

					Client	Project Ref:	241882		
Lab Sample ID	11/00569/17	11/00569/18	11/00569/19	11/00569/20	11/00569/23	11/00569/25			
Client Sample No									
Client Sample ID	WS4	WS4	TP1	TP1	TP2	TP3			
Depth to Top	0.20	0.50	0.10	0.40	0.50	0.10			
Depth To Bottom	0.30	0.60							
Date Sampled	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11			ef
Sample Type	Soil - ES		6	Method ref					
Sample Matrix Code	7	7	4AE		4AE	4AE		Units	Meth
Spec PCB-WHO12									
PCB BZ 81 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 105 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 114 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 118/123 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 126 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 156 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 157 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 167 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 169 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 189 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 77 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s

APPENDIX K LABORATORY CERTIFICATES FOR GEOTECHNICAL ANALYSIS

Ben Coulston RSK STATS Geoconsult LIMITED 18 Frogmore Road Hemel Hempstead Herts HP3 9RT

22nd February 2011

TESTING REPORT

YOUR REF: 241882

SITE: Salisbury Square, Hatfield

CERTIFICATE NUMBER: 581511

DATE SAMPLES RECEIVED: 9th February 2011 DATE TESTING COMMENCED: 9th February 2011

DATE OF SAMPLE DISPOSAL: 22nd March 2011

INSTRUCTIONS: Please carry out Moisture Content, Atterberg Limits, Quick Undrained Triaxial and Particle Size Distribution tests on samples provided.

I have pleasure in enclosing the test report for the above project that you submitted to us for testing.

Yours sincerely

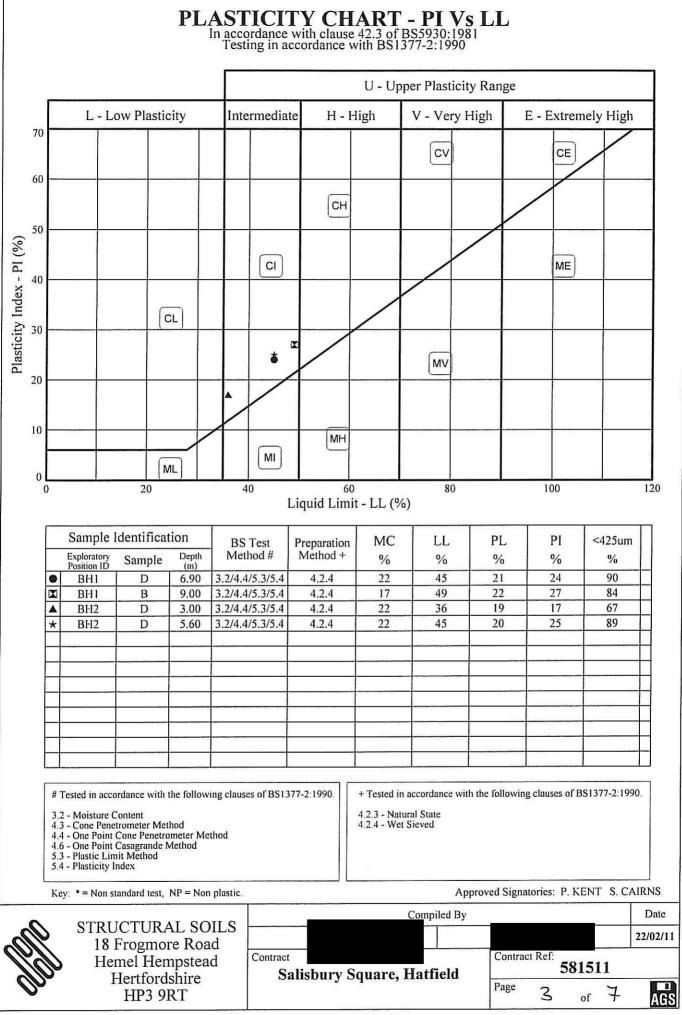
Enc.

SITE INVESTIGATION

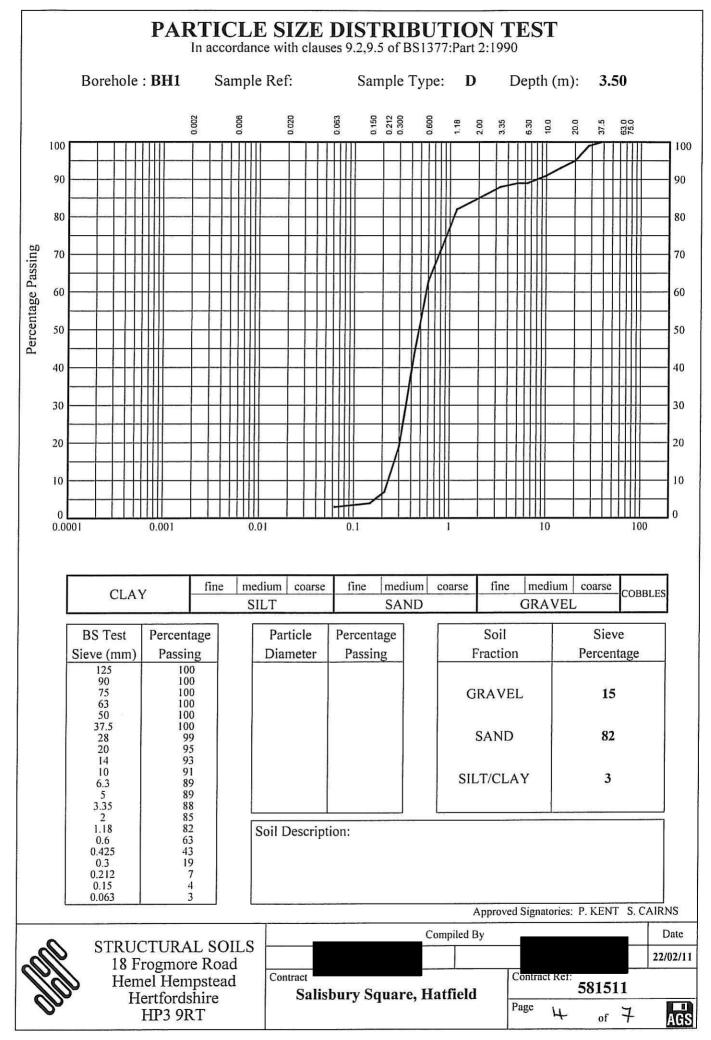
SOIL, ROCK & MATERIAL TESTING

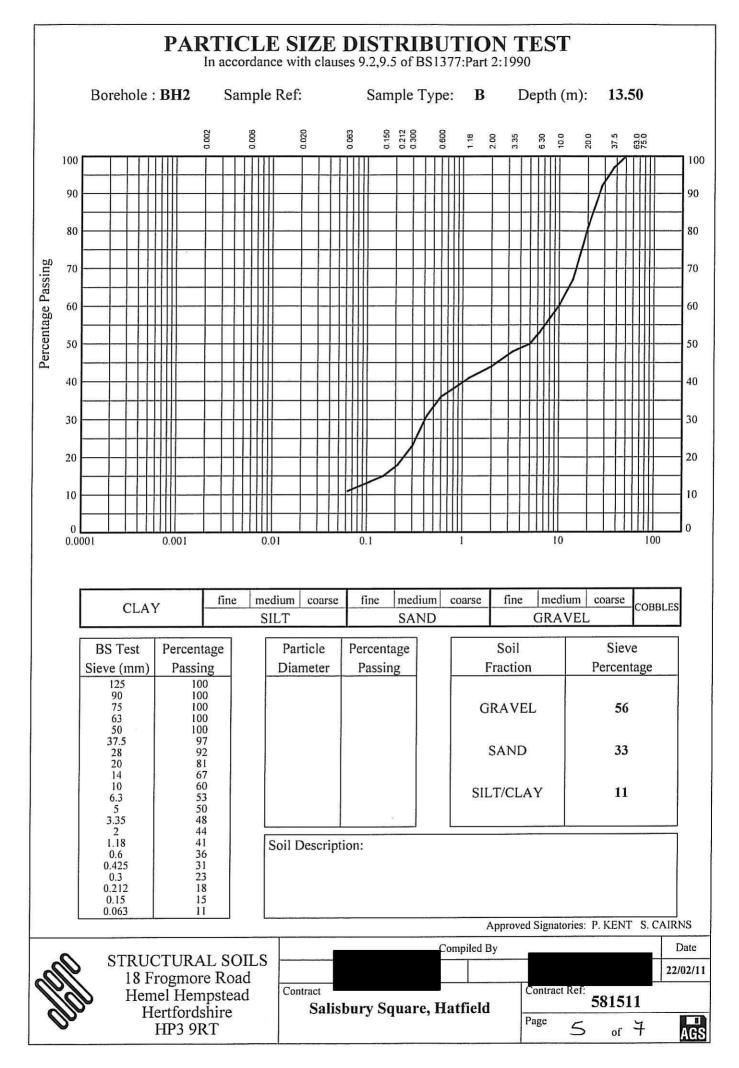
GEOTECHNICAL CONSULTANCY

CONTAMINATED


18 FROGMORE ROAD HEMEL HEMPSTEAD HERTS HP3 9RT TEL: 01442 416660 FAX: 01442 437550 hemel@soils.co.uk www.soils.co.uk

HEAD OFFICE: Bristol BRANCH OFFICE: Castleford West Yorkshire


SUMMARY OF MOISTURE CONTENT TESTING


Exploratory Position ID	Depth (m)	Sample Ref	Sample Type	Moisture Content (%)
BH1	6.90		D	22
BH1	9.00		В	17
BH2	3.00		D	22
BH2	5.60		D	22
BH2	5.70		U	19
BH2	8.50		U	15

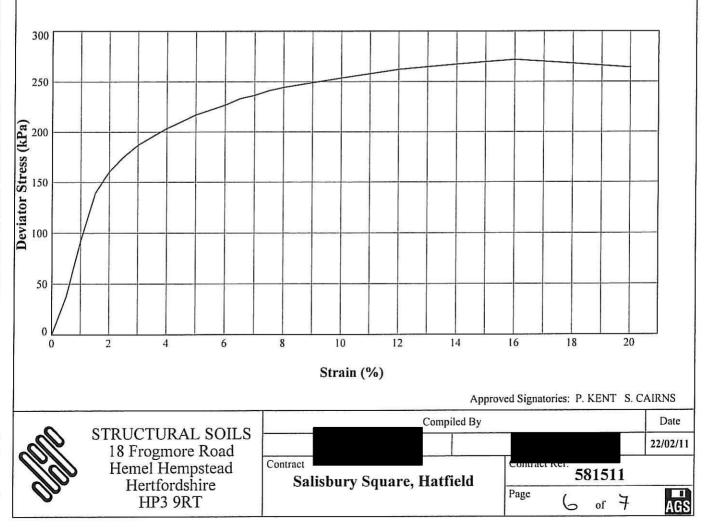
		Compiled By Date	Chec	ked By	Date
- M	STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead	22/02/11 Contract:	Contract Rel:	581511	22.2.11
One	Hertfordshire HP3 9RT	Salisbury Square, Hatfield	Page: 2	of 7	AGS

GINT_LIBRARY_V8_04.GLB!L - ALINE STANDARD - EC7 | 581511-SALISBURY SQUARE, HATFIELD-241882-RSK STATS GEO.GPJ - v8_04 | 22/02/11 - 08:29 | PK.

