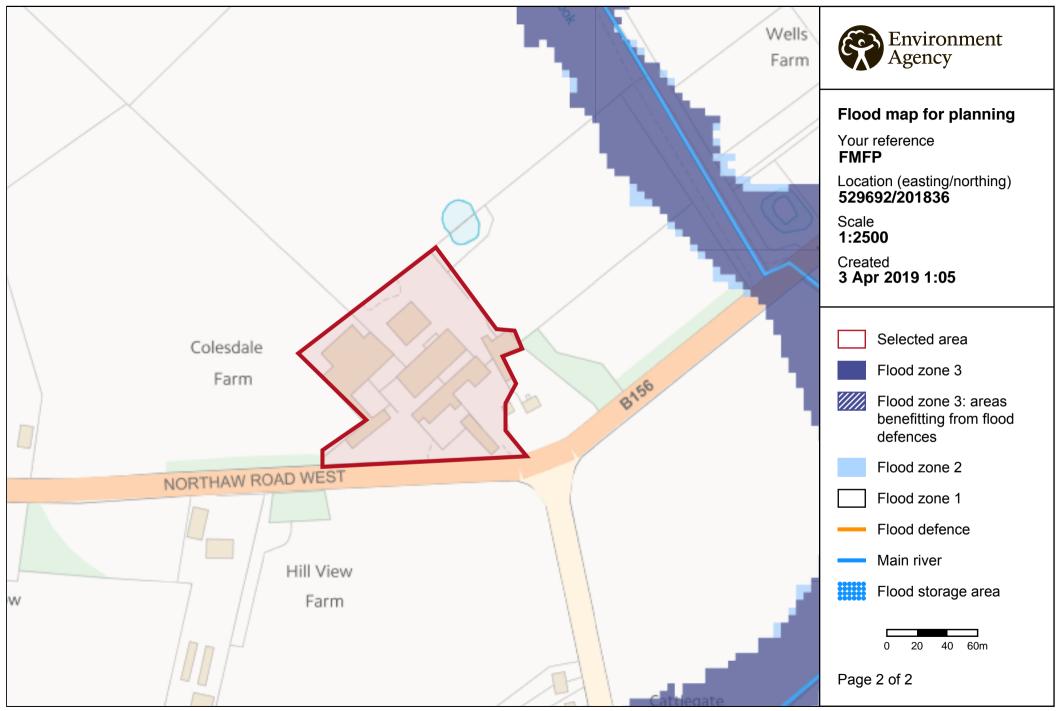
Flood map for planning

Your reference Location (easting/northing) Created

FMFP 529692/201836 3 Apr 2019 1:05

Your selected location is in flood zone 1, an area with a low probability of flooding.

This means:


- you don't need to do a flood risk assessment if your development is smaller than 1 hectare and not affected by other sources of flooding
- you may need to do a flood risk assessment if your development is larger than 1
 hectare or affected by other sources of flooding or in an area with critical drainage
 problems

