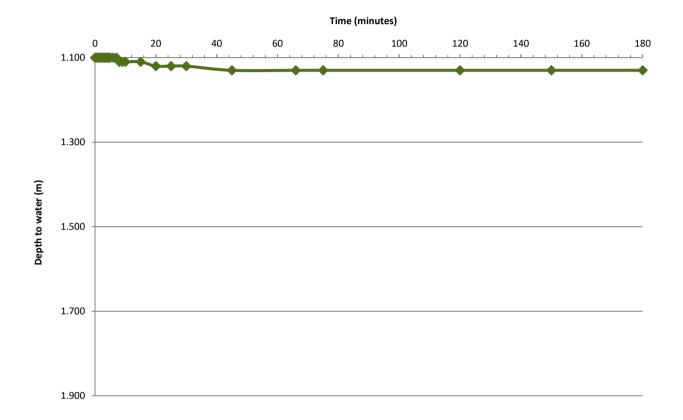
Proposed Haul Road Hertfordshire Constabulary HQ Ground Investigation Report

Appendix E In situ Permeability Testing Results

STU5824-R01 Rev A November 2022



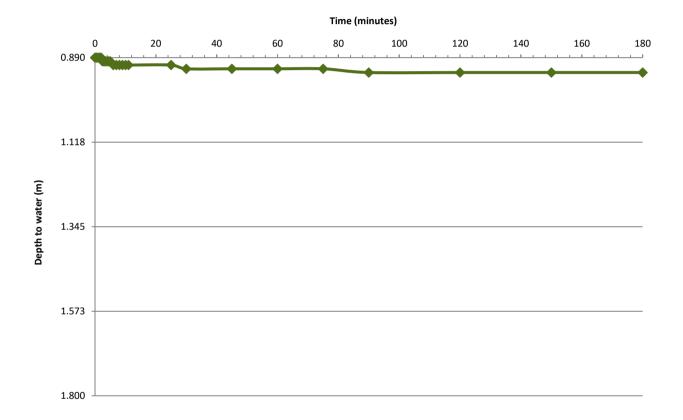
Soil infiltration test (following BRE Digest 365 2016)

Location	Cycle	Test date	Dimensions (m)
TP01	1	06/10/2022	0.65m x 2.00m

Depth at start of test (m) Groundwater observations (at time of excavation)

1.1 No groundwater encountered.

Insufficient infiltration over 180 minutes of monitoring therefore unable to calculate soil infiltration rate.



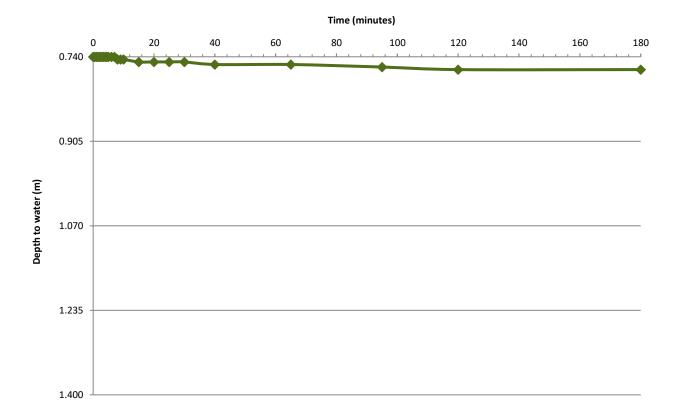
Soil infiltration test (following BRE Digest 365 2016)

Location	Cycle	Test date	Dimensions (m)
TP03	1	06/10/2022	0.60m x 0.45m

Depth at start of test (m) Groundwater observations (at time of excavation)

0.89 No groundwater encountered.

Insufficient infiltration over 180 minutes of monitoring therefore unable to calculate soil infiltration rate.



Soil infiltration test (following BRE Digest 365 2016)

Location	Cycle	Test date	Dimensions (m)
TP07	1	05/10/2022	1.00m x 0.30m

Depth at start of test (m) Groundwater observations (at time of excavation)

0.74 No groundwater encountered.

Insufficient infiltration over 180 minutes of monitoring therefore unable to calculate soil infiltration rate.

Created: 17/11/2022 Sheet 1 of 1

Proposed Haul Road Hertfordshire Constabulary HQ Ground Investigation Report

Appendix F Geotechnical Laboratory Test Results

STU5824-R01 Rev A November 2022

UKAS TESTING

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Soiltechnics Limited

Client Address: Cedar Barn, White Lodge,

Walgrave, Northampton,

NN6 9PY

Contact: Admin

Site Address: Haul Road Herts HQ

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: STU5824
Job Number: 22-91214
Date Sampled: 06/10/2022
Date Received: 19/10/2022
Date Tested: 10/11/2022

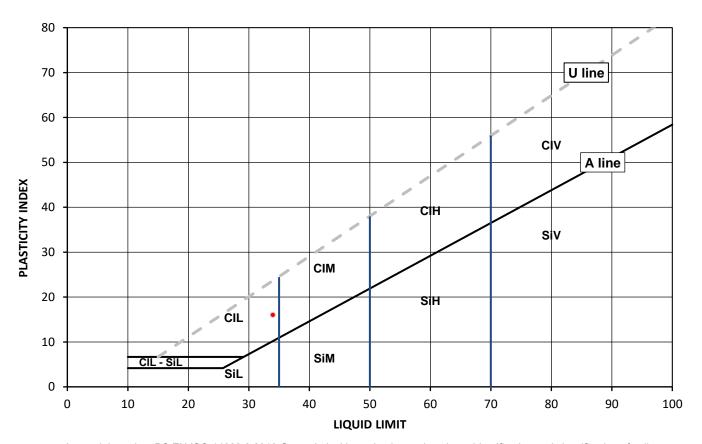
Sampled By: Not Given

Depth Top [m]: 0.60

Sample Type: B

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 2467845 Hole No.: TP060.607

Sample Reference:

Sample Description: Brownish grey gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
14	34	18	16	47

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit Clay CI L Iow below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

UKAS TESTING

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Soiltechnics Limited

Client Address: Cedar Barn, White Lodge,

Walgrave, Northampton,

NN6 9PY

Contact: Admin

Site Address: Haul Road Herts HQ

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: STU5824
Job Number: 22-91214
Date Sampled: 06/10/2022
Date Received: 19/10/2022
Date Tested: 05/11/2022

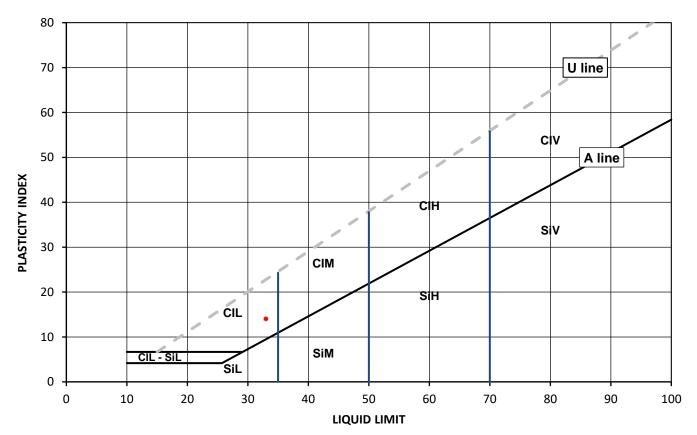
Sampled By: Not Given

Depth Top [m]: 0.55

Sample Type: B

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 2467846 Hole No.: TP070.555

Sample Reference: 5

Sample Description: Brownish grey gravelly very sandy CLAY

Sample Preparation: Tested after washing to remove >425um

As Received Water	•		Plasticity Index	% Passing 425µm	
Content [W] %			[lp] %	BS Test Sieve	
9.2	33	19	14	45	

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit Clay CI L Iow below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

GF 232.12

UKAS

Client Address:

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

Water Content by BS 1377-2:1990: Clause 3.2; Atterberg by BS 1377-2: 1990:

Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2:

1990: Clause 8.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: STU5824

Job Number: 22-91214

Date Sampled: 06/10/2022

Date Received: 19/10/2022

Date Tested: 05/11 - 10/11/2022

Sampled By: Not Given

4041 Client: Soilte

Soiltechnics Limited

Cedar Barn, White Lodge, Walgrave, Northampton,

NN6 9PY

Contact: Admin

Site Address: Haul Road Herts HQ

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	9				tent [w]	tent '892-1		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Content BS 1377-2 [W]	Water Con BS EN ISO 17	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2467845	TP060.607	7	0.60	Not Given	В	Brownish grey gravelly very sandy CLAY	Atterberg 1 Point	14		47	34	18	16					
2467846	TP070.555	5	0.55	Not Given	В	Brownish grey gravelly very sandy CLAY	Atterberg 1 Point	9.2		45	33	19	14					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: STU5824 Job Number: 22-91214 Date Sampled: 06/10/2022

Sampled By: Not Given

Date Received: 19/10/2022 Date Tested: 05/11/2022

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

4041 Client:

Contact: Site Address:

Client Address:

Soiltechnics Limited

Haul Road Herts HQ

NN6 9PY

Admin

Cedar Barn, White Lodge, Walgrave, Northampton,

Test results	est results												
			Sample	2									
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	wc %	Sample preparation / Oven temperature at the time of testing				
2467845	TP060.607	7	0.60	Not Given	В	Brownish grey gravelly very sandy CLAY		14	Sample was quartered, oven dried at 108.7 °C				
2467846	TP070.555	5	0.55	Not Given	В	Brownish grey gravelly very sandy CLAY		9.2	Sample was quartered, oven dried at 108.7 °C				

Comments:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

DETERMINATION OF PARTICLE SIZE DISTRIBUTION

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Soiltechnics Limited Client:

Client Address: Cedar Barn, White Lodge,

Walgrave, Northampton,

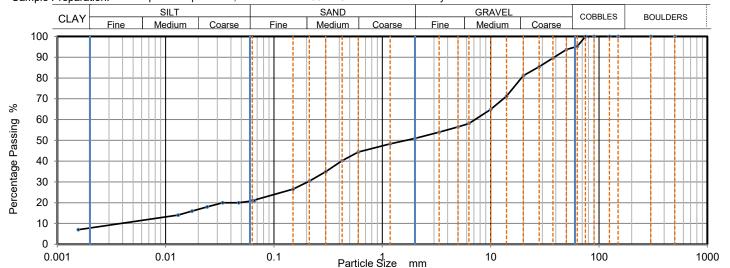
NN6 9PY

Contact: Admin

Site Address: Haul Road Herts HQ

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: STU5824 Job Number: 22-91214 Date Sampled: 06/10/2022 Date Received: 19/10/2022 Date Tested: 08/11/2022


Sampled By: Not Given

Test Results:

Laboratory Reference: 2467843 Depth Top [m]: 0.30 TP040.307 Depth Base [m]: Not Given Hole No.: Sample Reference: Sample Type: B

Sample Description: Brown clayey silty very sandy GRAVEL with cobbles

Sample was quartered, oven dried at 106.4 °C and broken down by hand. Sample Preparation:

Siev	ring	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0657	21
300	100	0.0471	20
150	100	0.0336	20
125	100	0.0241	18
90	100	0.0175	16
75	100	0.0130	14
63	95	0.0016	7
50	94		
37.5	90		
28	85		
20	81		
14	71		
10	65		
6.3	58		
5	57		
3.35	54	Particle density	(assumed)
2	51	2.65	Mg/m3
1.18	48		
0.6	44		
0.425	40		
0.3	35		
0.212	30	Ì	
0.15	27	1	
0.063	21	1	

Sample Proportions	% dry mass				
Very coarse	5				
Gravel	44				
Sand	30				
Silt	13				
Clay	8				

Grading Analysis		
D100	mm	75
D60	mm	7.16
D30	mm	0.204
D10	mm	0.00375
Uniformity Coefficient		1900
Curvature Coefficient		1.5

Uniformity Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported:** 11/11/2022 GF 100.21

TEST CERTIFICATE

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR)

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Soiltechnics Limited Client:

Client Address: Cedar Barn, White Lodge,

Walgrave, Northampton,

NN6 9PY

Contact: Admin

Site Address: Haul Road Herts HQ

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: STU5824 Job Number: 22-91214 Date Sampled: 06/10/2022 Date Received: 19/10/2022 Date Tested: 08/11/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2467845 TP060.607 Hole No.:

Sample Reference:

Brownish grey gravelly very sandy CLAY Sample Description:

Depth Top [m]: 0.60 Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Initial Specimen details

Condition Remoulded Soaking details Not soaked Details Period of soaking Recompacted with specified standard effort using 2.5kg rammer

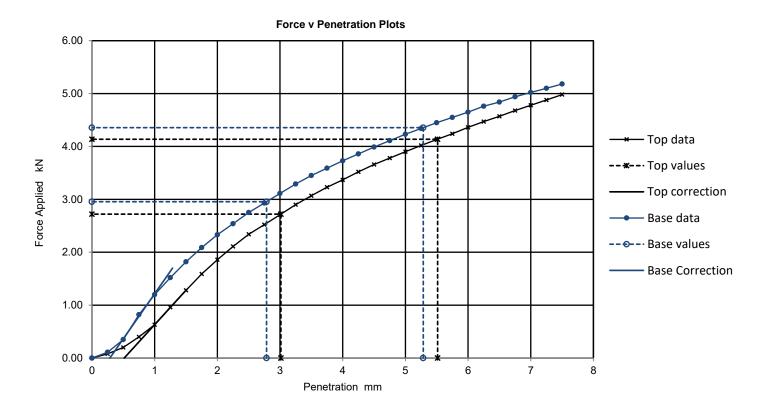
%

days Time to surface days Amount of swell recorded mm Dry density after soaking Mg/m3

Material retained on 20mm sieve removed

21

Surcharge applied


8 kg 4.9 kPa

Bulk density Dry density

Mg/m3 1.84 Mg/m3

2.09

Moisture content 14

Results

TOP **BASE**

Curve		CBR Va	lues, %	
correction applied	2.5mm	5mm	Highest	Average
Yes	21.0	21.0	21.0	22.0
Yes	22.0	22.0	22.0	22.0

Moisture Content % 13 13

Remarks:

Test/ Specimen specific remarks:

Signed:

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1 Date Reported: 11/11/2022 GF 108.16

TEST CERTIFICATE

DETERMINATION OF THE CALIFORNIA BEARING RATIO (CBR)

Tested in Accordance with: BS 1377-4: 1990: Clause 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Soiltechnics Limited Client:

Client Address: Cedar Barn, White Lodge,

Walgrave, Northampton,

NN6 9PY

Contact: Admin

Site Address: Haul Road Herts HQ

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: STU5824 Job Number: 22-91214 Date Sampled: 06/10/2022 Date Received: 19/10/2022 Date Tested: 08/11/2022

Sampled By: Not Given

Test Results:

Laboratory Reference: 2467846 TP070.555 Hole No.:

Sample Reference:

Brownish grey gravelly very sandy CLAY Sample Description:

Depth Top [m]: 0.55 Depth Base [m]: Not Given

Sample Type: B

Specimen Preparation:

Initial Specimen details

Condition Remoulded

Details Recompacted with specified standard effort using 2.5kg rammer Soaking details Period of soaking Time to surface Amount of swell recorded

Dry density after soaking

Not soaked days

days mm

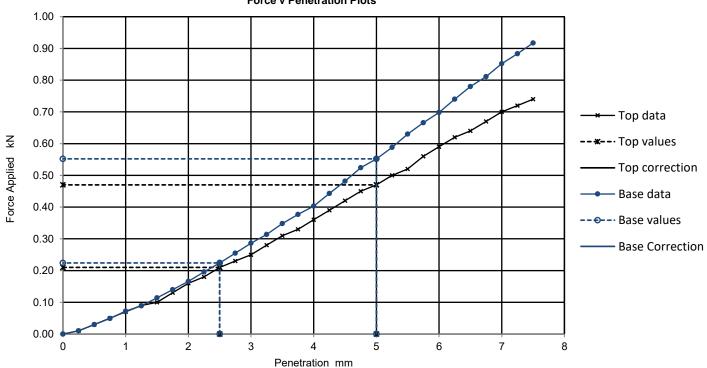
Mg/m3

Material retained on 20mm sieve removed

24

Bulk density Dry density

2.20 Mg/m3 1.97 Mg/m3 Surcharge applied


8 kg 4.9 kPa

Moisture content

12

%

Force v Penetration Plots

Results

TOP **BASE**

Curve		CBR Va	ılues, %	
correction applied	2.5mm	5mm	Highest	Average
No	1.6	2.4	2.4	2.6
No	1.7	2.8	2.8	2.0