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole : BH2


Sample Ref:

Sample Type: U I

Depth (m): 5.70

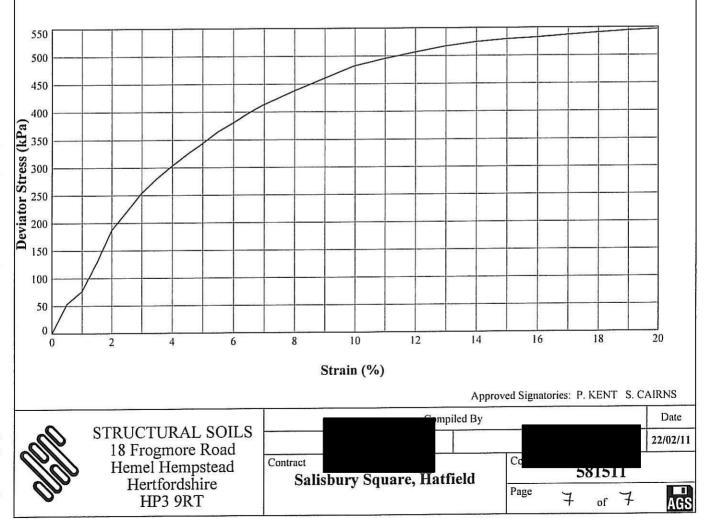
Description : Very dark grey CLAY with occasional fine to medium chalk fragments

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample	Vertical			
	Diameter (mm)		101.66		
	Height	(mm)	209.80		
	Moisture Content	(%)	19		
	Bulk Density	(Mg/m ³)	2.01		
	Dry Density	(Mg/m ³)	1.69		
TEST DETAILS	Membrane Thickness	(mm)	0.24		
	Rate of Axial Displacement	(%/min)	2.00		
	Cell Pressure	(kPa)	114		
	Membrane Correction	(kPa)	0.76		
	Corrected Deviator Stress	(kPa)	272		
	Undrained Shear Strength	(kPa)	136		
	Strain at Failure (%)		16.0		
	Mode of Failure		Compound		

UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377:Part 7:1990, Clause 8

Borehole : BH2


Sample Ref:

Sample Type: U

Depth (m): 8.50

Description : Very dark grey CLAY with occasional fine to medium chalk fragments

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.13		
	Height	(mm)	210.55		
	Moisture Content	(%)	16		
	Bulk Density	(Mg/m ³)	2.20		
	Dry Density	(Mg/m ³)	1.91		
TEST DETAILS	Membrane Thickness	(mm)	0.24		
	Rate of Axial Displacement	(%/min)	2.00		
	Cell Pressure	(kPa)	170		
	Membrane Correction	(kPa)	0.89		
	Corrected Deviator Stress	(kPa)	547		
	Undrained Shear Strength	(kPa)	273		
	Strain at Failure (%)		20.0		
	Mode of Failure		Compound		

APPENDIX D

Chemical Laboratory Test Records

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number: 11/00569 2

Date: 22 March, 2011

Client:

RSK STATS Hemel Hempstead 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed:

Salisbury Square, Hatfield 241882 Not specified 10/02/11 17/03/11 22/03/11

Prepared by:

Approved by:

<u>Notes - Soil analysis</u> All results are reported as dry weight (<40°C). Stones >10mm are removed from the sample prior to analysis and results corrected where appropriate.

Notes - General

For soil samples subscript A indicates analysis performed on the sample as received, D indicates analysis performed on dried & crushed sample.

Superscript M indicates method accredited to MCERTS.

Predominant Matrix Codes - 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our MCERTS accreditation. Secondary Matrix Codes - A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis. NDP indicates No Determination Possible. NFI indicates No Fibres Identified. Superscript # indicates method accredited to ISO 17025.

Accreditation for TPH (C6-C40) applies to the range C6-C36 only.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

Page 1 of 10

	Client Project Ref: 241882											
Lab Sample ID	11/00569/1	11/00569/2	11/00569/3	11/00569/4	11/00569/5	11/00569/6	11/00569/7	11/00569/8				
Client Sample No												
Client Sample ID	BH1	BH1	BH1	BH1	BH2	BH2	BH2	BH2				
Depth to Top	0.20	0.70	1.50	2.30	0.25	0.50	0.90	1.40				
Depth To Bottom			1.70	2.50								
Date Sampled	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11		đ		
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	6	Method ref		
Sample Matrix Code	7	5A	5A	1A	7	5A	7	5A	Units	Meth		
ACM Screen _A	-	NFI	NFI	-	NFI	NFI	-	-		Visual		
pH _D ^{M#}	8.1	8.8	9.4	9.0	9.0	8.6	11.6	9.0	pН	A-T-031s		
Sulphate (water sol 2:1) _D ^{M#}	0.02	0.05	-	0.02	-	0.03	-	-	g/l	A-T-026s		
Phenols - Total by HPLC _A	<0.2	-	<0.2	-	-	<0.2	-	-	mg/kg	A-T-050s		
Total Organic Carbon _D [#]	-	2.07	-	-	-	-	-	0.83	% w/w	A-T-032s		
Arsenic _D ^{M#}	26	23	12	7	23	-	23	11	mg/kg	A-T-024		
Boron (water soluble) _D ^{M#}	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0	<1.0	mg/kg	A-T-027s		
Cadmium _D ^{M#}	0.6	0.6	<0.5	<0.5	0.5	-	<0.5	<0.5	mg/kg	A-T-024		
Copper _D ^{M#}	17	50	14	3	17	-	16	33	mg/kg	A-T-024		
Chromium _D ^{M#}	29	29	29	15	23	-	30	30	mg/kg	A-T-024		
Lead _D ^{M#}	14	278	21	5	14	-	43	46	mg/kg	A-T-024		
Mercury _D	<0.17	<0.17	<0.17	<0.17	<0.17	-	<0.17	<0.17	mg/kg	A-T-024		
Nickel _D ^{M#}	43	32	28	9	35	-	35	21	mg/kg	A-T-024		
Selenium _D ^{M#}	1	2	<1	<1	<1	-	<1	<1	mg/kg	A-T-024		
Zinc _D ^{M#}	105	177	46	17	87	-	97	62	mg/kg	A-T-024		
TPH total (C6-C40) _A	-	-	-	-	-	-	-	168	mg/kg	A-T-007s		

	Client Project Ref: 241882									
Lab Sample ID	11/00569/1	11/00569/2	11/00569/3	11/00569/4	11/00569/5	11/00569/6	11/00569/7	11/00569/8		
Client Sample No										
Client Sample ID	BH1	BH1	BH1	BH1	BH2	BH2	BH2	BH2		
Depth to Top	0.20	0.70	1.50	2.30	0.25	0.50	0.90	1.40		
Depth To Bottom			1.70	2.50						
Date Sampled	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11		əf
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	6	Method ref
Sample Matrix Code	7	5A	5A	1A	7	5A	7	5A	Units	Meth
TPH CWG										
Ali >C5-C6₄	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
Ali >C6-C8 _A	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
Ali >C8-C10 _A	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
Ali >C10-C12 _A [#]	<0.1	-	-	-	-	-	-	-	mg/kg	A-T-023s
Ali >C12-C16 _A [#]	<0.1	-	-	-	-	-	-	-	mg/kg	A-T-023s
Ali >C16-C21 _A [#]	<0.1	-	-	-	-	-	-	-	mg/kg	A-T-023s
Ali >C21-C35 _A [#]	<0.1	-	-	-	-	-	-	-	mg/kg	A-T-023s
Total Aliphatics _A #	<0.1	-	-	-	-	-	-	-	mg/kg	A-T-022+23s
Aro >C5-C7 _A	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
Aro >C7-C8 _A	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
Aro >C8-C9 _A	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
Aro >C9-C10 _A	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
Aro >C10-C12 _A [#]	<0.1	-	-	-	-	-	-	-	mg/kg	A-T-023s
Aro >C12-C16 _A [#]	<0.1	-	-	-	-	-	-	-	mg/kg	A-T-023s
Aro >C16-C21 _A [#]	<0.1	-	-	-	-	-	-	-	mg/kg	A-T-023s
Aro >C21-C35 _A [#]	<0.1	-	-	-	-	-	-	-	mg/kg	A-T-023s
Total Aromatics _A [#]	<0.1	-	-	-	-	-	-	-	mg/kg	A-T-022+23s
TPH (Ali & Aro) _A [#]	<0.1	-	-	-	-	-	-	-	mg/kg	A-T-022+23s
MTBE _A #	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
втех										
BTEX - Benzene _A #	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
BTEX - Toluene _A [#]	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
BTEX - Ethyl Benzene _A [#]	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
BTEX - m & p Xylene _A [#]	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s
BTEX - o Xylene _A [#]	<0.01	-	-	-	-	-	-	-	mg/kg	A-T-022s