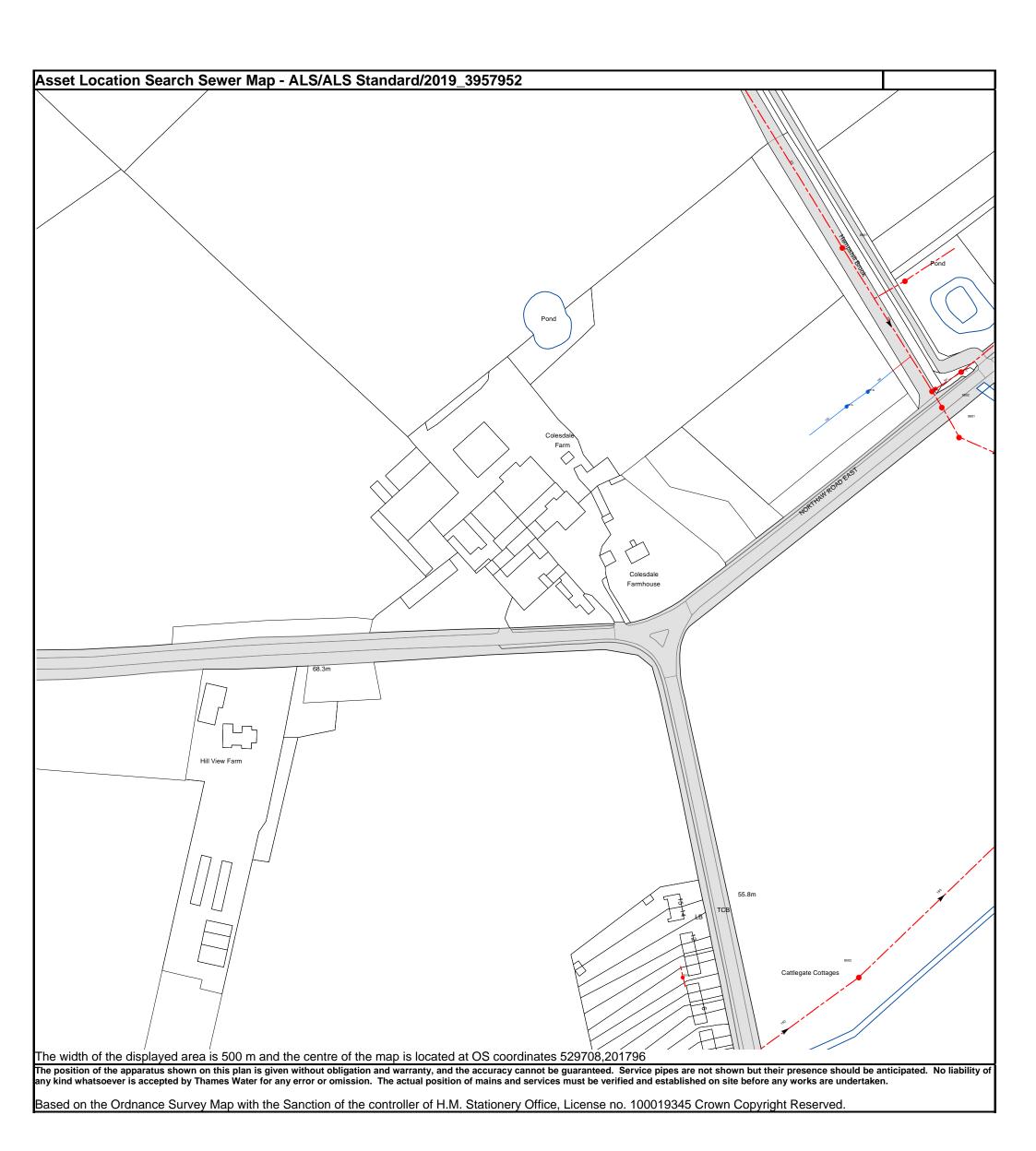
Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

The Open Government Licence sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

© Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.



Appendix: D – Topographical Survey

Appendix: E – Thames Water Sewer Records

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 **T** 0845 070 9148 **E** <u>searches@thameswater.co.uk</u> **I** <u>www.thameswater-propertysearches.co.uk</u>

Appendix: F – Surface Water Flow Path Overlaid With Site Layout

Appendix: G- Exisiting Run Off Calculations

Run-off from Existing Site

Methodology

Using the Modified Rational Method, the surface water run-off rate, has been calculated for the proposed site which is assumed to be 100% impermeable.

Ref: Butler, D and Davies, J. (2006), Urban Drainage, 2nd ed, SPON.

Q = CiA

where

$$C = \frac{PIMP}{PR}$$

PIMP = Percentage of impervious area to total area PR = Percentage Runoff

	Surface Area (m ²)
Existing Impervious Areas	12224.77
Total Area	12224.77

i (Rainfall intensity, mm/hr) = 50.00i (Rainfall intensity, m/hr) = 0.050i (Rainfall intensity, m/s) = 1.38×10^{-5}

Percentage run-off (PR)

Existing Impervious Area = 100%

Percentage of impervious area to total area (PIMP)

PIMP = 12224.77/12224.77= 100%

Therefore
$$C = \frac{PIMP}{PR} = 1$$

Runoff from existing site:

Q = CiA

 $Q = 1 \times 1.38 \times 10^{-5} \times 12224.77 m^2$

 $Q = 0.168 \text{ m}^3\text{s}^{-1}$

 $Q = 16.87 ls^{-1}$

Total Q for the existing site = 16.87 l/s

Appendix: H- Greenfield Runoff Rate

EAS		Page 1
Unit 108 The Maltings		
Stanstead Abbotts		Ticon
Hertfordshire SG12 8HG		Tracko o
Date 04/04/2019 13:03	Designed by Maz	D) RAMARORA
File	Checked by	
Micro Drainage	Source Control 2013.1.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 Soil 0.450
Area (ha) 1.000 Urban 0.000
SAAR (mm) 687 Region Number Region 6

Results 1/s

QBAR Rural 4.3 QBAR Urban 4.3

Q100 years 13.7

Q1 year 3.7 Q30 years 9.7 Q100 years 13.7

Appendix: I- WINDES Permeable Paving Calculations

EAS		Page 1
Unit 108 The Maltings		
Stanstead Abbotts		
Hertfordshire SG12 8HG		Tringing of
Date 21/10/2019 12:51	Designed by Maz	
File cascade rev 2.casx	Checked by	
Micro Drainage	Source Control 2013.1.1	

Cascade Summary of Results for Permeable Paving REV A.srcx

Upstream Outflow To Overflow To Structures

(None) Pond Rev B.srcx (None)

Half Drain Time : 1374 minutes.