Moisture Content % 12 12

Remarks:

Test/ Specimen specific remarks:

Signed:

Katarzyna Koziel Reporting Specialist

Date Reported: 11/11/2022

for and on behalf of i2 Analytical Ltd

Page 1 of 1

GF 108.16

Proposed Haul Road Hertfordshire Constabulary HQ Ground Investigation Report

Appendix G Geoenvironmental Laboratory Test Results

STU5824-R01 Rev A November 2022

Lauren Wenham Soiltechnics Ltd White Lodge Cedar Barn Walgrave NN6 9PY Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 22-08636

Site Reference: Haul Road - Herts HQ

Project / Job Ref: STU5824

Order No: POR013806

Sample Receipt Date: 18/10/2022

Sample Scheduled Date: 18/10/2022

Report Issue Number: 1

Reporting Date: 24/10/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

For Topsoil and WAC analysis the expanded uncertainty measurement should be considered while evaluating results against compliance values.

Soil Analysis Certificate						
DETS Report No: 22-08636	Date Sampled	05/10/22	06/10/22	06/10/22	06/10/22	06/10/22
Soiltechnics Ltd	Time Sampled	None Supplied				
Site Reference: Haul Road - Herts HQ	TP / BH No	CS010.001	CS020.001	TP010.055	TP020.603	TP031.004
Project / Job Ref: STU5824	Additional Refs	HR_CS_01	HR_CS_02	TP01	TP02	TP03
Order No: POR013806	Depth (m)	0.00	0.00	0.05	0.60	1.00
Reporting Date: 24/10/2022	DETS Sample No	616782	616783	616784	616785	616786

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected				
рН	pH Units	N/a	MCERTS	7.8	7.9	7.0	7.9	7.4
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Free Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	191	42	23	15	15
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.19	0.04	0.02	0.01	0.01
Sulphide	mg/kg	< 5	NONE	< 5	< 5	< 5	< 5	< 5
TOC (Total Organic Carbon)	%	< 0.1	MCERTS	2.1	2.3	5.9	0.4	0.4
Ammoniacal Nitrogen as NH ₄	mg/kg	< 0.5	ISO17025	< 0.5	< 0.5	0.6	< 0.5	< 0.5
Antimony (Sb)	mg/kg	< 1	NONE	< 1	2	1.3	1.5	< 1
Arsenic (As)	mg/kg	< 2	MCERTS	53	18	12	19	23
Barium (Ba)	mg/kg	< 2.5	MCERTS	437	136	68	86	30
Beryllium (Be)	mg/kg	< 0.5	MCERTS	1.9	1.4	0.8	0.9	< 0.5
W/S Boron	mg/kg	< 1	NONE	1.1	< 1	1.1	< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	3.2	0.3	0.2	0.2	0.2
Chromium (III)	mg/kg	< 2	NONE	24	20	17	23	11
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	221	42	27	25	26
Lead (Pb)	mg/kg	< 3	MCERTS	2670	103	50	43	448
Mercury (Hg)	mg/kg	< 1	MCERTS	3.6	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	31	15	16	20	19
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3	< 3	< 3	< 3
Vanadium (V)	mg/kg	< 1	MCERTS	49	39	29	45	26
Zinc (Zn)	mg/kg	< 3	MCERTS	3440	159	102	121	298
Magnesium	mg/kg	< 50	NONE	717	2560	1380	1310	374

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

⁽n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate						
DETS Report No: 22-08636	Date Sampled	06/10/22	05/10/22	05/10/22	06/10/22	06/10/22
Soiltechnics Ltd	Time Sampled	None Supplied				
Site Reference: Haul Road - Herts HQ	TP / BH No	TP040.503	TP050.051	TP050.603	TP060.302	TP0602.005
Project / Job Ref: STU5824	Additional Refs	TP04	TP05	TP05	TP06	TP06
Order No: POR013806	Depth (m)	0.50	0.05	0.60	0.30	2.00
Reporting Date: 24/10/2022	DETS Sample No	616787	616788	616789	616790	616791

Determinand	Unit	RL	Accreditation	(n)				
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected				
рН	pH Units	N/a	MCERTS	7.7	7.9	7.9	8.0	7.9
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Free Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	1490	215	398	42	92
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	1.49	0.21	0.40	0.04	0.09
Sulphide	mg/kg	< 5	NONE	< 5	< 5	11	< 5	34
TOC (Total Organic Carbon)	%	< 0.1	MCERTS	1.4	0.3	0.7	0.8	0.7
Ammoniacal Nitrogen as NH ₄	mg/kg	< 0.5	ISO17025	< 0.5	< 0.5	33.5	< 0.5	66.1
Antimony (Sb)	mg/kg	< 1	NONE	10.9	< 1	1.7	1.5	2
Arsenic (As)	mg/kg	< 2	MCERTS	16	4	28	11	17
Barium (Ba)	mg/kg	< 2.5	MCERTS	687	56	84	91	103
Beryllium (Be)	mg/kg	< 0.5	MCERTS	0.7	< 0.5	0.9	0.8	1
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	1.9	< 1	1.9
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	1	< 0.2	0.2	< 0.2	0.3
Chromium (III)	mg/kg	< 2	NONE	22	5	28	19	21
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	73	9	26	24	29
Lead (Pb)	mg/kg	< 3	MCERTS	233	19	42	71	56
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	16	5	19	15	20
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3	< 3	< 3	< 3
Vanadium (V)	mg/kg	< 1	MCERTS	32	12	46	31	40
Zinc (Zn)	mg/kg	< 3	MCERTS	908	37	101	63	140
Magnesium	mg/kg	< 50	NONE	1700	2030	180	1750	1560

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 22-08636	Date Sampled	05/10/22	06/10/22	06/10/22	06/10/22	06/10/22
Soiltechnics Ltd	Time Sampled	None Supplied				
Site Reference: Haul Road - Herts HQ	TP / BH No	CS010.001	CS020.001	TP010.055	TP020.603	TP031.004
Project / Job Ref: STU5824	Additional Refs	HR_CS_01	HR_CS_02	TP01	TP02	TP03
Order No: POR013806	Depth (m)	0.00	0.00	0.05	0.60	1.00
Reporting Date: 24/10/2022	DETS Sample No	616782	616783	616784	616785	616786

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	0.16	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	0.15	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	1.60	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	1.20	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	0.80	24.30	0.34	0.11	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	0.15	6.25	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	1.11	33.20	1.26	0.34	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	0.95	27.70	1.14	0.32	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.74	12.30	0.93	0.27	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	0.60	9.93	0.73	0.20	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.67	12.50	1.02	0.27	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.19	4.41	0.36	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.59	11.40	0.98	0.26	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.34	6.63	0.67	0.18	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	1.75	0.15	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.29	5.96	0.61	0.17	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	6.6	159	8.2	2.1	< 1.6

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate	 Speciated PAHs 							
DETS Report No: 22-0863	6		Date Sampled	06/10/22	05/10/22	05/10/22	06/10/22	06/10/22
Soiltechnics Ltd			Time Sampled	None Supplied				
Site Reference: Haul Road	I - Herts HQ		TP / BH No	TP040.503	TP050.051	TP050.603	TP060.302	TP0602.005
Project / Job Ref: STU582	4	A	Additional Refs	TP04	TP05	TP05	TP06	TP06
Order No: POR013806			Depth (m)	0.50	0.05	0.60	0.30	2.00
Reporting Date: 24/10/20)22	DI	ETS Sample No	616787	616788	616789	616790	616791
Determinand	Unit	RL	Accreditation	(n)				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	0.13	< 0.1	< 0.1	< 0.1	< 0.1