					Client	Project Ref	: 241882			_
Lab Sample ID	11/00569/1	11/00569/2	11/00569/3	11/00569/4	11/00569/5	11/00569/6	11/00569/7	11/00569/8		
Client Sample No										
Client Sample ID	BH1	BH1	BH1	BH1	BH2	BH2	BH2	BH2		
Depth to Top	0.20	0.70	1.50	2.30	0.25	0.50	0.90	1.40		
Depth To Bottom			1.70	2.50						
Date Sampled	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11		ef
Sample Type	Soil - ES	Soil - ES	Soil - ES	s	Method ref					
Sample Matrix Code	7	5A	5A	1 A	7	5A	7	5A	Units	Meth
PAH 16										
Acenapthene _A ^{M#}	<0.01	0.01	0.02	<0.01	<0.01	-	0.04	-	mg/kg	A-T-019s
Acenapthylene _A ^{M#}	<0.01	0.05	<0.01	<0.01	<0.01	-	0.14	-	mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.01	0.07	<0.01	<0.01	<0.01	-	0.19	-	mg/kg	A-T-019s
Benzo(a)anthracene _A [#]	<0.01	0.36	0.01	<0.01	<0.01	-	0.67	-	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.02	0.47	<0.01	<0.01	<0.01	-	0.94	-	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.01	0.33	<0.01	<0.01	0.01	-	0.70	-	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.01	0.71	0.02	<0.01	0.01	-	1.01	-	mg/kg	A-T-019s
Benzo(k)fluoranthene _A	0.02	0.48	0.02	<0.01	<0.01	-	0.76	-	mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.01	0.70	0.03	<0.01	0.02	-	1.48	-	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A #	<0.01	0.10	<0.01	<0.01	<0.01	-	0.14	-	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.01	0.78	0.07	<0.01	0.03	-	1.90	-	mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	0.01	<0.01	<0.01	-	0.03	-	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A #	<0.01	0.27	<0.01	<0.01	<0.01	-	0.58	-	mg/kg	A-T-019s
Napthalene _A ^{M#}	<0.01	0.03	0.11	0.02	<0.01	-	0.04	-	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.02	0.17	0.06	<0.01	0.02	-	0.65	-	mg/kg	A-T-019s
Pyrene _A ^{M#}	0.01	0.75	0.06	0.02	0.03	-	1.71	-	mg/kg	A-T-019s
Total PAH _A [#]	0.10	5.28	0.41	0.03	0.13	-	11	-	mg/kg	A-T-019s

					Client	Project Ref	241882			
Lab Sample ID	11/00569/9	11/00569/10	11/00569/11	11/00569/12	11/00569/13	11/00569/14	11/00569/15	11/00569/16		
Client Sample No										
Client Sample ID	BH2	BH2	WS1	WS1	WS2	WS2	WS3	WS3		
Depth to Top	3.00	4.90	0.20	0.50	0.20	0.50	0.20	0.50		
Depth To Bottom			0.30	0.60	0.30	0.60	0.30	0.60		
Date Sampled	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11		ef
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	s	Method ref
Sample Matrix Code	5A	1A	5AE	5AE	5AE	7	5A		Units	Meth
ACM Screen _A	-	-	NFI	-	NFI	NFI	NFI	NFI		Visual
pH _D ^{M#}	8.7	8.9	-	8.7	-	7.6	-	-	рН	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	-	0.02	-	<0.01	-	-	-	-	g/l	A-T-026s
Phenols - Total by HPLC _A	<0.2	-	<0.2	-	<0.2	-	-	-	mg/kg	A-T-050s
Total Organic Carbon _D [#]	-	-	-	-	-	0.10	-	-	% w/w	A-T-032s
Arsenic _D ^{M#}	11	14	-	12	-	23	-	-	mg/kg	A-T-024
Boron (water soluble) _D ^{M#}	<1.0	<1.0	-	<1.0	-	<1.0	-	-	mg/kg	A-T-027s
Cadmium _D ^{M#}	<0.5	<0.5	-	<0.5	-	<0.5	-	-	mg/kg	A-T-024
Copper _D ^{M#}	18	9	-	26	-	17	-	-	mg/kg	A-T-024
Chromium _D ^{M#}	30	18	-	30	-	29	-	-	mg/kg	A-T-024
Lead _D ^{M#}	35	16	-	68	-	17	-	-	mg/kg	A-T-024
Mercury _D	<0.17	<0.17	-	<0.17	-	<0.17	-	-	mg/kg	A-T-024
Nickel ^{M#}	21	15	-	21	-	42	-	-	mg/kg	A-T-024
Selenium _D ^{M#}	<1	<1	-	<1	-	1	-	-	mg/kg	A-T-024
Zinc _D ^{M#}	55	40	-	80	-	95	-	-	mg/kg	A-T-024
TPH total (C6-C40) _A	-	-	-	<10	<10	-	<10	-	mg/kg	A-T-007s

					Client	Project Ref	: 241882			-
Lab Sample ID	11/00569/9	11/00569/10	11/00569/11	11/00569/12	11/00569/13	11/00569/14	11/00569/15	11/00569/16		
Client Sample No										
Client Sample ID	BH2	BH2	WS1	WS1	WS2	WS2	WS3	WS3		
Depth to Top	3.00	4.90	0.20	0.50	0.20	0.50	0.20	0.50		
Depth To Bottom			0.30	0.60	0.30	0.60	0.30	0.60		
Date Sampled	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11		ef
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	s	Method ref
Sample Matrix Code	5A	1A	5AE	5AE	5AE	7	5A		Units	Meth
PAH 16										
Acenapthene _A ^{M#}	-	0.02	-	0.02	-	<0.01	-	-	mg/kg	A-T-019s
Acenapthylene _A ^{M#}	-	<0.01	-	<0.01	-	<0.01	-	-	mg/kg	A-T-019s
Anthracene _A ^{M#}	-	<0.01	-	0.02	-	0.01	-	-	mg/kg	A-T-019s
Benzo(a)anthracene _A [#]	-	<0.01	-	0.04	-	<0.01	-	-	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	-	<0.01	-	0.04	-	<0.01	-	-	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	-	<0.01	-	0.03	-	<0.01	-	-	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	-	<0.01	-	0.09	-	<0.01	-	-	mg/kg	A-T-019s
Benzo(k)fluoranthene _A	-	<0.01	-	0.03	-	<0.01	-	-	mg/kg	A-T-019s
Chrysene _A ^{M#}	-	0.02	-	0.13	-	0.01	-	-	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A #	-	<0.01	-	<0.01	-	<0.01	-	-	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	-	0.03	-	0.14	-	0.03	-	-	mg/kg	A-T-019s
Fluorene _A ^{M#}	-	<0.01	-	<0.01	-	<0.01	-	-	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A #	-	<0.01	-	0.03	-	<0.01	-	-	mg/kg	A-T-019s
Napthalene _A ^{M#}	-	0.02	-	0.02	-	<0.01	-	-	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	-	0.02	-	0.05	-	0.02	-	-	mg/kg	A-T-019s
Pyrene _A ^{M#}	-	0.03	-	0.13	-	0.02	-	-	mg/kg	A-T-019s
Total PAH _A [#]	-	0.14	-	0.78	-	0.09	-	-	mg/kg	A-T-019s

Client Project Name: Salisbury Square, Hatfield

Client Project Ref: 241882 11/00569/17 11/00569/18 11/00569/19 11/00569/20 11/00569/23 11/00569/25 Lab Sample ID **Client Sample No** WS4 WS4 TP1 TP1 TP2 ТР3 Client Sample ID 0.40 0.10 Depth to Top 0.20 0.50 0.10 0.50 Depth To Bottom 0.30 0.60 03-Feb-11 03-Feb-11 03-Feb-11 03-Feb-11 03-Feb-11 03-Feb-11 Date Sampled Method ref Sample Type Soil - ES Units Sample Matrix Code 7 7 4AE 4AE 4AE Visual ACM Screen_A NFI NFI ---pH_D^{M#} A-T-031s 8.3 8.4 8.4 -8.3 8.2 pН Sulphate (water sol 2:1)D^{M#} A-T-026s -0.01 ---g/l Total Organic Carbon_D[#] A-T-032s 0.07 ---1.08 -% w/w Arsenic_D^{M#} mg/kg A-T-024 22 18 10 12 22 -Boron (water soluble)_D^{M#} <1.0 <1.0 <1.0 mg/kg A-T-027s <1.0 -<1.0 Cadmium_D^{M#} A-T-024 <0.5 <0.5 <0.5 -<0.5 0.9 mg/kg Copper_D^{M#} A-T-024 14 11 22 37 174 mg/kg -Chromium_D^{M#} A-T-024 21 20 18 -20 29 mg/kg Lead_D^{M#} A-T-024 345 39 10 66 -84 mg/kg A-T-024 Mercury_D <0.17 <0.17 0.17 <0.17 1.03 mg/kg Nickel_D^{M#} A-T-024 33 14 18 mg/kg 30 33 -Selenium_D^{M#} A-T-024 2 mg/kg 1 <1 1 <1 -Zinc_D^{M#} 70 80 112 306 mg/kg A-T-024 73 -