Storm	Max	Max	Max		Max	Max	Max	Stat	cus
Event	Level	-					w Volume		
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)		
15 min Summer	60.655	0.155		0.0	1.4	1.	4 118.3		O K
30 min Summer	60.696	0.196		0.0	1.6	1.	6 156.0		O K
60 min Summer	60.736	0.236		0.0	1.8	1.	8 192.7	Flood	Risk
120 min Summer				0.0	1.9	1.		Flood	
180 min Summer				0.0	2.0			Flood	
240 min Summer				0.0	2.1	2.		Flood	
360 min Summer				0.0	2.1			Flood	
480 min Summer				0.0	2.1			Flood	
600 min Summer				0.0	2.1			Flood	
720 min Summer				0.0	2.1			Flood	
960 min Summer 1440 min Summer				0.0	2.1			Flood Flood	
2160 min Summer				0.0	2.1			Flood	
2880 min Summer				0.0	2.0			Flood	
4320 min Summer				0.0	1.9			Flood	
5760 min Summer				0.0	1.9			Flood	
7200 min Summer				0.0	1.8			Flood	
8640 min Summer				0.0	1.7			Flood	
10080 min Summer	60.698	0.198		0.0	1.6	1.	6 158.0		ОК
	Storm	n	Rain	Floode	d Disch	arge Tin	ne-Peak		
	Event	:	(mm/hr)	Volume	. Vol	ıme (mins)		
				(m³)	(m	³)			
	I5 min	Summer	143.954	0.0	Ω	93.5	23		
	30 min		92.629	0.0		10.3	38		
	00 min		56.713	0.0		90.3	68		
	20 min		33.583	0.0		20.1	126		
18	30 min	Summer	24.424	0.0		34.3	186		
24	10 min	Summer	19.389	0.0	0 2	43.1	246		
36	00 min	Summer	13.924	0.0	0 2	53.8	364		
48	30 min	Summer	11.018	0.0	0 2	60.5	484		
60	00 min	Summer	9.182	0.0	n 2	64.6	602		
73	00 111111		J.102	0.1	0 2	04.0	002		
, -	20 min	Summer	7.908	0.0		67.1	722		
					0 2				
90 14	20 min 50 min 40 min	Summer Summer	7.908 6.245 4.471	0.0	0 2 0 2 0 2	67.1 68.9 64.3	722 916 1140		
96 14 216	20 min 60 min 40 min 60 min	Summer Summer Summer	7.908 6.245 4.471 3.197	0.0	0 2 0 2 0 2 0 4	67.1 68.9 64.3 00.3	722 916 1140 1516		
96 14 216 288	20 min 50 min 40 min 50 min 30 min	Summer Summer Summer Summer	7.908 6.245 4.471 3.197 2.518	0.0 0.0 0.0	0 2 0 2 0 2 0 4 0 4	67.1 68.9 64.3 00.3 12.4	722 916 1140 1516 1932		
96 14 216 286 432	20 min 60 min 60 min 60 min 60 min 60 min 620 min 620 min	Summer Summer Summer Summer Summer	7.908 6.245 4.471 3.197 2.518 1.796	0.0 0.0 0.0 0.0	0 2 0 2 0 2 0 4 0 4 0 4	67.1 68.9 64.3 00.3 12.4 05.5	722 916 1140 1516 1932 2764		
96 14 216 286 433 576	20 min 60 min 40 min 60 min 80 min 20 min	Summer Summer Summer Summer Summer	7.908 6.245 4.471 3.197 2.518 1.796 1.413	0.0 0.0 0.0 0.0 0.0	0 2 0 2 0 2 0 4 0 4 0 4	67.1 68.9 64.3 00.3 12.4 05.5 56.1	722 916 1140 1516 1932 2764 3568		
96 14 216 286 433 576 720	20 min 50 min 40 min 50 min 80 min 20 min 50 min 00 min	Summer Summer Summer Summer Summer Summer	7.908 6.245 4.471 3.197 2.518 1.796 1.413 1.172	0.0 0.0 0.0 0.0 0.0	0 2 0 2 0 2 0 4 0 4 0 4 0 4	67.1 68.9 64.3 00.3 12.4 05.5 56.1 65.6	722 916 1140 1516 1932 2764 3568 4328		
96 14 216 288 432 576 720 86	20 min 60	Summer Summer Summer Summer Summer Summer Summer Summer	7.908 6.245 4.471 3.197 2.518 1.796 1.413 1.172 1.006	0.0 0.0 0.0 0.0 0.0 0.0	0 2 0 2 0 2 0 4 0 4 0 4 0 4 0 4	67.1 68.9 64.3 00.3 12.4 05.5 56.1 65.6 72.1	722 916 1140 1516 1932 2764 3568 4328 5104		
96 14 216 288 432 576 720 86	20 min 50 min 40 min 50 min 80 min 20 min 50 min 00 min	Summer Summer Summer Summer Summer Summer Summer Summer	7.908 6.245 4.471 3.197 2.518 1.796 1.413 1.172	0.0 0.0 0.0 0.0 0.0	0 2 0 2 0 2 0 4 0 4 0 4 0 4 0 4	67.1 68.9 64.3 00.3 12.4 05.5 56.1 65.6	722 916 1140 1516 1932 2764 3568 4328		