Determinand	Unit	RL	Accreditation	(n)				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	0.13	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	2.73	0.16	0.14	< 0.1	0.14
Anthracene	mg/kg	< 0.1	MCERTS	0.34	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	3.58	0.94	0.24	0.15	0.28
Pyrene	mg/kg	< 0.1	MCERTS	3.02	0.98	0.21	0.13	0.26
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	1.50	0.79	0.18	< 0.1	0.19
Chrysene	mg/kg	< 0.1	MCERTS	1.47	0.66	0.14	< 0.1	0.14
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	1.43	0.87	0.20	< 0.1	0.17
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.54	0.32	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	1.39	0.86	0.18	< 0.1	0.14
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.88	0.64	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	0.21	0.17	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.73	0.60	< 0.1	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	17.9	7	< 1.6	< 1.6	< 1.6

Soil Analysis Certificate - TPH CWG Banded	d					
DETS Report No: 22-08636	Date Sampled	05/10/22	06/10/22	06/10/22	06/10/22	06/10/22
Soiltechnics Ltd	Time Sampled	None Supplied				
Site Reference: Haul Road - Herts HQ	TP / BH No	CS010.001	CS020.001	TP010.055	TP020.603	TP031.004
Project / Job Ref: STU5824	Additional Refs	HR_CS_01	HR_CS_02	TP01	TP02	TP03
Order No: POR013806	Depth (m)	0.00	0.00	0.05	0.60	1.00
Reporting Date: 24/10/2022	DETS Sample No	616782	616783	616784	616785	616786

Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6 : HS_1D_MS_AL	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8 : HS_1D_MS_AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16 : EH_CU_1D_AL	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C16 - C21 : EH CU 1D AL	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C21 - C34 : EH_CU_1D_AL	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C34) : HS_1D_MS+EH_CU_1D_AL	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21
Aromatic >C5 - C7 : HS 1D MS AR	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8 : HS_1D_MS_AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	14	< 2	< 2	< 2
Aromatic >C16 - C21 : EH_CU_1D_AR	mg/kg	< 3	MCERTS	3	125	3	< 3	< 3
Aromatic >C21 - C35 : EH_CU_1D_AR	mg/kg	< 10	MCERTS	< 10	109	< 10	< 10	< 10
Aromatic (C5 - C35) : HS_1D_MS+EH_CU_1D_AR	mg/kg	< 21	NONE	< 21	247	< 21	< 21	< 21
Total >C5 - C35 : HS_1D_MS+EH_CU_1D_Tot al	mg/kg	< 42	NONE	< 42	247	< 42	< 42	< 42

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

Soil Analysis Certificate - TPH CWG Bande	ed					
DETS Report No: 22-08636	Date Sampled	06/10/22	05/10/22	05/10/22	06/10/22	06/10/22
Soiltechnics Ltd	Time Sampled	None Supplied				
Site Reference: Haul Road - Herts HQ	TP / BH No	TP040.503	TP050.051	TP050.603	TP060.302	TP0602.005
Project / Job Ref: STU5824	Additional Refs	TP04	TP05	TP05	TP06	TP06
Order No: POR013806	Depth (m)	0.50	0.05	0.60	0.30	2.00
Reporting Date: 24/10/2022	DETS Sample No	616787	616788	616789	616790	616791

Determinand	Unit	RL	Accreditation	(n)				
Aliphatic >C5 - C6 :	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
HS_1D_MS_AL Aliphatic >C6 - C8 :								
HS_1D_MS_AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16 : EH_CU_1D_AL	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C16 - C21 : EH_CU_1D_AL	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C21 - C34 : EH_CU_1D_AL	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C34) : HS_1D_MS+EH_CU_1D_AL	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21
Aromatic >C5 - C7 : HS_1D_MS_AR	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8 : HS_1D_MS_AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C16 - C21 : EH_CU_1D_AR	mg/kg	< 3	MCERTS	12	< 3	< 3	< 3	< 3
Aromatic >C21 - C35 : EH_CU_1D_AR	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aromatic (C5 - C35) : HS_1D_MS+EH_CU_1D_AR	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21
Total >C5 - C35 : HS_1D_MS+EH_CU_1D_Tot al	mg/kg	< 42	NONE	< 42	< 42	< 42	< 42	< 42

Soil Analysis Certificate - BTEX / MTBE						
DETS Report No: 22-08636	Date Sampled	05/10/22	06/10/22	06/10/22	06/10/22	06/10/22
Soiltechnics Ltd	Time Sampled	None Supplied				
Site Reference: Haul Road - Herts HQ	TP / BH No	CS010.001	CS020.001	TP010.055	TP020.603	TP031.004
Project / Job Ref: STU5824	Additional Refs	HR_CS_01	HR_CS_02	TP01	TP02	TP03
Order No: POR013806	Depth (m)	0.00	0.00	0.05	0.60	1.00
Reporting Date: 24/10/2022	DETS Sample No	616782	616783	616784	616785	616786

Determinand	Unit	RL	Accreditation					
Benzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Ethylbenzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
MTBE : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

⁽n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

DETS Report No: 22-08636	Date Sampled	06/10/22	05/10/22	05/10/22	06/10/22	06/10/22
Soiltechnics Ltd	Time Sampled	None Supplied				
Site Reference: Haul Road - Herts HQ	TP / BH No	TP040.503	TP050.051	TP050.603	TP060.302	TP0602.00
Project / Job Ref: STU5824	Additional Refs	TP04	TP05	TP05	TP06	TP0
Order No: POR013806	Depth (m)	0.50	0.05	0.60	0.30	2.00
Reporting Date: 24/10/2022	DETS Sample No	616787	616788	616789	616790	616791

Determinand	Unit	RL	Accreditation	(n)				
Benzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	13
Ethylbenzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
MTBE : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Soil Analysis Certificate - Volatile Organi	c Compounds (VOC)				
DETS Report No: 22-08636	Date Sampled	05/10/22	06/10/22		
Soiltechnics Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: Haul Road - Herts HQ	TP / BH No	TP050.603	TP0602.005		
Project / Job Ref: STU5824	Additional Refs	TP05	TP06		
Order No: POR013806	Depth (m)	0.60	2.00		
Reporting Date: 24/10/2022	DETS Sample No	616789	616791		

Determinand	Unit	RL	Accreditation				
Dichlorodifluoromethane	ug/kg	< 5	MCERTS	< 5	< 5		
Vinyl Chloride	ug/kg	< 5	MCERTS	< 5	< 5		
	5	< 10	MCERTS	< 10	< 10		
Chloromethane	ug/kg						
Chloroethane	ug/kg	< 5	MCERTS	< 5	< 5		
Bromomethane	ug/kg	< 10	MCERTS	< 10	< 10		
Trichlorofluoromethane	ug/kg	< 5	MCERTS	< 5	< 5		
1,1-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5		
MTBE	ug/kg	< 5	MCERTS	< 5	< 5		
trans-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5		
1.1-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5		
cis-1,2-Dichloroethene	ug/kg	< 5	MCERTS	< 5	< 5		
2,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5		
Chloroform	ug/kg	< 5	MCERTS	< 5	< 5		
	5						
Bromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5		
1,1,1-Trichloroethane	ug/kg	< 5	MCERTS	< 5	< 5		
1,1-Dichloropropene	ug/kg	< 10	MCERTS	< 10	< 10		
Carbon Tetrachloride	ug/kg	< 5	MCERTS	< 5	< 5		Į
1,2-Dichloroethane	ug/kg	< 5	MCERTS	< 5	< 5		
Benzene	ug/kg	< 2	MCERTS	< 2	< 2		
1,2-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5		
Trichloroethene	ug/kg	< 5	MCERTS	< 5	< 5		
Bromodichloromethane	ug/kg	< 5	MCERTS	< 5	< 5		
Dibromomethane	ug/kg	< 5	MCERTS	< 5	< 5		
TAME	ug/kg ug/kg	< 5	MCERTS				
				< 5	< 5		
cis-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5		
Toluene	ug/kg	< 5	MCERTS	< 5	13		
trans-1,3-Dichloropropene	ug/kg	< 5	MCERTS	< 5	< 5		
1,1,2-Trichloroethane	ug/kg	< 10	MCERTS	< 10	< 10		
1,3-Dichloropropane	ug/kg	< 5	MCERTS	< 5	< 5		
Tetrachloroethene	ug/kg	< 5	MCERTS	< 5	< 5		
Dibromochloromethane	ug/kg	< 5	MCERTS	< 5	< 5		
1,2-Dibromoethane	ug/kg	< 5	MCERTS	< 5	< 5		
Chlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5		
1,1,1,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5		
Ethyl Benzene	ug/kg	< 2	MCERTS	< 2	< 2		
	ug/kg ug/kg	< 2	MCERTS	< 2	< 2		
m,p-Xylene							
o-Xylene	ug/kg	< 2	MCERTS	< 2	< 2		
Styrene	ug/kg	< 5	MCERTS	< 5	< 5		
Bromoform	ug/kg	< 10	MCERTS	< 10	< 10		
Isopropylbenzene	ug/kg	< 5	MCERTS	< 5	< 5		
1,1,2,2-Tetrachloroethane	ug/kg	< 5	MCERTS	< 5	< 5		
1,2,3-Trichloropropane	ug/kg	< 5	MCERTS	< 5	< 5		
n-Propylbenzene	ug/kg	< 5	MCERTS	< 5	< 5		
Bromobenzene	ug/kg	< 5	MCERTS	< 5	< 5		
2-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5		
1,3,5-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5		
4-Chlorotoluene	ug/kg	< 5	MCERTS	< 5	< 5		
tert-Butylbenzene	ug/kg ug/kg	< 5	MCERTS	< 5	< 5		
	J J			_	_		
1,2,4-Trimethylbenzene	ug/kg	< 5	MCERTS	< 5	< 5		<u> </u>
sec-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5		
p-Isopropyltoluene	ug/kg	< 5	MCERTS	< 5	< 5		
1,3-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5		
1,4-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5		
n-Butylbenzene	ug/kg	< 5	MCERTS	< 5	< 5	 	
1,2-Dichlorobenzene	ug/kg	< 5	MCERTS	< 5	< 5		
,2-Dibromo-3-chloropropane	ug/kg	< 10	MCERTS	< 10	< 10		
Hexachlorobutadiene	ug/kg	< 5	MCERTS	< 5	< 5		Ì
r icxaci iloi obutadielle	ug/kg	\)	IVICEIVIO	\ 3	/ 0		