					Client	Project Ref	: 241882		
Lab Sample ID	11/00569/17	11/00569/18	11/00569/19	11/00569/20	11/00569/23	11/00569/25			
Client Sample No									
Client Sample ID	WS4	WS4	TP1	TP1	TP2	TP3			
Depth to Top	0.20	0.50	0.10	0.40	0.50	0.10			
Depth To Bottom	0.30	0.60							
Date Sampled	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11			ef
Sample Type	Soil - ES		6	Method ref					
Sample Matrix Code	7	7	4AE		4AE	4AE		Units	Meth
TPH CWG									
Ali >C5-C6₄	-	<0.01	-	-	-	-		mg/kg	A-T-022s
Ali >C6-C8 _A	-	<0.01	-	-	-	-		mg/kg	A-T-022s
Ali >C8-C10 _A	-	<0.01	-	-	-	-		mg/kg	A-T-022s
Ali >C10-C12 _A [#]	-	<0.1	-	-	-	-		mg/kg	A-T-023s
Ali >C12-C16 _A [#]	-	<0.1	-	-	-	-		mg/kg	A-T-023s
Ali >C16-C21 _A [#]	-	<0.1	-	-	-	-		mg/kg	A-T-023s
Ali >C21-C35 _A #	-	<0.1	-	-	-	-		mg/kg	A-T-023s
Total Aliphatics _A [#]	-	<0.1	-	-	-	-		mg/kg	A-T-022+23s
Aro >C5-C7 _A	-	<0.01	-	-	-	-		mg/kg	A-T-022s
Aro >C7-C8 _A	-	<0.01	-	-	-	-		mg/kg	A-T-022s
Aro >C8-C9 _A	-	<0.01	-	-	-	-		mg/kg	A-T-022s
Aro >C9-C10 _A	-	<0.01	-	-	-	-		mg/kg	A-T-022s
Aro >C10-C12 _A [#]	-	<0.1	-	-	-	-		mg/kg	A-T-023s
Aro >C12-C16 _A [#]	-	<0.1	-	-	-	-		mg/kg	A-T-023s
Aro >C16-C21 _A [#]	-	<0.1	-	-	-	-		mg/kg	A-T-023s
Aro >C21-C35 _A [#]	-	<0.1	-	-	-	-		mg/kg	A-T-023s
Total Aromatics _A #	-	<0.1	-	-	-	-		mg/kg	A-T-022+23s
TPH (Ali & Aro) _A [#]	-	<0.1	-	-	-	-		mg/kg	A-T-022+23s
MTBE _A #	-	<0.01	-	-	-	-		mg/kg	A-T-022s
втех									
BTEX - Benzene _A #	-	<0.01	-	-	-	-		mg/kg	A-T-022s
BTEX - Toluene _A #	-	<0.01	-	-	-	-		mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	-	<0.01	-	-	-	-		mg/kg	A-T-022s
BTEX - m & p Xylene _A [#]	-	<0.01	-	-	-	-		mg/kg	A-T-022s
BTEX - o Xylene _A [#]	-	<0.01	-	-	-	-		mg/kg	A-T-022s

					Client	Project Ref	: 241882		
Lab Sample ID	11/00569/17	11/00569/18	11/00569/19	11/00569/20	11/00569/23	11/00569/25			
Client Sample No									
Client Sample ID	WS4	WS4	TP1	TP1	TP2	TP3			
Depth to Top	0.20	0.50	0.10	0.40	0.50	0.10			
Depth To Bottom	0.30	0.60							
Date Sampled	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11			əf
Sample Type	Soil - ES		6	Method ref					
Sample Matrix Code	7	7	4AE		4AE	4AE		Units	Meth
PAH 16									
Acenapthene _A ^{M#}	<0.01	<0.01	0.02	-	0.13	-		mg/kg	A-T-019s
Acenapthylene _A ^{M#}	<0.01	<0.01	0.05	-	0.01	-		mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.01	0.01	0.09	-	1.60	-		mg/kg	A-T-019s
Benzo(a)anthracene _A #	<0.01	<0.01	0.33	-	3.24	-		mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.01	<0.01	0.47	-	2.33	-		mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.01	<0.01	0.44	-	2.29	-		mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.01	0.01	0.68	-	1.90	-		mg/kg	A-T-019s
Benzo(k)fluoranthene _A	<0.01	<0.01	0.36	-	2.64	-		mg/kg	A-T-019s
Chrysene _A ^{M#}	<0.01	0.02	0.71	-	5.27	-		mg/kg	A-T-019s
Dibenzo(ah)anthracene _A #	<0.01	<0.01	0.05	-	0.42	-		mg/kg	A-T-019s
Fluoranthene _A ^{M#}	<0.01	0.03	0.84	-	8.88	-		mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	-	0.17	-		mg/kg	A-T-019s
Indeno(123-cd)pyrene _A [#]	<0.01	<0.01	0.26	-	1.42	-		mg/kg	A-T-019s
Napthalene _A ^{M#}	<0.01	0.01	<0.01	-	0.02	-		mg/kg	A-T-019s
Phenanthrene _A ^{M#}	<0.01	0.03	0.22	-	3.49	-		mg/kg	A-T-019s
Pyrene _A ^{M#}	<0.01	0.02	0.79	-	6.11	-		mg/kg	A-T-019s
Total PAH _A [#]	<0.01	0.14	5.30	-	39.9	-		mg/kg	A-T-019s

					Client	Project Ref:	241882		
Lab Sample ID	11/00569/17	11/00569/18	11/00569/19	11/00569/20	11/00569/23	11/00569/25			
Client Sample No									
Client Sample ID	WS4	WS4	TP1	TP1	TP2	TP3			
Depth to Top	0.20	0.50	0.10	0.40	0.50	0.10			
Depth To Bottom	0.30	0.60							
Date Sampled	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11	03-Feb-11			ef
Sample Type	Soil - ES		6	Method ref					
Sample Matrix Code	7	7	4AE		4AE	4AE		Units	Meth
Spec PCB-WHO12									
PCB BZ 81 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 105 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 114 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 118/123 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 126 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 156 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 157 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 167 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 169 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 189 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s
PCB BZ 77 _D	-	<0.005	-	-	-	-		mg/kg	A-T-004/5s

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: Issue Number:

11/01190

1

Date: 22 March, 2011

Client:

RSK STATS Hemel Hempstead 18 Frogmore Road Hemel Hempstead Hertfordshire UK HP3 9RT

Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed:

Salisbury Square, Hatfield 241882 Not specified 18/03/11 18/03/11 22/03/11

Prepared by:

Approved by:

<u>Notes - Soil analysis</u> All results are reported as dry weight (<40 °C). Stones >10mm are removed from the sample prior to analysis and results corrected where appropriate.

Notes - General

For soil samples subscript A indicates analysis performed on the sample as received, D indicates analysis performed on dried & crushed sample.

Superscript M indicates method accredited to MCERTS.

Predominant Matrix Codes - 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our MCERTS accreditation. Secondary Matrix Codes - A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis. NDP indicates No Determination Possible. NFI indicates No Fibres Identified. Superscript # indicates method accredited to ISO 17025.

Accreditation for TPH (C6-C40) applies to the range C6-C36 only.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

Client Project Name: Salisbury Square, Hatfield

Client Project Ref: 241882

Lab Sample ID	11/01190/1	11/01190/2					
Client Sample No							
Client Sample ID	BH2	BH1					
Depth to Top	12.20	6.80					
Depth To Bottom							
Date Sampled	03-Feb-11	03-Feb-11					ef
Sample Type	Soil - D	Soil - D				Ś	Method ref
Sample Matrix Code	5A	5A				Units	Meth
pH _D ^{M#}	8.2	8.0				рН	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	0.15	0.28				g/l	A-T-026s

APPENDIX L GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH

Generic assessment criteria for human health: residential scenario with home-grown produce

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were initially published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Further C4SL were published in 2021 for vinyl chloride, tetrachloroethene (PCE) and trichloroethene (TCE). Where a C4SL has been published, the RSK GAC duplicates the C4SL using all input parameters within the SP1010 final project report⁽³⁾ and associated chemical specific reports⁽⁶⁾, and adopts them as GAC for these substances. Due to the use of decimal places rather than significant figures applied to the Contaminated Land Exposure Assessment (CLEA) tool outputs, the GAC presented may be marginally differently to the C4SL values, however any differences between the values are minimal and would not equate to an unacceptable risk.

For all other substances the C4SL exposure modifications, with the exception of the "top two" produce type approach taken in the C4SL, have been applied to the current RSK GAC. These include alterations to daily inhalation rates for residential and commercial scenarios, reducing soil adherence factors in children (age classes 1 to 12 only) for residential land use, reducing exposure frequency for dermal contact outdoors for residential land use, and updated produce type consumption rates (90th percentile) based on recent data from the National Diet and Nutrition Survey.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the CLEA tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. The SAC are also termed GAC.

Conceptual model

In accordance with SR3⁽⁵⁾, the residential with home-grown produce scenario considers risks to a female child between the ages of 0 and 6 years old as the highest risk scenario. In accordance with Box 3.1 of SR3⁽⁵⁾, the pathways considered for production of the SAC in the residential with home-grown produce scenario are

- direct soil and dust ingestion
- consumption of home-grown produce
- consumption of soil attached to home-grown produce
- dermal contact with soil and indoor dust
- inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

In line with guidance in the EA SGV report for cadmium⁽¹⁾, the RSK GAC for cadmium has been derived based on estimates representative of lifetime exposure. Although young children are generally more likely to have higher exposures to soil contaminants, the renal toxicity of cadmium, and the derivation of the TDI_{oral} and TDI_{inh}, are based on considerations of the kidney burden accumulated over 50 years or so. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^{(3,6),} the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a LLTC^(3,6) has been published for a substance, RSK has used these input parameters to derive the RSK GAC. Toxicological and specific chemical parameters for 1,2,4-trimethylbenzene, barium, methyl tertiary-butyl ether (MTBE), 1,1,2-trichlorethane, 1,1-dichloroethene, 1,2-dichloropropane, 2-chloronaphthalene, chloroethane, chloromethane, cis 1,2-dichloroethene, dichloromethane, hexachloroethane and trans 1,2-dichloroethene were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5 – C_8 were not modelled, as this range comprises benzene (>EC5-EC7) and toluene (>EC7-EC8), which are modelled separately.

Physical parameters

For the residential with home-grown produce scenario, the CLEA default building is a small, twostorey terrace house with a concrete ground-bearing slab. The house is assumed to have a 100m² private garden consisting of lawn and flowerbeds, incorporating a 20m² plot for growing fruit and vegetables consumed by the residents. SR3⁽⁵⁾ notes this residential building type to be the most conservative in terms of potential for vapour intrusion. The building parameters used in the production of the RSK GACs are the default CLEA v1.06 inputs presented in Table 3.3 of SR3⁽³⁾, with a dust loading factor detailed in Section 9.3 of SR3⁽⁵⁾. The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for residential with homegrown produce land-use scenario

In summary, the RSK GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾ are presented in Tables 2 and 3 below.

The final selected GAC are presented by pathway in Table 4 and the combined GAC in Table 5.