EAS		Page 2
Unit 108 The Maltings		
Stanstead Abbotts		
Hertfordshire SG12 8HG		Tracko of
Date 21/10/2019 12:51	Designed by Maz	
File cascade rev 2.casx	Checked by	
Micro Drainage	Source Control 2013.1.1	

Cascade Summary of Results for Permeable Paving REV A.srcx

	Storm	1	Max	Max	Max		Max	Max	М	ax	Stat	tus
	Event	L	evel	Depth	Infiltra	ation Co	ntrol	Σ Outfl	ow Vo	Lume		
			(m)	(m)	(1/s)	(1/s)	(1/s)	(r	n³)		
15	min Win	ter 60	.673	0.173		0.0	1.5	1	.5 13	34.4		O K
	min Win					0.0	1.7				Flood	
	min Win					0.0	1.9				Flood	
	min Win					0.0	2.1				Flood	
	min Win					0.0	2.1				Flood	
	min Win					0.0	2.2				Flood	
	min Win					0.0	2.2				Flood	
	min Win					0.0	2.3				Flood Flood	
	min Win					0.0	2.3				Flood	
	min Win					0.0	2.3				Flood	
	min Win					0.0	2.3				Flood	
	min Win					0.0	2.2				Flood	
	min Win					0.0	2.1				Flood	
	min Win					0.0	2.0				Flood	
	min Win					0.0	1.9				Flood	
	min Win					0.0	1.8				Flood	
	min Win					0.0	1.7				Flood	
0800	min Win	ter 60	.693	0.193		0.0	1.6	1	.6 1	53.3		ОК
			Stor	m	Rain	Flooded	d Disch	arge Ti	.me-Pea	ak		
			Even	t	(mm/hr)	Volume	Volu	ıme	(mins)			
						(m³)	(m³)				
		15	min	Winter	143.954	0.0) 1	01.0	2	23		
		30	min	Winter	92.629	0.0) 1	18.7	4	3 7		
		60	min	Winter	FC 710							
					56.713	0.0) 2	11.0		56		
		120	min	Winter	33.583	0.0		11.0 40.4	(
				Winter Winter) 2		12	56		
		180	min		33.583	0.0) 2	40.4	12 18	56 24		
		180 240	min min	Winter	33.583 24.424	0.0	2 2 2 2	40.4 55.1	12 18 24	56 24 32		
		180 240 360	min min min	Winter Winter	33.583 24.424 19.389	0.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40.4 55.1 64.4	12 18 24 35	56 24 32 42		
		180 240 360 480 600	min min min min	Winter Winter Winter Winter Winter	33.583 24.424 19.389 13.924	0.0 0.0 0.0	2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·	40.4 55.1 64.4 75.5	12 18 24 35 4	56 24 32 42 58		
		180 240 360 480 600 720	min min min min min	Winter Winter Winter Winter Winter Winter	33.583 24.424 19.389 13.924 11.018 9.182 7.908	0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2	40.4 55.1 64.4 75.5 82.4 86.7 89.3	12 18 24 35 47 58	566 224 332 412 58 74 38		
		180 240 360 480 600 720 960	min min min min min min	Winter Winter Winter Winter Winter Winter Winter	33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245	0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40.4 55.1 64.4 75.5 82.4 86.7 89.3	12 18 24 35 47 58	566 24 32 42 58 74 38		
		180 240 360 480 600 720 960 1440	min min min min min min min	Winter Winter Winter Winter Winter Winter Winter	33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471	0.0 0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40.4 55.1 64.4 75.5 82.4 86.7 89.3 90.9 85.7	12 18 24 35 4 58 70 91	566 24 32 412 58 74 38 00 L8		
		180 240 360 480 600 720 960 1440 2160	min min min min min min min min	Winter	33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197	0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40.4 55.1 64.4 75.5 82.4 86.7 89.3 90.9 85.7 49.2	12 18 24 35 4 58 70 93 119	566 224 32 42 58 74 38 00 L8		
		180 240 360 480 600 720 960 1440 2160 2880	min min min min min min min min	Winter Winter Winter Winter Winter Winter Winter Winter Winter	33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40.4 55.1 64.4 75.5 82.4 86.7 89.3 90.9 85.7 49.2 59.3	12 18 24 35 47 58 70 91 119 162 208	566 224 32 42 58 74 38 00 L8 90 224		
		180 240 360 480 600 720 960 1440 2160 2880 4320	min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4	40.4 55.1 64.4 75.5 82.4 86.7 89.3 90.9 85.7 49.2 59.3 46.1	12 18 24 35 4 58 70 91 119 162 208 298	566 24 32 42 58 74 38 00 L8 90 24		
		180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796 1.413	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 5 5	40.4 55.1 64.4 75.5 82.4 86.7 89.3 90.9 85.7 49.2 59.3 46.1 17.5	12 18 24 35 4 58 70 91 119 162 208 298 380	566 24 32 42 58 74 38 00 L8 90 24 330		
		180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796 1.413 1.172	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 5 5 5 5 5 5 5	40.4 55.1 64.4 75.5 82.4 86.7 89.3 90.9 85.7 49.2 59.3 46.1 17.5 29.5	12 18 24 35 4 58 70 91 119 162 208 298 380 463	566 224 32 412 58 74 38 00 18 90 224 330 330 38 16		
		180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min	Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter	33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796 1.413	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2 2 2 2 2 2 2 2 2 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	40.4 55.1 64.4 75.5 82.4 86.7 89.3 90.9 85.7 49.2 59.3 46.1 17.5	12 18 24 35 4 58 70 91 119 162 208 298 380	566 224 32 42 58 74 38 00 L8 90 24 330 08 L6		