Soil Analysis Certificate - Semi Volatile C	rganic Compounds (S\	/OC)			
DETS Report No: 22-08636	Date Sampled	05/10/22	06/10/22		
Soiltechnics Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: Haul Road - Herts HQ	TP / BH No	TP050.603	TP0602.005		
Project / Job Ref: STU5824	Additional Refs	TP05	TP06		
Order No: POR013806	Depth (m)	0.60	2.00		
Reporting Date: 24/10/2022	DETS Sample No	616789	616791		

Determinand	Unit	RL	Accreditation				
Phenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1		T
1.2.4-Trichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	-	+
2-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	-	+
Nitrobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		+
0-Cresol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	-	+
bis(2-chloroethoxy)methane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	+	+
bis(2-chloroethyl)ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	-	+
2,4-Dichlorophenol	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	+	+
2-Chlorophenol	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	-	+
1.3-Dichlorobenzene	5	< 0.1	ISO17025	< 0.1	< 0.1	-	+
1,4-Dichlorobenzene	mg/kg mg/ka	< 0.1	ISO17025	< 0.1	< 0.1	-	+
1,2-Dichlorobenzene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1	+	+
2,4-Dimethylphenol	mg/kg		ISO17025	< 0.15	< 0.15		-
Isophorone	mg/kg	< 0.15	NONE	< 0.15	< 0.15	+	+
Hexachloroethane	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	-	+
p-Cresol	7	< 0.15	MCERTS	< 0.15	< 0.15	-	-
2,4,6-Trichlorophenol	3	< 0.15	MCERTS	< 0.15	< 0.15		-
2,4,6-Trichlorophenol	mg/kg	< 0.15	MCERTS				_
	mg/kg			< 0.15	< 0.15		_
2-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1		_
4-Chloro-3-methylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
2-Methylnaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		-
Hexachlorocyclopentadiene	mg/kg	< 0.1	NONE	< 0.1	< 0.1		_
Hexachlorobutadiene	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1		-
2,6-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		_
Dimethyl phthalate	mg/kg	< 0.1	NONE	< 0.1	< 0.1		_
2-Chloronaphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		_
4-Chloroanaline	mg/kg	< 0.15	NONE	< 0.15	< 0.15		_
4-Nitrophenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1		_
4-Chlorophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
3-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
4-Nitroaniline	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
4-Bromophenyl phenyl ether	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		_
Hexachlorobenzene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
2,4-Dinitrotoluene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Diethyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Dibenzofuran	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		
Azobenzene	mg/kg	< 0.1	NONE	< 0.1	< 0.1		
Dibutyl phthalate	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1		
Carbazole	mg/kg	< 0.1	ISO17025	< 0.1	< 0.1		_
bis(2-ethylhexyl)phthalate	mg/kg	< 0.15	ISO17025	< 0.15	< 0.15		
Benzyl butyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		_
Di-n-octyl phthalate	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1		

4-isopropylphenol

pheno

m-cresol (3-methylphenol

o-cresol (2-methylphenol

p-cresol (4-methylphenol)

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN

Tel: 01622 850410

Soil Analysis Certificate	- Speciated Pheno	Is						
DETS Report No: 22-0863			Date Sampled	05/10/22	06/10/22	06/10/22	06/10/22	06/10/22
Soiltechnics Ltd			Time Sampled	None Supplied				
Site Reference: Haul Roa	d - Herts HQ	TP / BH No		CS010.001	CS020.001	TP010.055		TP031.004
Project / Job Ref: STU58.	24	,	Additional Refs	HR CS 01	HR CS 02	TP01	TP02	TPO
Order No: POR013806			Depth (m)	0.00	0.00	0.05	0.60	1.00
Reporting Date: 24/10/2	2022	D	ETS Sample No	616782	616783	616784	616785	616786
Determinand	Unit	RL	Accreditation					
2, 3, 5-trimethylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2, 3, 6-trimethylphenol		< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2, 3-xylenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2, 4, 6-trimethylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
2, 4-xylenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
2, 5-xylenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
2, 6-xylenol		< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
2-ethylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2-isopropylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3, 4, 5-trimethylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3, 4-xylenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3, 5-xylenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3-ethylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
3-isopropylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-ethylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	,,		NONE				0.4	

< 0.1

< 0.1

< 0.1

< 0.15

< 0.1

< 0.1

< 0.1

< 0.15

< 0.1

< 0.1

< 0.1

< 0.15

< 0.1

< 0.1

< 0.1

< 0.15

< 0.1

< 0.15

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Analytical reults are expressed on a dry weight basis where samples are assisted-dried at less than 30° C (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

< 0.1

< 0.1

< 0.1

< 0.15

< 0.1

NONE

NONE

NONE

NONE

NONE

Tel: 01622 850410

Soil Analysis Certificate DETS Report No: 22-0863			Date Sampled	06/10/22	05/10/22	05/10/22	06/10/22	06/10/22
Soiltechnics Ltd			Time Sampled	None Supplied				
Site Reference: Haul Roa	d - Herts HQ		TP / BH No	TP040.503	TP050.051	TP050.603	TP060.302	TP0602.005
Project / Job Ref: STU58.	24	,	Additional Refs	TP04	TP05	TP05	TP06	TP06
Order No: POR013806			Depth (m)	0.50	0.05	0.60	0.30	2.00
Reporting Date: 24/10/2	2022	DI	ETS Sample No	616787	616788	616789	616790	616791
Determinand	Unit	RL	Accreditation	(n)				
2, 3, 5-trimethylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2, 3, 6-trimethylphenol	ma/ka	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2, 3-xylenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
2, 4, 6-trimethylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
2, 4-xylenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
2, 5-xylenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
2, 6-xylenol		< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
2-ethylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
2-isopropylphenol		< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
3, 4, 5-trimethylphenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
3, 4-xylenol	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
3, 5-xylenol	9	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
3-ethylphenol		< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
3-isopropylphenol		< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
4-ethylphenol		< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
4-isopropylphenol		< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.
m-cresol (3-methylphenol)	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
o-cresol (2-methylphenol)	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.