Figure 1: Conceptual model for residential scenario with home-grown produce

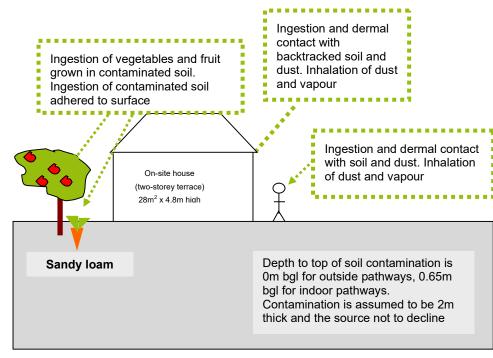


Table 1: Exposure assessment parameters for residential scenario with home-grown produce – inputs for CLEA model

Parameter	Value	Justification
Land use	Residential with homegrown produce	Chosen land use
Receptor	Female child age 1 to 6	Key generic assumption given in Box 3.1, SR3 ⁽⁵⁾
Building	Small terraced house	Key generic assumption given in Box 3.1, SR3. Small, two-storey terraced house chosen, as it is the most conservative residential building type in terms of protection from vapor intrusion (Section 3.4.6, SR3) ⁽⁵⁾
Soil type	Sandy Loam	Most common UK soil type (Section 4.3.1, from Table 3.1, SR3) ⁽⁵⁾
Start AC (age class)	1	Range of age classes corresponding to key generic assumption that the
End AC (age class)	6	critical receptor is a young female child aged 0–6. From Box 3.1, SR3 ⁽⁵⁾
SOM (%)	6	Representative of sandy loamy soil according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽¹³⁾
	1 2.5	To provide SAC for sites where SOM <6% as often observed by RSK
pН	7	Model default

Name			n rate 9 day⁻¹) b∖			(g	Dry weight conversion factor (g DW g ⁻¹	Home- grown fraction (average)	Home- grown fraction (high	Soil Ioading factor (g g ⁻¹ DW)	Preparation correction factor
	1	2	3	4	5	6	FW)	(avoiago)	end)		
Green vegetables	7.12	5.87	5.87	5.87	4.53	4.53	0.096	0.05	0.33	1.00E-03	2.00E-01
Root vegetables	10.7	2.83	2.83	2.83	2.14	2.14	0.103	0.06	0.4	1.00E-03	1.00E+00
Tuber vegetables	16	6.6	6.6	6.6	4.95	4.95	0.21	0.02	0.13	1.00E-03	1.00E+00
Herbaceous fruit	1.83	3.39	3.39	3.39	2.24	2.24	0.058	0.06	0.4	1.00E-03	6.00E-01
Shrub fruit	2.23	0.46	0.46	0.46	0.19	0.19	0.166	0.09	0.6	1.00E-03	6.00E-01
Tree fruit	3.82	10.3	10.3	10.3	5.16	5.16	0.157	0.04	0.27	1.00E-03	6.00E-01
Justification	Table 3.4, SP1010 ⁽³⁾				Table 6.3, SR3 ⁽⁵⁾	Table 4.19,	SR3 ⁽⁵⁾	Table 6.3, SR3 ⁽⁵⁾			

Table 2: Residential with home-grown produce – modified home-grown produce data

Table 3: Residential with home-grown produce – modified and use and receptor data

Domonoston	11	Age clas	ss									
Parameter	Unit	1	2	3	4	5	6					
EF (soil and dust ingestion)	day yr ⁻¹	180	365	365	365	365	365					
EF (consumption of home- grown produce)	day yr-1	180	365	365	365	365	365					
EF (skin contact, indoor)	day yr ⁻¹	180	365	365	365	365	365					
EF (skin contact, outdoor)	day yr ⁻¹	170	170	170	170	170	170					
EF (inhalation of dust and vapour, indoor)	day yr¹	365	365	365	365	365	365					
EF (inhalation of dust and vapour, outdoor)	day yr ⁻¹	365	365	365	365	365	365					
Justification		Table 3.5, SP1010 ⁽³⁾ ; Table 3.1, SR3 ⁽⁵⁾										
Soil to skin adherence factor (outdoor)	mg cm ⁻² day ⁻¹	0.1	0.1	0.1	0.1	0.1	0.1					
Justification	stification				Table 3.5, SP1010 ⁽³⁾							
Inhalation rate	m ³ day ⁻¹	5.4	8.0	8.9/f	10.1	10.1	10.1					
Justification		Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾										
Notes: For cadmium , the exposu						•						

of lifetime exposure AC1-18. This is because the TDI_{oral} and TDI_{inh} are based on considerations of the kidney burden accumulated over 50 years. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period. See the Environment Agency Science Report SC05002/ TOX 3⁽¹⁾, Science Report SC050021/Cadmium SGV⁽¹⁾ and the project report SP1010⁽³⁾ for more information.

References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at: <u>https://www.gov.uk/government/publications/contaminants-in-soilupdated-collation-of-toxicological-data-and-intake-values-for-humans</u> and <u>https://www.gov.uk/government/publications/land-contamination-soil-guideline-valuessgvs</u> (accessed 4 February 2015)
- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), *Science Report SC050021/SR3. Updated technical background to the CLEA model* (Bristol: Environment Agency).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'. CL:AIRE (2021). Category 4 Screening Levels: Trichloroethene (TCE). CL:AIRE, London. ISBN 978-1-905046-38-6. CL:AIRE (2021). Category 4 Screening Levels: Vinyl Chloride. CL:AIRE, London. ISBN 978-1-905046-36-2. CL:AIRE (2021). Category 4 Screening Levels: Tetrachloroethene (PCE). CL:AIRE, London. ISBN 978-1-905046-37-9.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values (Bristol: Environment Agency).
- 11. CL:AIRE (2010), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.

 USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010. <u>https://www.epa.gov/iris</u> (accessed 9 December 2015) GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH HOME-GROWN PRODUCE