EAS		Page 3
Unit 108 The Maltings		
Stanstead Abbotts		Tilero
Hertfordshire SG12 8HG		Trick of
Date 21/10/2019 12:51	Designed by Maz	
File cascade rev 2.casx	Checked by	
Micro Drainage	Source Control 2013.1.1	

Cascade Rainfall Details for Permeable Paving REV A.srcx

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.450 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.500

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.250	4	8	0.250

EAS		Page 4
Unit 108 The Maltings		
Stanstead Abbotts		
Hertfordshire SG12 8HG		Tringing of
Date 21/10/2019 12:51	Designed by Maz	
File cascade rev 2.casx	Checked by	
Micro Drainage	Source Control 2013.1.1	

Cascade Model Details for Permeable Paving REV A.srcx

Storage is Online Cover Level (m) 61.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	55.6
Membrane Percolation (mm/hr)	1000	Length (m)	55.6
Max Percolation (1/s)	858.7	Slope (1:X)	1000.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	60.500	Cap Volume Depth (m)	0.000

Orifice Outflow Control

Diameter (m) 0.035 Discharge Coefficient 0.900 Invert Level (m) 60.500

Appendix: J- Land Ownership Confirmation

Claregate
Cattlegate Road
Crews Hill
EN2 8AZ

16 May 2019

To whom it may concern

Colesdale Farm Land Ownership

I, Michael Marrinan of Claregate, Cattlegate Road, Crews Hill EN2 8AZ and Jean Bernadette Marrinan confirm that we jointly own the Colesdale Farm site currently the subject of application reference 6/2019/0882/OUTLINE. This land ownership is partly within HD320427 and partly within HD270820.

We are also joint owners of the land to the north and east within titles HD329634 and HD320427. This includes land to the north and east of the application site including some 450m of the length of Hempshill Brook and including both banks stretching from Northaw Road East to the north.

I confirm that we give agreement for access across our land and for all necessary drainage works to create a positive discharge mechanism from the development site into the main river.

Yours faithfully, Signed:

Michael Marrinan

Jean Marrinan

Dated:

Appendix: K- WINDES Pond Calculations

EAS		Page 1
Unit 108 The Maltings Stanstead Abbotts		
Hertfordshire SG12 8HG		Tir Caro
Date 21/10/2019 12:52	Designed by Maz	
File cascade rev 2.casx	Checked by	
Micro Drainage	Source Control 2013.1.1	

Cascade Summary of Results for Pond Rev B.srcx

Upstream Outflow To Overflow To Structures

Permeable Paving REV A.srcx (None) (None)