< 0.15

< 0.15

< 0.15

Analytical reults are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

mg/kg mg/kg < 0.1

< 0.15

NONE

NONE

p-cresol (4-methylphenol)

pheno

DETS Ltd Lenham Heath Maidstone Kent ME17 2JN

Tel: 01622 850410

DETS Report No: 22-08636		Date	05/10/22				Landflll Wast	te Acceptance C	Criteria Limit
Soiltechnics Ltd		Sampled Time Sampled	None Supplied						
Site Reference: Haul Road - H	Herts HQ	TP / BH No	CS010.001					Stable Non-	
Project / Job Ref: STU5824		Additional Refs	HR_CS_01				Inert Waste		Hazardous Waste
Order No: POR013806		Depth (m)	0.00				Landfill	waste in non- hazardous Landfill	Landfill
Reporting Date: 24/10/2022		DETS Sample No	616782					Edildilli	
Determinand	Unit			l					
LOC _{MO}	%	< 0.1	2.1	I			3%	5%	6%
oss on Ignition	%	< 0.01	7.40	l					10%
BTEX ^{MU}	mg/kg	< 0.05 < 0.1	< 0.05 < 0.1	ł			6		
Sum of PCBs Mineral Oil ^{MU}	mg/kg						1		
Mineral Oil ^{ms} Fotal PAH ^{MU}	mg/kg mg/kg	< 10 < 1.7	< 10	ł			500 100		
otal Pah	pH Units	< 1.7 N/a	7.8	1				>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1					To be	To be evaluated
Eluate Analysis			2:1	8:1		Cumulative 10:1		for compliance N 12457-3 at L	leaching tes
			mg/l	mg/l		mg/kg		(mg/kg)	
Arsenic ^u			< 0.01	< 0.01		< 0.2	0.5	2	25
Barium ^u			0.05	0.04		0.4	20	100	300
Cadmium ^U	_		< 0.0005	< 0.0005		< 0.02	0.04	1	5
Chromium ^U			< 0.005	< 0.005		< 0.20	0.5	10	70
Copper ^U	4		< 0.01	0.01		< 0.5	2	50	100
Mercury ^U	4		< 0.0005 0.004	< 0.0005 0.004		< 0.005	0.01	0.2 10	30
Molybdenum ^u Nickel ^u	=		< 0.004	< 0.004		< 0.1 < 0.2	0.5	10	40
_ead ^U	=		< 0.007	0.005		< 0.2	0.5	10	50
Antimony ^U	_		< 0.005	< 0.005		< 0.05	0.06	0.7	5
Selenium ^U	=		< 0.005	< 0.005		< 0.05	0.1	0.5	7
Zinc ^U			0.091	0.106		1	4	50	200
Chloride ^U			6	4		41	800	15000	25000
-luoride ^u			< 0.5	< 0.5		< 1	10	150	500
Sulphate ^U			67	17		230	1000	20000	50000
rds .			196	93		1053	4000	60000	100000
Phenol Index			< 0.01	< 0.01		< 0.5	1	-	-
DOC Leach Test Information			13.9	31.4		294	500	800	1000
.cdcii rest miormation							ı		
	1						ı		
Sample Mass (kg)			0.20						
Ory Matter (%)			88.7	<u> </u>					
Moisture (%)			12.8						
Stage 1									
Volume Eluate L2 (litres)			0.33						
iltered Eluate VE1 (litres)			0.21		1	I	Ī		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

DETS Ltd Lenham Heath Maidstone Kent ME17 2JN

Tel: 01622 850410

DETS Report No: 22-08636		Date Sampled	06/10/22			LandfIII Was	te Acceptance (Criteria Limit
Soiltechnics Ltd		Time Sampled	None Supplied					
Site Reference: Haul Road - H	erts HQ	TP / BH No	CS020.001				Stable Non-	
Project / Job Ref: STU5824		Additional Refs	HR_CS_02			Inert Waste Landfill	reactive HAZARDOUS waste in non-	Hazardous Waste
Order No: POR013806		Depth (m)	0.00			Landini	hazardous Landfill	Landfill
Reporting Date: 24/10/2022	_	DETS Sample No	616783					
Determinand	Unit	MDL						
LOC _{MN}	%	< 0.1	2.3			3%	5%	6%
oss on Ignition	%	< 0.01	5.50					10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05			6		
Sum of PCBs	mg/kg	< 0.1	< 0.1			1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10			500		
Total PAH ^{MU}	mg/kg	< 1.7	161			100		
oH ^{MU}	pH Units	N/a	7.9				>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1				To be evaluated	To be evaluated
Eluate Analysis			2:1	8:1	Cumulative 10:1		for compliance IN 12457-3 at L	
			mg/l	mg/l	mg/kg		(mg/kg)	
Arsenic ^u			< 0.01	< 0.01	< 0.2	0.5	2	25
Barium ^u			0.02	0.02	0.2	20	100	300
Cadmium ^U			< 0.0005	< 0.0005	< 0.02	0.04	1	5
Chromium ^u			< 0.005	< 0.005	< 0.20	0.5	10	70
Copper ^U			< 0.01	0.01	< 0.5	2	50	100
Mercury ^u			< 0.0005	< 0.0005	< 0.005	0.01	0.2	2
Molybdenum ^U			0.010	0.005	< 0.1	0.5	10	30
Nickel ^u			< 0.007	< 0.007	< 0.2	0.4	10	40
_ead ^U			< 0.005	< 0.005	< 0.2	0.5	10	50
Antimony ^u			< 0.005	< 0.005	< 0.05	0.06	0.7	5
Selenium ^U			< 0.005	< 0.005	< 0.05	0.1	0.5	7
Zinc ^u			0.029	0.005	< 0.2	4	50	200
Chloride ^u	J		3	5	46	800	15000	25000
-luoride ^u	_		1	0.5	6	10	150	500
Sulphate ^U	_		14	6	75	1000	20000	50000
TDS	J		96	79	813	4000	60000	100000
Phenol Index	_		< 0.01	< 0.01	< 0.5	1	-	-
OOC			19.8	39.8	371	500	800	1000
each Test Information								
						, '		
Sample Mass (kg)			0.19					
Ory Matter (%)			91.3					
Moisture (%)			9.6					
Stage 1								
Volume Eluate L2 (litres)			0.33					
			3					
Filtered Eluate VE1 (litres)			0.23					

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

DETS Ltd Lenham Heath Maidstone Kent ME17 2JN

Tel: 01622 850410

DETS Report No: 22-08636		Date	05/10/22			LandfIII Wast	te Acceptance C	riteria Limit
Soiltechnics Ltd		Sampled Time Sampled	None Supplied					
Site Reference: Haul Road -	Herts HQ	TP / BH No	TP050.603				Stable Non-	
Project / Job Ref: STU5824		Additional Refs	TP05			Inert Waste		Hazardous Waste
Order No: POR013806		Depth (m)	0.60			Landfill	waste in non- hazardous Landfill	Landfill
Reporting Date: 24/10/2022	2	DETS Sample No	616789				Edilami	
Determinand	Unit							
OC ^{MU}	%	< 0.1	0.7			3%	5%	6%
oss on Ignition BTEX ^{MU}	%	< 0.01	4.20					10%
Gum of PCBs	mg/kg mg/kg	< 0.05 < 0.1	< 0.05 < 0.1			6 1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10			500		
otal PAH ^{MU}	mg/kg	< 1.7	< 1.7			100		
otari Ari	pH Units	N/a	7.9				>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1				To be evaluated	To be evaluated
Eluate Analysis			2:1	8:1	Cumulative 10:1		for compliance IN 12457-3 at L	
			mg/l	mg/I	mg/kg		(mg/kg)	
Arsenic ^U			< 0.01	< 0.01	< 0.2	0.5	2	25
Barium ^u			0.08	0.05	0.5	20	100	300
Cadmium ^U	-		< 0.0005	< 0.0005	< 0.02	0.04	1	5
Chromium ^U Copper ^U	_		< 0.005 < 0.01	< 0.005 < 0.01	< 0.20 < 0.5	0.5 2	10 50	70 100
Mercury ^U	=		< 0.0005	< 0.0005	< 0.005	0.01	0.2	2
Molybdenum ^U			0.028	0.010	0.1	0.5	10	30
lickel ^u			< 0.007	< 0.007	< 0.2	0.4	10	40
.ead ^U			< 0.005	< 0.005	< 0.2	0.5	10	50
antimony ^U			< 0.005	< 0.005	< 0.05	0.06	0.7	5
Selenium ^u			< 0.005	< 0.005	< 0.05	0.1	0.5	7
'inc ^u			0.011	< 0.005	< 0.2	4	50	200
Chloride			7	3	33	800	15000	25000
luoride ^u	-		0.9	0.8	8.3	10	150	500
Sulphate ^u -DS	\dashv		238 344	52 146	697 1647	1000	20000	50000
Phenol Index	\dashv		< 0.01	< 0.01	< 0.5	4000	60000	100000
OOC			22	32.6	316	500	800	1000
each Test Information						1		
						•		
Sample Mass (kg)			0.20					
Ory Matter (%)			86.7					
Moisture (%)			15.4					
Stage 1 /olume Eluate L2 (litres)			0.32		1			
iltered Eluate L2 (litres)			0.32		——			