2.76E+02 5.39E+00

5.29E+00

1.14E+02

Table 4	
---------	--

2-Chloronaphthalene

	Notes	SAC Appropri	ate to Pathway S	OM 1% (mg/kg)	Soil Saturation	SAC Appropri	iate to Pathway SO	M 2.5% (mg/kg)	Soil Saturation	SAC Appropr	iate to Pathway S	OM 6% (mg/kg)	Soil Saturat
Compound	tes	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/l
letals					1			1					
Arsenic	(a,b)	3.71E+01	5.26E+02	NR	NR	3.71E+01	5.26E+02	NR	NR	3.71E+01	5.26E+02	NR	NR
Barium	(b)	1.34E+03	NR	NR	NR	1.34E+03	NR	NR	NR	1.34E+03	NR	NR	NR
Beryllium		1.13E+02	1.72E+00	NR	NR	1.13E+02	1.72E+00	NR	NR	1.13E+02	1.72E+00	NR	NR
oron		3.00E+02	5.20E+06	NR	NR	3.00E+02	5.20E+06	NR	NR	3.00E+02	5.20E+06	NR	NR
admium	(a)	2.30E+01	4.88E+02	2.21E+01	NR	2.30E+01	4.88E+02	2.21E+01	NR	2.30E+01	4.88E+02	2.21E+01	NR
Chromium (III) - trivalent	(c)	1.84E+04	9.07E+02	NR	NR	1.84E+04	9.07E+02	NR	NR	1.84E+04	9.07E+02	NR	NR
Chromium (VI) - hexavalent	(a,d)	5.85E+01	2.06E+01	NR	NR	5.85E+01	2.06E+01	NR	NR	5.85E+01	2.06E+01	NR	NR
Copper		2.72E+03	1.41E+04	2.47E+03	NR	2.72E+03	1.41E+04	2.47E+03	NR	2.72E+03	1.41E+04	2.47E+03	NR
ead	(a)	2.01E+02	NR	NR	NR	2.01E+02	NR	NR	NR	2.01E+02	NR	NR	NR
Elemental Mercury (Hg ⁰)	(d)	NR	2.35E-01	NR	4.31E+00	NR	5.60E-01	NR	1.07E+01	NR	1.22E+00	NR	2.58E+
norganic Mercury (Hg ^{2*})		3.95E+01	3.63E+03	3.91E+01	NR	3.95E+01	3.63E+03	3.91E+01	NR	3.95E+01	3.63E+03	3.91E+01	NR
Methyl Mercury (Hg ⁴⁺)		1.26E+01	1.87E+01	7.52E+00	7.33E+01	1.26E+01	3.62E+01	9.34E+00	1.42E+02	1.26E+01	7.68E+01	1.08E+01	3.04E+
lickel	(d)	1.27E+02	1.81E+02	NR	NR	1.27E+02	1.81E+02	NR	NR	1.27E+02	1.81E+02	NR	NR
Selenium	(b)	2.58E+02	NR	NR	NR	2.58E+02	NR	NR	NR	2.58E+02	NR	NR	NR
/anadium	(2)	4.13E+02	1.46E+03	NR	NR	4.13E+02	1.46E+03	NR	NR	4.13E+02	1.46E+03	NR	NR
Zinc	(b)	3.86E+03	3.63E+07	NR	NR	3.86E+03	3.63E+07	NR	NR	3.86E+03	3.63E+07	NR	NR
Cyanide (free)	(0)	1.37E+00	1.37E+04	1.37E+00	NR	1.37E+00	1.37E+04	1.37E+00	NR	1.37E+00	1.37E+04	1.37E+00	NR
Syanide (nee)		1.57 2.00	1.57 2104	1.572100	INIX	1.57 2 100	1.372104	1.372100		1.572100	1.572104	1.372100	
/olatile Organic Compounds													
Benzene	(a)	2.62E-01	9.01E-01	2.03E-01	1.22E+03	5.39E-01	1.68E+00	4.08E-01	2.26E+03	1.16E+00	3.48E+00	8.72E-01	4.71E+
	(a)	1.53E+02	9.08E+02	1.31E+02	8.69E+02	3.49E+02	222222222222222222222222222222222222222	2.97E+02	1.92E+03	7.95E+02		6.77E+02	4.71E
Foluene					5.18E+02		2.00E+03		1.22E+03		4.55E+03		2.84E+
Ethylbenzene	-	1.10E+02 2.10E+02	8.34E+01 8.25E+01	4.74E+01 5.92E+01	6.25E+02	2.61E+02 5.01E+02	1.96E+02 1.95E+02	1.12E+02 1.40E+02	1.47E+03	6.00E+02	4.58E+02 4.56E+02	2.60E+02 3.27E+02	3.46E+
Kylene - m		1.92E+02	8.87E+01							1.15E+03		3.32E+02	
Kylene - o	_	1.92E+02 1.98E+02	7.93E+01	6.07E+01 5.66E+01	4.78E+02	4.56E+02	2.08E+02	1.43E+02	1.12E+03	1.05E+03	4.86E+02	3.32E+02 3.10E+02	2.62E+
Kylene - p					5.76E+02	4.70E+02	1.86E+02	1.33E+02	1.35E+03	1.08E+03	4.36E+02		3.17E+
Total xylene	_	1.92E+02	7.93E+01	5.66E+01	6.25E+02	4.56E+02	1.86E+02	1.33E+02	1.47E+03	1.05E+03	4.36E+02	3.10E+02	3.46E-
Methyl tertiary-Butyl ether (MTBE)	_	1.54E+02	1.04E+02	6.22E+01	2.04E+04	2.97E+02	1.69E+02	1.08E+02	3.31E+04	6.03E+02	3.21E+02	2.10E+02	6.27E+
1,1,1,2 Tetrachloroethane	_	5.39E+00	1.54E+00	1.20E+00	2.60E+03	1.27E+01	3.56E+00	2.78E+00	6.02E+03	2.92E+01	8.29E+00	6.46E+00	1.40E+
,1,2,2-Tetrachloroethane	_	2.81E+00	3.92E+00	1.64E+00	2.67E+03	6.10E+00	8.04E+00	3.47E+00	5.46E+03	1.36E+01	1.76E+01	7.67E+00	1.20E+
,1,1-Trichloroethane		3.33E+02	9.01E+00	8.77E+00	1.43E+03	7.26E+02	1.84E+01	1.80E+01	2.92E+03	1.62E+03	4.04E+01	3.94E+01	6.39E+
,1,2 Trichloroethane		1.95E+00	1.25E+00	7.62E-01	4.03E+03	4.21E+00	2.55E+00	1.59E+00	8.21E+03	9.35E+00	5.59E+00	3.50E+00	1.80E+
,1-Dichloroethene		1.93E+01	3.29E-01	3.23E-01	2.23E+03	3.85E+01	5.82E-01	5.74E-01	3.94E+03	8.15E+01	1.17E+00	1.16E+00	7.94E+
,2-Dichloroethane		3.17E-02	9.20E-03	7.13E-03	3.41E+03	5.73E-02	1.33E-02	1.08E-02	4.91E+03	1.09E-01	2.28E-02	1.88E-02	8.43E+
,2,4-Trimethylbenzene		NR	1.76E+00	NR	4.74E+02	NR	4.26E+00	NR	1.16E+03	NR	9.72E+00	NR	2.76E+
,3,5-Trimethylbenzene	(e)	NR	NR	NR	2.30E+02	NR	NR	NR	5.52E+02	NR	NR	NR	1.30E+
,2-Dichloropropane		4.28E+00	3.40E-02	3.37E-02	1.19E+03	8.44E+00	6.00E-02	5.96E-02	2.11E+03	1.77E+01	1.21E-01	1.20E-01	4.24E+
Carbon Tetrachloride (tetrachloromethane)		3.10E+00	2.58E-02	2.57E-02	1.52E+03	7.11E+00	5.65E-02	5.62E-02	3.32E+03	1.62E+01	1.28E-01	1.27E-01	7.54E+
Chloroethane		NR	1.17E+01	NR	2.61E+03	NR	1.59E+01	NR	3.54E+03	NR	2.57E+01	NR	5.71E-
Chloromethane		NR	1.17E-02	NR	1.91E+03	NR	1.38E-02	NR	2.24E+03	NR	1.85E-02	NR	2.99E-
is 1,2 Dichloroethene		1.56E-01	NR	NR	3.94E+03	2.66E-01	NR	NR	6.61E+03	5.18E-01	NR	NR	1.29E-
Dichloromethane		7.04E-01	3.05E+00	6.24E-01	7.27E+03	1.27E+00	4.06E+00	1.08E+00	9.68E+03	2.33E+00	6.42E+00	1.92E+00	1.53E+
etrachloroethene (PCE)		1.33E+01	3.19E-01	3.11E-01	4.24E+02	3.11E+01	7.15E-01	6.99E-01	9.51E+02	7.12E+01	1.64E+00	1.60E+00	2.18E-
rans 1.2 Dichloroethene		6.45E+00	2.76E-01	NR	3.42E+03	1.29E+01	4.99E-01	NR	6.17E+02	2.74E+01	1.02E+00		1.26E
		9.30E-03	3.61E-02	NR	1.54E+03	1.95E-02	7.57E-02	NR	3.22E+03	4.34E-02	1.68E-01	NR	7.14E
Trichloroethene (TCE)		9.30+-03											

6.59E+02

1.33E+01

1.30E+01

2.80E+02

3.17E+01

1.45E+03

3.10E+01

6.69E+02

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH HOME-GROWN PRODUCE

Table 4

Human Health Generic Assessment Criteria by Pathway for Residential With Home-Grown Produce Scenario

	Notes	SAC Appropri	iate to Pathway S	OM 1% (mg/kg)	Soil Saturation	SAC Appropri	ate to Pathway SO	M 2.5% (mg/kg)	Soil Saturation	SAC Appropr	iate to Pathway S	OM 6% (mg/kg)	Soil Saturation
Compound	tes	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)
Acenaphthene		2.27E+02	4.86E+04	2.26E+02	5.70E+01	5.41E+02	1.18E+05	5.38E+02	1.41E+02	1.18E+03	2.68E+05	1.17E+03	3.36E+02
Acenaphthylene		1.85E+02	4.59E+04	1.84E+02	8.61E+01	4.42E+02	1.11E+05	4.40E+02	2.12E+02	9.78E+02	2.53E+05	9.74E+02	5.06E+02
Anthracene		2.43E+03	1.53E+05	2.39E+03	1.17E+00	5.53E+03	3.77E+05	5.45E+03	2.91E+00	1.10E+04	8.76E+05	1.09E+04	6.96E+00
Benzo(a)anthracene		1.01E+01	2.47E+01	7.18E+00	1.71E+00	1.42E+01	4.37E+01	1.07E+01	4.28E+00	1.69E+01	6.26E+01	1.33E+01	1.03E+01
Benzo(a)pyrene	(a)	4.96E+00	3.51E+01	NR	9.11E-01	4.96E+00	3.77E+01	NR	2.28E+00	4.96E+00	3.89E+01	NR	5.46E+00
Benzo(b)fluoranthene		2.96E+00	1.93E+01	2.56E+00	1.22E+00	3.89E+00	2.13E+01	3.29E+00	3.04E+00	4.43E+00	2.22E+01	3.69E+00	7.29E+00
Benzo(g,h,i)perylene		3.77E+02	1.87E+03	3.14E+02	1.54E-02	4.09E+02	1.94E+03	3.38E+02	3.85E-02	4.23E+02	1.97E+03	3.48E+02	9.23E-02
Benzo(k)fluoranthene		8.92E+01	5.41E+02	7.66E+01	6.87E-01	1.10E+02	5.76E+02	9.22E+01	1.72E+00	1.21E+02	5.91E+02	1.00E+02	4.12E+00
Chrysene		1.66E+01	1.19E+02	1.46E+01	4.40E-01	2.54E+01	1.49E+02	2.17E+01	1.10E+00	3.19E+01	1.66E+02	2.67E+01	2.64E+00
Dibenzo(a,h)anthracene		2.90E-01	1.45E+00	2.41E-01	3.93E-03	3.43E-01	1.64E+00	2.84E-01	9.82E-03	3.69E-01	1.74E+00	3.04E-01	2.36E-02
Fluoranthene		2.87E+02	3.83E+04	2.85E+02	1.89E+01	5.63E+02	8.87E+04	5.60E+02	4.73E+01	9.00E+02	1.83E+05	8.96E+02	1.13E+02
Fluorene		1.77E+02	6.20E+03	1.72E+02	3.09E+01	4.19E+02	1.53E+04	4.07E+02	7.65E+01	8.98E+02	3.62E+04	8.77E+02	1.83E+02
Hexachloroethane		2.68E-01	NR	NR	8.17E+00	6.57E-01	NR	NR	2.01E+01	1.55E+00	NR	NR	4.81E+01
Indeno(1,2,3-cd)pyrene		3.09E+01	2.12E+02	2.70E+01	6.13E-02	4.22E+01	2.38E+02	3.59E+01	1.53E-01	4.92E+01	2.50E+02	4.11E+01	3.68E-01
Naphthalene		2.78E+01	2.33E+01	1.27E+01	7.64E+01	6.66E+01	5.58E+01	3.04E+01	1.83E+02	1.53E+02	1.31E+02	7.06E+01	4.32E+02
Phenanthrene		9.85E+01	7.17E+03	9.72E+01	3.60E+01	2.24E+02	1.76E+04	2.22E+02	8.96E+01	4.48E+02	4.07E+04	4.43E+02	2.14E+02
Pyrene		6.25E+02	8.79E+04	6.20E+02	2.20E+00	1.25E+03	2.04E+05	1.24E+03	5.49E+00	2.05E+03	4.23E+05	2.04E+03	1.32E+01
Phenol		1.60E+02	4.58E+02	1.20E+02	2.42E+04	2.96E+02	6.95E+02	2.09E+02	3.81E+04	5.86E+02	1.19E+03	3.93E+02	7.03E+04
Total Petroleum Hydrocarbons													
Aliphatic hydrocarbons EC5-EC6		4.99E+03	4.24E+01	4.23E+01	3.04E+02	1.13E+04	7.79E+01	7.78E+01	5.58E+02	2.50E+04	1.61E+02	1.60E+02	1.15E+03
Aliphatic hydrocarbons >EC6-EC8		1.49E+04	1.04E+02	1.03E+02	1.44E+02	3.43E+04	2.31E+02	2.31E+02	3.22E+02	7.11E+04	5.29E+02	5.28E+02	7.36E+02
Aliphatic hydrocarbons >EC8-EC10		1.61E+03	2.68E+01	2.67E+01	7.77E+01	2.91E+03	6.55E+01	6.51E+01	1.90E+02	4.26E+03	1.56E+02	1.54E+02	4.51E+02
Aliphatic hydrocarbons >EC10-EC12		4.57E+03	1.33E+02	1.32E+02	4.75E+01	5.51E+03	3.31E+02	3.26E+02	1.18E+02	5.98E+03	7.93E+02	7.65E+02	2.83E+02
Aliphatic hydrocarbons >EC12-EC16		6.27E+03	1.11E+03	1.06E+03	2.37E+01	6.34E+03	2.78E+03	2.41E+03	5.91E+01	6.36E+03	6.67E+03	4.34E+03	1.42E+02
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	(b)	6.46E+04	NR	NR	8.48E+00	9.17E+04	NR	NR	2.12E+01	1.10E+05	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	(b)	6.46E+04	NR	NR	8.48E+00	9.17E+04	NR	NR	2.12E+01	1.10E+05	NR	NR	5.09E+01
Aromatic hydrocarbons >EC8-EC ₁₀		5.76E+01	4.74E+01	3.45E+01	6.13E+02	1.38E+02	1.16E+02	8.38E+01	1.50E+03	3.07E+02	2.77E+02	1.94E+02	3.58E+02
Aromatic hydrocarbons >EC10-EC12		8.29E+01	2.58E+02	7.52E+01	3.64E+02	1.96E+02	6.39E+02	1.79E+02	8.99E+02	4.25E+02	1.52E+03	3.91E+02	2.15E+03
Aromatic hydrocarbons >EC12-EC16		1.47E+02	2.85E+03	1.45E+02	1.69E+02	3.36E+02	7.07E+03	3.32E+02	4.19E+02	6.81E+02	1.68E+04	6.74E+02	1.00E+03
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	(b)	2.63E+02	NR	NR	5.37E+01	5.45E+02	NR	NR	1.34E+02	9.34E+02	NR	NR	3.21E+02
								1					