	Stor	m	Max	Max	Max	Max	Status
	Even	it	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	59.981	0.081	1.4	1.8	ОК
30	min	Summer	59.990	0.090	1.6	2.0	O K
60	min	Summer	60.000	0.100	1.8	2.2	O K
120	min	Summer	60.011	0.111	1.9	2.6	O K
180	min	Summer	60.021	0.121	2.0	2.8	O K
240	min	Summer	60.031	0.131	2.0	3.1	O K
360	min	Summer	60.224	0.324	2.0	10.2	O K
480	min	Summer	60.250	0.350	2.0	11.4	O K
600	min	Summer			2.0	12.1	O K
720	min	Summer	60.274	0.374	2.0	12.6	O K
		Summer		0.386	2.0	13.2	O K
		Summer			2.0	13.7	O K
2160	min	Summer	60.284	0.384	2.0	13.1	O K
		Summer	60.251	0.351	2.0	11.5	O K
		Summer	60.017	0.117	1.9	2.7	O K
		Summer		0.107	1.9	2.4	O K
		Summer	60.001	0.101	1.8	2.3	O K
		Summer		0.096	1.7	2.1	O K
		Summer		0.093	1.6	2.1	O K
		Winter		0.085	1.5	1.9	O K
	Stor	m	Rain	F10040	a Diach	Mi	ma_Daale
					ed Disch	_	
	Even		(mm/hr)	Volum	e Volu	ıme	(mins)
						ıme	
15	Even	t Summer	(mm/hr)	Volum (m³)	e Volu (m:	ame 3) 92.3	(mins)
15 30	min min	Summer Summer	(mm/hr) 143.954 92.629	Volum (m³)	0 0 1	92.3 08.9	(mins) 101 110
15 30 60	min min min min	Summer Summer Summer	(mm/hr) 143.954 92.629 56.713	Volum (m³)	0 0 1 0 1	92.3 08.9 89.6	(mins) 101 110 142
15 30 60 120	min min min min min	Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583	Volum (m³)	0 1 0 1 0 2	92.3 08.9 89.6 19.1	(mins) 101 110 142 212
15 30 60 120 180	min min min min min	Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424	Volum (m³) 0. 0. 0. 0.	0 0 1 0 1 0 2 0 2 0 2	92.3 08.9 89.6 19.1 33.2	101 110 142 212 286
15 30 60 120 180 240	min min min min min min	Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389	Volum (m³) 0. 0. 0. 0. 0. 0.	0 0 1 0 1 0 2 0 2 0 2 0 2	92.3 08.9 89.6 19.1 33.2 41.9	101 110 142 212 286 382
15 30 60 120 180 240 360	min min min min min min min	Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0.	0 0 1 0 1 0 2 0 2 0 2 0 2 0 2	92.3 08.9 89.6 19.1 33.2 41.9 52.5	101 110 142 212 286 382 1046
15 30 60 120 180 240 360 480	min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 0 1 0 1 0 2 0 2 0 2 0 2 0 2 0 2	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1	101 110 142 212 286 382 1046 1088
15 30 60 120 180 240 360 480 600	min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1 63.2	101 110 142 212 286 382 1046 1088 1160
15 30 60 120 180 240 360 480 600 720	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1 63.2 65.6	101 110 142 212 286 382 1046 1088 1160 1238
15 30 60 120 180 240 360 480 600 720 960	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1 63.2 65.6 67.3	101 110 142 212 286 382 1046 1088 1160 1238 1400
15 30 60 120 180 240 360 480 600 720 960 1440	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1 63.2 65.6 67.3 59.3	101 110 142 212 286 382 1046 1088 1160 1238 1400 1728
15 30 60 120 180 240 360 480 600 720 960 1440 2160	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1 63.2 65.6 67.3 59.3 99.9	101 110 142 212 286 382 1046 1088 1160 1238 1400 1728 2256
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	min min min min min min min min min min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m: 0	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1 63.2 65.6 67.3 59.3 99.9 11.7	101 110 142 212 286 382 1046 1088 1160 1238 1400 1728 2256 2852
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m: 0	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1 63.2 65.6 67.3 59.3 99.9 11.7 04.2	101 110 142 212 286 382 1046 1088 1160 1238 1400 1728 2256 2852 2812
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796 1.413	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m: 0	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1 63.2 65.6 67.3 59.3 99.9 11.7 04.2 56.1	101 110 142 212 286 382 1046 1088 1160 1238 1400 1728 2256 2852 2812 3624
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796 1.413 1.172	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Pe Volument (m: 10	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1 63.2 65.6 67.3 59.3 99.9 11.7 04.2 56.1 65.6	101 110 142 212 286 382 1046 1088 1160 1238 1400 1728 2256 2852 2812 3624 4408
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796 1.413 1.172 1.006	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	O (m) 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1 63.2 65.6 67.3 59.3 99.9 11.7 04.2 56.1 65.6 72.1	101 110 142 212 286 382 1046 1088 1160 1238 1400 1728 2256 2852 2812 3624 4408 5184
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 143.954 92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796 1.413 1.172	Volum (m³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m: 0	92.3 08.9 89.6 19.1 33.2 41.9 52.5 59.1 63.2 65.6 67.3 59.3 99.9 11.7 04.2 56.1 65.6	101 110 142 212 286 382 1046 1088 1160 1238 1400 1728 2256 2852 2812 3624 4408

EAS		Page 2
Unit 108 The Maltings		
Stanstead Abbotts		Tribana
Hertfordshire SG12 8HG		
Date 21/10/2019 12:52	Designed by Maz	
File cascade rev 2.casx	Checked by	
Micro Drainage	Source Control 2013.1.1	