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 22-08636	
Soiltechnics Ltd	
Site Reference: Haul Road - Herts HQ	
Project / Job Ref: STU5824	
Order No: POR013806	
Reporting Date: 24/10/2022	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
\$ 616782	CS010.001	HR_CS_01	0.00	11.3	Brown gravelly sand with stones and vegetation
\$ 616783	CS020.001	HR_CS_02	0.00	8.7	Brown sandy clay with stones and brick
\$ 616784	TP010.055	TP01	0.05	14.1	Brown sandy clay with vegetation
\$ 616785	TP020.603	TP02	0.60		Brown sandy clay with stones
\$ 616786	TP031.004	TP03	1.00		Light brown sandy clay with stones
\$ 616787	TP040.503	TP04	0.50		Brown sandy gravel with stones and concrete
\$ 616788	TP050.051	TP05	0.05	3.8	Brown gravelly sand with stones and concrete
\$ 616789	TP050.603	TP05	0.60	13.3	Brown sandy clay with stones and concrete
\$ 616790	TP060.302	TP06	0.30	9.3	Brown sandy clay with stones
\$ 616791	TP0602.005	TP06	2.00	15.5	Brown sandy clay with stones and brick

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm I/S}$

\$ samples exceeded recommended holding times

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-08636

Soiltechnics Ltd

Site Reference: Haul Road - Herts HQ

Project / Job Ref: STU5824 Order No: POR013806 Reporting Date: 24/10/2022

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E009
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex		E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil Soil	D AR		Gravimetrically determined through extraction with cyclohexane Determination of hexane/acetone extractable hydrocarbons by GC-FID	E011 E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil Soil	D AR		Determination of TOC by combustion analyser. Determination of ammonium by discrete analyser.	E027 E029
			Determination of arithorium by discrete analyser. Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	
Soil	D	FOC (Fraction Organic Carbon)	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a mulie furnace Determination of water soluble magnesium by extraction with water followed by ICP-OES	E019
Soil Soil	D D	Magnesium - Water Soluble Metals	Determination of water soluble magnesium by extraction with water followed by ICP-OES Determination of metals by aqua-regia digestion followed by ICP-OES	E025 E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	E004
			cartridge	
Soil Soil	AR D	Moisture Content Nitrate - Water Soluble (2:1)	Moisture content; determined gravimetrically Determination of nitrate by extraction with water & analysed by ion chromatography	E003 E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenois - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009 E013
Soil Soil	D		Determination of total sulphate by extraction with 10% HCI followed by ICP-OES Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of sulphate by extraction with water & analysed by foil chloridography Determination of water soluble sulphate by extraction with water followed by ICP-OES	E009
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D		Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

Water Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-08636

Soiltechnics Ltd

Site Reference: Haul Road - Herts HQ

Project / Job Ref: STU5824 Order No: POR013806 Reporting Date: 24/10/2022

Motrice	Apolyecal	Determinand	Priof Mothed Description	Mothod
Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end	F103
		, , , , , , , , , , , , , , , , , , ,	point	
Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water	UF		Determination of BTEX by headspace GC-MS	E101
Water	F		Determination of cations by filtration followed by ICP-MS	E102
Water	UF		Determination using a COD reactor followed by colorimetry	E112
Water	F F		Determination of chloride by filtration & analysed by ion chromatography	E109
Water	UF		Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116 E115
Water	UF		Determination of complex cyanide by distillation followed by colorimetry	
Water Water	UF		Determination of free cyanide by distillation followed by colorimetry Determination of total cyanide by distillation followed by colorimetry	E115 E115
Water	UF		Gravimetrically determined through liquid:liquid extraction with cyclohexane	E115
Water	F F		Determination of liquid: liquid extraction with hexane followed by GC-FID	E111
Water	F		Determination of Inquid. Inquid extraction with nexalle followed by GC-FID Determination of DOC by filtration followed by low heat with persulphate addition followed by IR determination of DOC by filtration followed by IR determination of DOC by IR deter	E104 E110
Water	UF		Determination of bloc by Intration followed by low heat with persulphate addition followed by IR determination of electrical conductivity by electrometric measurement	E110
Water	F F		Determination of electrical conductivity by electrometric measurement Determination of liquid: liquid extraction with hexane followed by GC-FID	E123
water			Determination of liquid: liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	
Water	F	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E104
Water	F	Fluoride	Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F	Hardness		E102
Leachate	F		Based on National Rivers Authority leaching test 1994	E301
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302
Water	F		Determination of metals by filtration followed by ICP-MS	E102
Water	F		Determination of liquid: liquid extraction with hexane followed by GI-FID	E104
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in	E105
Water	F	PCB - 7 Congeners	dichloromethane followed by GC-MS Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethan	E108
Water	UF		Gravimetrically determined through liquid: liquid extraction with petroleum ether	E111
Water	UF		Determination of pH by electrometric measurement	E107
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E107
Water	UF		Determination of phosphate by intration & analysed by for chromatography Determination of redox potential by electrometric measurement	E113
Water	F		Determination of redox potential by electrometric measurement Determination of sulphate by filtration & analysed by ion chromatography	F109
Water	UF		Determination of sulphide by distillation followed by colorimetry	E118
	F	·	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection	
Water	F	SVOC	in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TEM)		E111
Water	UF		Low heat with persulphate addition followed by IR detection	E110
Water	F		Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF	VOCs	Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Κeν

F Filtered UF Unfiltered

List of HWOL Acronyms and Operators
DETS Report No: 22-08636
Soiltechnics Ltd
Site Reference: Haul Road - Herts HQ
Project / Job Ref: STU5824
Order No: POR013806
Reporting Date: 24/10/2022

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym
Benzene - HS_1D_MS
Ethylbenzene - HS_1D_MS
MTBE - HS_1D_MS
Mineral Oil (C10 - C40) (BS EN 12457-3) - EH_CU_1D_AL
TPH CWG - Aliphatic >C10 - C12 - EH_CU_1D_AL
TPH CWG - Aliphatic >C12 - C16 - EH_CU_1D_AL
TPH CWG - Aliphatic >C16 - C21 - EH_CU_1D_AL
TPH CWG - Aliphatic >C21 - C34 - EH_CU_1D_AL
TPH CWG - Aliphatic >C5 - C6 - HS_1D_MS_AL
TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH CWG - Aliphatic >C8 - C10 - EH_CU_1D_AL
TPH CWG - Aliphatic C5 - C34 - HS_1D_MS+EH_CU_1D_AL
TPH CWG - Aromatic >C10 - C12 - EH_CU_1D_AR
TPH CWG - Aromatic >C12 - C16 - EH_CU_1D_AR
TPH CWG - Aromatic >C16 - C21 - EH_CU_1D_AR
TPH CWG - Aromatic >C21 - C35 - EH_CU_1D_AR
TPH CWG - Aromatic >C5 - C35 - HS_1D_MS+EH_CU_1D_AR
TPH CWG - Aromatic >C5 - C7 - HS_1D_MS_AR
TPH CWG - Aromatic >C7 - C8 - HS_1D_MS_AR
TPH CWG - Aromatic >C8 - C10 - EH_CU_1D_AR
TPH CWG - Total >C5 - C35 - HS 1D MS+EH CU 1D Total
Toluene - HS_1D_MS
Total BTEX (BS EN 12457-3) - HS_1D_MS_Total
m & p-xylene - HS_1D_MS
o-Xylene - HS_1D_MS