Notes:

EC - equivalent carbon. SAC - soil assessment criteria.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

1.09E+03

1.09E+03

NR

NR

NR

NR

4.83E+00

4.83E+00

(b)

(b)

Aromatic hydrocarbons >EC21-EC35

Aromatic hydrocarbons >EC35-EC44

Calculated SAC exceeds soil saturation limit and may significantly affect the interpretation of any exceedances as the contribution of the indoor and outdoor vapour pathway to total exposure is >10%.

NR

NR

NR

NR

1.21E+01

1.21E+01

1.70E+03

1.70E+03

NR

NR

NR

NR

2.90E+01

2.90E+01

Calculated SAC exceeds soil saturation limit but the exceedance will not affect the SAC significantly as the contribution of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated SAC does not exceed the soil saturation limit.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994. SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway (Section 10.1.1, SR3)

1.47E+03

1.47E+03

(a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.

(b) SAC for boron and selenium should not include the inhalation pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons >EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene.

(c) SAC for CrIII should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)

(d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.

(e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

Table 5 Human Health Generic Assessment Criteria for Residential with home-grown produce

Ateals Arsenic Barium Serv/lium Soron Cadmium Chromium (III) - trivalent Chromium (VI) - hexavalent Copper cad Elemental Mercury (Hg ⁰) norganic Mercury (Hg ^{2*}) Aethyl Mercury (Hg ^{4*}) Valethyl Mercury (Hg ^{4*}) Oldene Coluene Ethylbenzene (ylene - o	37 1.300 1.7 300 22 910 21 2,500 200 0.2 39 10 130 258 410 3,900 1.4 0.20 130 50	37 1,300 1.7 300 22 910 21 2,500 200 0.6 39 10 130 258 410 3,900 1.4	37 1,300 1,7 300 22 910 21 2,500 200 1,2 39 10 130 258 410 3,900 1,4
Barium Seryllium Soron Cadmium Chromium (III) - trivalent Chromium (VI) - hexavalent Copper .ead Elemental Mercury (Hg ⁰) norganic Mercury (Hg ²⁺) Jethyl Mercury (Hg ⁴⁺) Jickel Selenium /anadium Zinc /ypanide (free) /olatile Organic Compounds Benzene Folgenen Ethylbenzene	1,300 1,7 300 22 910 21 2,500 200 0.2 39 10 130 258 410 3,900 1.4 0.20 130	1,300 1.7 300 22 910 21 2,500 200 0.6 39 10 130 258 410 3,900	1,300 1,7 300 22 910 21 2,500 200 1.2 39 10 130 258 410 3,900
Beryllium Joron Jadmium Shromium (III) - trivalent Chromium (VI) - hexavalent Sopper Jadmium Jenental Mercury (Hg ⁰) norganic Mercury (Hg ^{2*}) Aethyl Mercury (Hg ^{4*}) Vickel Selenium Janadium Jinc Syanide (free) Volatile Organic Compounds Benzene Foluene Ethylbenzene	1.7 300 22 910 21 2,500 200 0.2 39 10 130 258 410 3,900 1.4	1.7 300 22 910 21 2,500 200 0.6 39 10 130 258 410 3,900	1.7 300 22 910 21 2.500 200 1.2 39 10 130 258 410 3,900
Boron Sadmium Cadmium (III) - trivalent Chromium (VI) - hexavalent Dopper Lead Elemental Mercury (Hg ⁰) norganic Mercury (Hg ^{2*}) Jethyl Mercury (Hg ^{4*}) Jickel Selenium Zanadium Zinc Oyanide (free) Volatile Organic Compounds Benzene Foluene Ethylbenzene Cylene - m	300 22 910 21 2,500 200 0.2 39 10 130 258 410 3,900 1.4 0.20 130	300 22 910 21 2,500 200 0.6 39 10 130 258 410 3,900	300 22 910 21 2,500 200 1.2 39 10 130 258 410 3,900
Chromium (III) - trivalent Chromium (VI) - hexavalent Sopper .ead Elemental Mercury (Hg ⁰) norganic Mercury (Hg ²) Aethyl Mercury (Hg ^{4*}) Uickel Selenium /anadium Inc Synide (free) /olatile Organic Compounds Benzene Foluene Ethylbenzene Olgene	910 21 2,500 0.2 39 10 130 258 410 3,900 1.1.4 0.20 130	910 21 2,500 200 0.6 39 10 130 258 410 3,900	910 21 2,500 200 1.2 39 10 130 258 410 3,900
Chromium (VI) - hexavalent Copper Sopper Lead Elemental Mercury (Hg ⁰) norganic Mercury (Hg ^{2*}) Adethyl Mercury (Hg ^{4*}) Vickel Selenium Zanadium Zinc Cyanide (free) Volatile Organic Compounds Benzene Foluene Ethylbenzene Stylene - m	21 2,500 200 0,2 39 10 130 258 410 3,900 1,4 0.20 130	21 2,500 200 0.6 39 10 130 258 410 3,900	21 2,500 200 1.2 39 10 130 258 410 3,900
Copper Lead Lemental Mercury (Hg ⁰) norganic Mercury (Hg ²⁺) Aethyl Mercury (Hg ⁴⁺) Jickel Selenium Janadium Zinc Zypanide (free) /olatile Organic Compounds Senzene Soluene Ethylbenzene (ylene - m	2,500 200 0.2 39 10 130 258 410 3,900 1.4 0.20 130	2,500 200 0.6 39 10 130 258 410 3,900	2,500 200 1.2 39 10 130 258 410 3,900
Elemental Mercury (Hg ⁹) norganic Mercury (Hg ^{4*}) Alethyl Mercury (Hg ^{4*}) Vickel Selenium Araadium Zinc Dyanide (free) folatile Organic Compounds Benzene Foluene Ethylbenzene (ylene - m	0.2 39 10 130 258 410 3,900 1.4 0.20 130	0.6 39 10 130 258 410 3,900	1.2 39 10 130 258 410 3,900
norganic Mercury (Hg ²⁺) Aethyl Mercury (Hg ⁴⁺) Jickel Selenium Anadium Zinc Zypanide (free) Yolatile Organic Compounds Benzene Soluene Ethylbenzene (ylene - m	39 10 130 258 410 3,900 1.4 0.20 130	39 10 130 258 410 3,900	39 10 130 258 410 3,900
Aethyl Mercury (Hg ⁴⁺) lickel Selenium /anadium Zinc Cyanide (free) //olatile Organic Compounds Jenzene Soluene Ethylbenzene (ylene - m	10 130 258 410 3,900 1.4 0.20 130	10 130 258 410 3,900	10 130 258 410 3,900
lickel Selenium Zanadium Cinc Cyanide (free) /olatile Organic Compounds Benzene Selene Seluene Ethylbenzene (ylene - m	130 258 410 3,900 1.4 0.20 130	130 258 410 3,900	130 258 410 3,900
Selenium /anadium /linc Cyanide (free) /olatile Organic Compounds Benzene /oluene :thylbenzene (ylene - m	258 410 3,900 1.4 0.20 130	258 410 3,900	258 410 3,900
Zinc Syanide (free) folatile Organic Compounds Jenzene Soluene Sthylbenzene (ylene - m	3,900 1.4 0.20 130	3,900	3,900
Cyanide (free) folatile Organic Compounds Benzene Foluene Ethylbenzene Sylene - m	0.20 130		
Joatile Organic Compounds Jenzene Juene Ethylbenzene Kylene - m	0.20	1.7	
Senzene Toluene Ethylbenzene Kylene - m	130		
oluene Ethylbenzene Kylene - m	130	*	
Ethylbenzene Kylene - m		0.41 300	0.87
(ylene - m		300	260
Viene - o	59	140	327
	61	143	332
Kylene - p	57	133	310
otal xylene //ethyl tertiary-Butyl ether (MTBE)	<u> </u>	133 110	310 210
,1,1,2 Tetrachloroethane	1.20	2.78	6.46
,1,2,2-Tetrachloroethane	1.6	3.5	7.7
,1,1-Trichloroethane	9	18	39
,1,2 Trichloroethane	0.8	1.6	3.5 1.16
,1-Dichloroethene ,2-Dichloroethane	0.32	0.57	0.019
,2,4-Trimethylbenzene	1.8	4.3	9.7
,3,5-Trimethylbenzene	NR	NR	NR
,2-Dichloropropane	0.034	0.060	0.120
Carbon Tetrachloride (tetrachloromethane) Chloroethane	0.026	0.056	0.127 25.7
Chloromethane	0.012	0.014	0.019
Cis 1,2 Dichloroethene	0.16	0.27	0.52
Dichloromethane	0.62	1.08	1.92
etrachloroethene (PCE) Trans 1,2 Dichloroethene	0.31	0.70 0.50	1.60 1.02
richloroethene (TCE)	0.28	0.50	0.043
/inyl Chloride (chloroethene)	0.009	0.020	0.043
· · ·			
Semi-Volatile Organic Compounds		1 40	
2-Chloronaphthalene	5 230	13 540	<u>31</u> 1,170
Acenaphthylene	180	440	970
Anthracene	2,400	5,500	10,900
Benzo(a)anthracene	7	11	13
Benzo(a)pyrene Benzo(b)fluoranthene	5 2.6	5 3.3	5 3.7
Benzo(g,h,i)perylene	310	340	350
Benzo(k)fluoranthene	77	92	100
Chrysene	15	22	27
Dibenzo(a,h)anthracene	0.24 290	0.28 560	0.30
luorene	170	410	880
lexachloroethane	0.27	0.66	1.55
ndeno(1,2,3-cd)pyrene	13	30	71
Vaphthalene Phenanthrene	13	30 220	71 440
Pyrene	620	1,240	2,040
Phenol	120	210	390
Total Petroleum Hydrocarbons		70	400
Aliphatic hydrocarbons EC ₅ -EC ₆ Aliphatic hydrocarbons >EC ₆ -EC ₈	42	78	160
Aliphatic hydrocarbons >EC6-EC8 Aliphatic hydrocarbons >EC8-EC10	100	230	530
Aliphatic hydrocarbons >EC ₈ -EC ₁₀ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	27	65	154
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆	130 (48)	330 (118)	760 (283)
Aliphatic hydrocarbons >EC12-EC16 Aliphatic hydrocarbons >EC16-EC35	1,100 (24)	2,400 (59)	4,300 (142)
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅ Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	65,000 (8)	92,000 (21)	110,000
Aniphatic hydrocarbons >EC ₃₅ -EC ₄₄ Aromatic hydrocarbons >EC ₈ -EC ₁₀	65,000 (8)	92,000 (21)	110,000
	30	80	190
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂	80	180	390
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆	140	330	670
Aromatic hydrocarbons >EC_16-EC_21	260	540	930
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅	1,100	1,500	1,700
Aromatic hydrocarbons >EC ₃₅ -EC ₄₄	1,100	1,500	1,700
/linerals	Stage 1 test – No asbestos de	tected with ID; Stage 2 test - <0.0	001% drv weight (exceedanc
Asbestos	either equates to an exceedan		01/0 01/ 10-0
Iotes: 'Generic assessment criteria not calculated owing to IR - SAC for 1,3,5-trimethylbenzene is not recorded or C- equivalent carbon. SAC - soil assessment criteria LOD for weight of asbestos per unit weight of soil calc he SAC for organic compounds are dependent on Soi 1% SOM is 0.58% TOC. DL Rowell Soil Science:	wing to the lack of toxicological data, SAC fo t. culated on a dry weight basis using PLM, har il Organic Matter (SOM) (%) content. To ob	or 1,2,4 trimethylbenzene may be used ndpicking and gravimetry. tain SOM from total organic carbon (TOC)	
AC for TPH fractions, PAHs napthalene, acenaphther air inhalation pathway of 10 to reduce conservatism (VALUE IN BRACKETS)			an attenuation factor for the indoor