Cascade Summary of Results for Pond Rev B.srcx

Sto Eve		Max Level	Max	Max	Max	Status
FAE	ent		-	Control		
		(m)	(m)	(1/s)	(m³)	
30 mi	n Winter	59.995	0.095	1.7	2.1	O K
60 mi:	n Winter	60.007	0.107	1.9	2.4	O K
120 mi	n Winter	60.028	0.128	2.0	3.0	O K
180 mi	n Winter	60.234	0.334	2.0	10.7	O K
240 mi	n Winter	60.263	0.363	2.0	12.1	O K
360 mi	n Winter		0.392	2.0	13.6	O K
480 mi	n Winter	60.310	0.410	2.0	14.5	O K
	n Winter		0.423	2.0	15.3	O K
720 mi	n Winter		0.432	2.0	15.8	O K
960 mi	n Winter	60.344	0.444	2.1	16.5	O K
1440 mi	n Winter			2.1	17.0	O K
	n Winter			2.1	16.7	O K
	n Winter		0.426	2.0	15.4	O K
	n Winter		0.354	2.0	11.6	O K
	n Winter		0.113	1.9	2.6	O K
	n Winter			1.8	2.3	O K
8640 mi	n Winter	59.996	0.096	1.7	2.1	O K
10080 mi			0.091	1.6	2.0	O K
Sto		Rain		ed Disch	-	
Sto. Eve		Rain (mm/hr)	Volum	ne Vol	ume	me-Peak (mins)
				ne Vol	ume	
Eve			Volum (m³)	ne Volu (m	ume	
Eve	nt	(mm/hr)	Volum (m³)	me Volu (m)	ume ³)	(mins)
Eve:	nt n Winter	(mm/hr)	Volum (m³)	.0 1	ame 3) 17.3	(mins)
30 mir 60 mir 120 mir	nt n Winter n Winter	92.629 56.713	Volum (m³) 0 0 0	.0 1 .0 2 .0 2	17.3 10.1	(mins) 119 158
30 mir 60 mir 120 mir 180 mir	nt Winter Winter Winter	92.629 56.713 33.583	Volum (m³) 0 0 0 0	.0 1 .0 2 .0 2 .0 2	17.3 10.1 39.3	(mins) 119 158 278
30 mir 60 mir 120 mir 180 mir 240 mir	winter Winter Winter Winter	92.629 56.713 33.583 24.424	Volum (m³) 0 0 0 0 0	.0 1 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9	(mins) 119 158 278 888
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir	winter Winter Winter Winter Winter	92.629 56.713 33.583 24.424 19.389	Volum (m³) 0 0 0 0 0 0 0	.0 1 .0 2 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9 63.1	119 158 278 888 894
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir	winter Winter Winter Winter Winter Winter	92.629 56.713 33.583 24.424 19.389 13.924	Volum (m³) 0 0 0 0 0 0 0 0	.0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9 63.1 74.1	119 158 278 888 894 972
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir	winter Winter Winter Winter Winter Winter Winter	92.629 56.713 33.583 24.424 19.389 13.924 11.018	Volum (m³) 0 0 0 0 0 0 0 0 0	.0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9 63.1 74.1 80.9	119 158 278 888 894 972 1064
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir	winter Winter Winter Winter Winter Winter Winter Winter	92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0	.0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9 63.1 74.1 80.9 85.2	(mins) 119 158 278 888 894 972 1064 1148
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir	winter	92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Volu (m) .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9 63.1 74.1 80.9 85.2 87.6 87.9	(mins) 119 158 278 888 894 972 1064 1148 1236 1406 1742
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir	winter	92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Volu (m) .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9 63.1 74.1 80.9 85.2 87.6 87.9 77.0 48.5	119 158 278 888 894 972 1064 1148 1236 1406 1742 2256
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir	winter	92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9 63.1 74.1 80.9 85.2 87.6 87.9 77.0 48.5 58.3	119 158 278 888 894 972 1064 1148 1236 1406 1742 2256 2784
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir	winter	92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9 63.1 74.1 80.9 85.2 87.6 87.9 77.0 48.5 58.3 44.7	119 158 278 888 894 972 1064 1148 1236 1406 1742 2256 2784 3844
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir	winter	92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796 1.413	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Volu (m) .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9 63.1 74.1 80.9 85.2 87.6 87.9 77.0 48.5 58.3 44.7 17.4	119 158 278 888 894 972 1064 1148 1236 1406 1742 2256 2784 3844 3864
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir	winter	92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796 1.413 1.172	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ne Volu (m) .0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9 63.1 74.1 80.9 85.2 87.6 87.9 77.0 48.5 58.3 44.7 17.4 29.4	119 158 278 888 894 972 1064 1148 1236 1406 1742 2256 2784 3844 3864 4640
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir	winter	92.629 56.713 33.583 24.424 19.389 13.924 11.018 9.182 7.908 6.245 4.471 3.197 2.518 1.796 1.413	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0 1 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2	17.3 10.1 39.3 53.9 63.1 74.1 80.9 85.2 87.6 87.9 77.0 48.5 58.3 44.7 17.4	119 158 278 888 894 972 1064 1148 1236 1406 1742 2256 2784 3844 3864

EAS		Page 3
Unit 108 The Maltings		
Stanstead Abbotts		
Hertfordshire SG12 8HG		
Date 21/10/2019 12:52	Designed by Maz	
File cascade rev 2.casx	Checked by	
Micro Drainage	Source Control 2013.1.1	

Cascade Rainfall Details for Pond Rev B.srcx

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840

M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 8 0.450 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

EAS	Page 4	
Unit 108 The Maltings		
Stanstead Abbotts		
Hertfordshire SG12 8HG		Tringing of
Date 21/10/2019 12:52	Designed by Maz	
File cascade rev 2.casx	Checked by	
Micro Drainage	Source Control 2013.1.1	

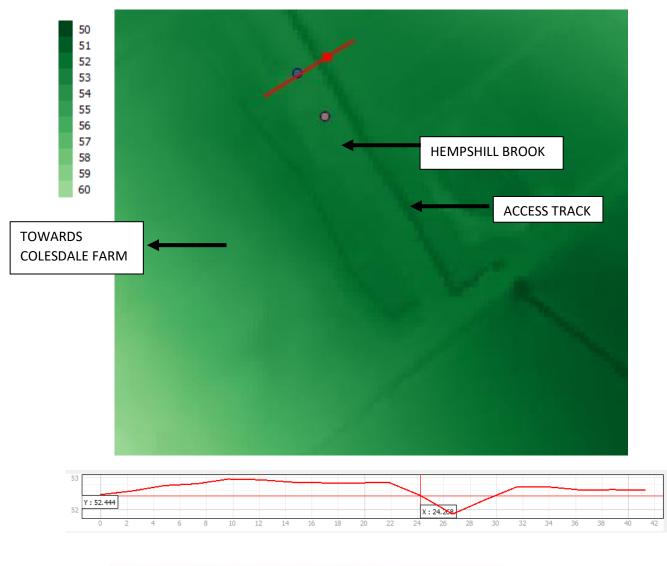
Cascade Model Details for Pond Rev B.srcx

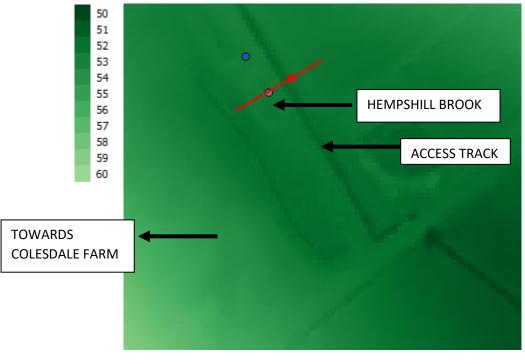
Storage is Online Cover Level (m) 60.700

Tank or Pond Structure

Invert Level (m) 59.900

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 19.1 0.800 105.9


Hydro-Brake® Outflow Control


Design Head (m) 0.600 Hydro-Brake® Type Md4 Invert Level (m) 59.900 Design Flow (l/s) 2.4 Diameter (mm) 63


Depth (m) Flo	ow (1/s)	Depth (m) Fl	low (1/s)	Depth (m) Flow	(1/s)	Depth (m) E	flow (1/s)
0.100	1.8	1.200	3.4	3.000	5.4	7.000	8.2
0.200	1.7	1.400	3.7	3.500	5.8	7.500	8.5
0.300	1.7	1.600	3.9	4.000	6.2	8.000	8.7
0.400	2.0	1.800	4.1	4.500	6.6	8.500	9.0
0.500	2.2	2.000	4.4	5.000	6.9	9.000	9.3
0.600	2.4	2.200	4.6	5.500	7.3	9.500	9.5
0.800	2.8	2.400	4.8	6.000	7.6		
1.000	3.1	2.600	5.0	6.500	7.9		

Appendix: L- LIDAR Data

Appendix: M- SuDs Layout

Appendix: N- Thames Water Pre-Development Enquiry Response

Miss Louisa Wade

Unit 23, The Maltings, Stanstead Abbotts, Hertfordshire, SG12 8HG

14 March 2019

Pre-planning enquiry: Capacity Confirmation

Dear Louisa,

Thank you for providing information on your development.

Site: Colesdale Farm, Northaw Road West, Potters Bar, Hertfordshire - EN6 4QZ

Existing site: Brownfield (Farm house).

Existing foul water treated in private package treatment plant with outfall to ditch on site boundary.

Proposed site: Houses (40 units).

Proposed foul water discharge by gravity into manhole TL2901981B or manhole TL29018901. Proposed surface water discharge to the ditch north of the site and not to Thames Water Sewer.

We're pleased to confirm that there will be sufficient foul water capacity in our sewerage network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me on 020 3577 7608.

Yours sincerely

Zaid Kazi

Development Engineer
Developer Services – Sewer Adoptions Team