(VALUE IN BRACKETS) RSK has adopted an approach for petroleum hydrocarbons in accordance with LQM/CIEH whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limits given in brackets.

Generic assessment criteria for human health: residential scenario without home-grown produce

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were initially published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Further C4SL were published in 2021 for vinyl chloride, tetrachloroethene (PCE) and trichloroethene (TCE). Where a C4SL has been published, the RSK GAC duplicates the C4SL using all input parameters within the SP1010 final project report⁽³⁾ and associated chemical specific reports⁽⁶⁾, and adopts them as GAC for these substances. Due to the use of decimal places rather than significant figures applied to the Contaminated Land Exposure Assessment (CLEA) tool outputs, the GAC presented may be marginally differently to the C4SL values, however any differences between the values are minimal and would not equate to an unacceptable risk.

For all other substances the C4SL exposure modifications relevant for residential without homegrown produce end use have been applied to the current RSK GAC. These include alterations to daily inhalation rates for residential and commercial scenarios, reducing soil adherence factors in children (age classes 1 to 12 only) and reducing exposure frequency for dermal contact outdoors.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the CLEA tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. The SAC are also termed GAC.

Conceptual model

In accordance with SR3⁽⁵⁾, the residential <u>without</u> home-grown produce scenario considers risks to a female child between the ages of 0 and 6 years old as the highest risk scenario. In

accordance with Box 3.1 of SR3⁽⁵⁾, the pathways considered for production of the SAC in the residential without home-grown produce scenario are

- direct soil and dust ingestion in areas of soft landscaping
- dermal contact with soil and indoor dust
- inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

In line with guidance in the EA SGV report for cadmium⁽¹⁾, the RSK GAC for cadmium has been derived based on estimates representative of lifetime exposure. Although young children are generally more likely to have higher exposures to soil contaminants, the renal toxicity of cadmium, and the derivation of the TDI_{oral} and TDI_{inh}, are based on considerations of the kidney burden accumulated over 50 years or so. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

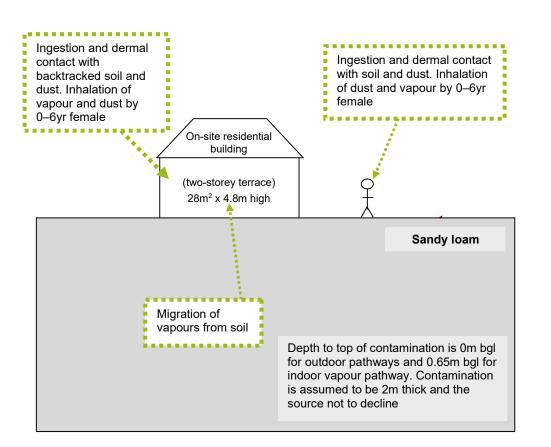
SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated chemical specific reports^(3,6), the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a LLTC^(3,6) has been published for a substance, RSK has used these input parameters to derive the RSK GAC. Toxicological and specific chemical parameters for 1,2,4-trimethylbenzene, barium and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5 – C_8 were not modelled, as this range comprises benzene (>EC5-EC7) and toluene (>EC7-EC8), which are modelled separately.

Physical parameters


For the residential without home-grown produce scenario, the CLEA default building is a small, two-storey terrace house with a concrete ground-bearing slab. SR3⁽⁵⁾ notes this residential building type to be the most conservative in terms of potential for vapour intrusion. The building parameters used in the production of the RSK GACs are the default CLEA v1.06 inputs presented in Table 3.3 of SR3⁽³⁾, with a dust loading factor detailed in Section 9.3 of SR3⁽⁵⁾. The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for residential without home-grown produce

In summary, the RSK GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾ are presented in Table 2 below.

The final selected GAC are presented by pathway in Table 3 and the combined GAC in Table 4.

Figure 1: Conceptual model for CLEA residential scenario without home-grown produce

 Table 1: Exposure assessment parameters for residential scenario

 without home-grown produce – inputs for CLEA model

Parameter	Value	Justification
Land use	Residential without home-grown produce	Chosen land use
Receptor	Female child	Key generic assumption given in Box 3.1, SR3 ⁽⁵⁾
Building	Small terraced house	Key generic assumption given in Box 3.1, SR3 ⁽⁵⁾ . Small, two-storey terraced house chosen, as it is the most conservative residential building type in terms of protection from vapor intrusion (Section 3.4.6, SR3) ⁽⁵⁾
Soil type	Sandy loam	Most common UK soil type (Section 4.3.1, from Table 3.1, SR3) ⁽⁵⁾
Start age class (AC)	1	Range of age classes corresponding to key generic
End AC	6	assumption that the critical receptor is a young female child aged 0–6. From Box 3.1, SR3 ⁽⁵⁾
SOM (%)	6	Representative of sandy loamy soil according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' ⁽¹³⁾
	1	To provide SAC for sites where SOM <6% as often observed by
	2.5	RSK
рН	7	Model default

Table 2: Residential without home-grown produce - modified receptor data

Parameter	Unit	Age class							
		1	2	3	4	5	6		
Soil to skin adherence factor – (outdoor)	mg soil/cm ² skin	0.1	0.1	0.1	0.1	0.1	0.1		
Justification		Table 3.	3.5, SP1010 ⁽³⁾						
Inhalation rate	m ³ day ⁻¹	5.4	8.0	8.9	10.1	10.1	10.1		
Justification		Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾							
Notes: For cadmium , the exposure lifetime exposure AC1-18. This is be burden accumulated over 50 years.	cause the TDI _{ora} It is therefore rea	and TDI _{inh} asonable to	are based consider	l on consid exposure r	erations of not just in c	f the kidne hildhood b	y out		

averaged over a longer period. See the Environment Agency Science Report SC05002/ TOX 3⁽¹⁾, Science Report SC050021/Cadmium SGV⁽¹⁾ and the project report SP1010⁽³⁾ for more information.

References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like PCBs'. Available at: <u>https://www.gov.uk/government/publications/contaminants-in-soilupdated-collation-of-toxicological-data-and-intake-values-for-humans</u> and <u>https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-</u> sgvs (accessed 4 February 2015)
- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), *Science Report SC050021/SR3. Updated technical background to the CLEA model* (Bristol: Environment Agency).
- Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'. CL:AIRE (2021). Category 4 Screening Levels: Trichloroethene (TCE). CL:AIRE, London. ISBN 978-1-905046-38-6. CL:AIRE (2021). Category 4 Screening Levels: Vinyl Chloride. CL:AIRE, London. ISBN 978-1-905046-36-2. CL:AIRE (2021). Category 4 Screening Levels: Tetrachloroethene (PCE). CL:AIRE, London. ISBN 978-1-905046-37-9.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 11. CL:AIRE (2010), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.

 USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010. <u>https://www.epa.gov/iris</u> (accessed 9 December 2015)