Loss on Ignition Soil BS EN 12457 20.4 % BTEX Soil BS EN 12457 14.0 % Sum of PCBs Soil BS EN 12457 21.1 % Mineral Oil Soil BS EN 12457 9.0 % Total PAH Soil BS EN 12457 9.0 % John Hammer Soil BS EN 12457 0.248 Unit Acid Neutralisation Capacity Soil BS EN 12457 18.0 % Arsenic Leachate BS EN 12457 18.0 % Arsenic Leachate BS EN 12457 11.4 % Cadmium Leachate BS EN 12457 11.4 % Cadmium Leachate BS EN 12457 13.4 % Copper Leachate BS EN 12457 13.4 % Mercury Leachate BS EN 12457 13.6 % Molybdenum Leachate BS EN 12457 16.0 % Nickel Leachate	Parameter	Matrix Type	Suite Reference	Expanded Uncertainity Measurement	Unit
BTEX Soli BS EN 12457 14.0 9%	TOC	Soil	BS EN 12457	12.1	%
Sum of PCBs Soil BS EN 12457 21.1 96 Mineral Oll Soil BS EN 12457 9.0 96 Total PAH Soil BS EN 12457 13.9 96 pH Soil BS EN 12457 0.248 Unil Acid Neutralisation Capacity Soil BS EN 12457 18.0 96 Arsenic Leachate BS EN 12457 15.9 96 Barium Leachate BS EN 12457 14.4 96 Cadmium Leachate BS EN 12457 12.6 96 Chromium Leachate BS EN 12457 13.4 96 Copper Leachate BS EN 12457 13.1 96 Mercury Leachate BS EN 12457 16.2 96 Molybdenum Leachate BS EN 12457 16.0 96 Mickel Leachate BS EN 12457 16.0 96 Lead Leachate BS EN 12457 16.0 96 Selenium Leachate	Loss on Ignition	Soil	BS EN 12457	20.4	%
Mineral Oil Soil BS EN 12457 9.0 96 Total PAH Soil BS EN 12457 13.9 92 pH Soil BS EN 12457 0.248 Unil Acid Neutralisation Capacity Soil BS EN 12457 18.0 96 Arsenic Leachate BS EN 12457 118.0 96 Barium Leachate BS EN 12457 114.4 96 Cadmium Leachate BS EN 12457 114.4 96 Cadmium Leachate BS EN 12457 114.4 96 Chromium Leachate BS EN 12457 113.4 96 Copper Leachate BS EN 12457 113.4 96 Morybdenum Leachate BS EN 12457 116.2 96 Motybdenum Leachate BS EN 12457 116.0 96 Nickel Leachate BS EN 12457 116.0 96 Antimony Leachate BS EN 12457 114.6 96 Selenium	BTEX	Soil	BS EN 12457	14.0	%
Total PAH Soil BS EN 12457 13.9 % pH Soil BS EN 12457 0.248 Uni Acid Neutralisation Capacity Soil BS EN 12457 18.0 % Arsenic Leachate BS EN 12457 15.9 % Barium Leachate BS EN 12457 14.4 % Cadmium Leachate BS EN 12457 12.6 % Chromium Leachate BS EN 12457 13.4 % Copper Leachate BS EN 12457 13.4 % Morcury Leachate BS EN 12457 13.1 % Molybdenum Leachate BS EN 12457 16.2 % Nickel Leachate BS EN 12457 16.0 % Lead Leachate BS EN 12457 16.0 % Selenium Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 14.6 % Chloride Leachate BS	Sum of PCBs	Soil	BS EN 12457	21.1	%
pH Soil BS EN 12457 0.248 Unit Acid Neutralisation Capacity Soil BS EN 12457 18.0 % Arsenic Leachate BS EN 12457 15.9 % Barium Leachate BS EN 12457 14.4 % Cadmium Leachate BS EN 12457 12.6 % Chromium Leachate BS EN 12457 13.4 % Copper Leachate BS EN 12457 13.1 % Morcury Leachate BS EN 12457 16.2 % Molydenum Leachate BS EN 12457 16.0 % Nickel Leachate BS EN 12457 16.0 % Lead Leachate BS EN 12457 16.0 % Antimony Leachate BS EN 12457 16.0 % Selenium Leachate BS EN 12457 16.5 % Coloride Leachate BS EN 12457 16.5 % Suichate Leachate <td< td=""><td>Mineral Oil</td><td>Soil</td><td>BS EN 12457</td><td>9.0</td><td>%</td></td<>	Mineral Oil	Soil	BS EN 12457	9.0	%
Acid Neutralisation Capacity Soil BS EN 12457 18.0 % Arsenic Leachate BS EN 12457 15.9 % Barium Leachate BS EN 12457 14.4 % Cadmium Leachate BS EN 12457 12.6 % Chromium Leachate BS EN 12457 13.4 % Copper Leachate BS EN 12457 13.1 % Mercury Leachate BS EN 12457 16.2 % Molybdenum Leachate BS EN 12457 16.0 % Nickel Leachate BS EN 12457 16.0 % Lead Leachate BS EN 12457 16.0 % Antimony Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 14.5 % Selenium Leachate BS EN 12457 16.5 % Zinc Leachate BS EN 12457 16.5 % Selenium Leachate	Total PAH	Soil	BS EN 12457	13.9	%
Arsenic Leachate BS EN 12457 15.9 % Barium Leachate BS EN 12457 14.4 % Cadmium Leachate BS EN 12457 12.6 % Chromium Leachate BS EN 12457 13.4 % Copper Leachate BS EN 12457 13.1 % Morcury Leachate BS EN 12457 16.2 % Molybdenum Leachate BS EN 12457 13.6 % Nickel Leachate BS EN 12457 16.0 % Lead Leachate BS EN 12457 16.0 % Antimony Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 14.5 % Zinc Leachate BS EN 12457 14.5 % Zinc Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457	рН	Soil	BS EN 12457	0.248	Units
Barium Leachate BS EN 12457 14.4 % Cadmium Leachate BS EN 12457 12.6 % Chromium Leachate BS EN 12457 13.4 % Copper Leachate BS EN 12457 13.1 % Mercury Leachate BS EN 12457 16.2 % Molybdenum Leachate BS EN 12457 13.6 % Nickel Leachate BS EN 12457 16.0 % Lead Leachate BS EN 12457 16.0 % Antimony Leachate BS EN 12457 16.0 % Selenium Leachate BS EN 12457 16.5 % Selenium Leachate BS EN 12457 16.5 % Chloride Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 17.0 % Sulphate Leachate BS EN 12457 10.0 % Phenoride Leachate BS EN	Acid Neutralisation Capacity	Soil	BS EN 12457	18.0	%
Cadmium Leachate BS EN 12457 12.6 % Chromium Leachate BS EN 12457 13.4 % Copper Leachate BS EN 12457 13.1 % Mercury Leachate BS EN 12457 16.2 % Molybdenum Leachate BS EN 12457 13.6 % Nickel Leachate BS EN 12457 16.0 % Lead Leachate BS EN 12457 16.0 % Antimony Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 14.5 % Chloride Leachate BS EN 12457 14.5 % Ciloride Leachate BS EN 12457 17.0 % Sulphate Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 10.0 % Phenol Index Leachate B	Arsenic	Leachate	BS EN 12457	15.9	%
Chromium Leachate BS EN 12457 13.4 % Copper Leachate BS EN 12457 13.1 % Mercury Leachate BS EN 12457 16.2 % Molybdenum Leachate BS EN 12457 13.6 % Nickel Leachate BS EN 12457 16.0 % Lead Leachate BS EN 12457 14.6 % Antimony Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 14.5 % Zinc Leachate BS EN 12457 14.5 % Zinc Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 17.0 % Sulphate Leachate BS EN 12457 12.0 % TDS Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % Ciay Content Soil BS 3882: 2015	Barium	Leachate	BS EN 12457	14.4	%
Copper Leachate BS EN 12457 13.1 % Mercury Leachate BS EN 12457 16.2 % Molybdenum Leachate BS EN 12457 13.6 % Nickel Leachate BS EN 12457 14.0 % Lead Leachate BS EN 12457 12.4 % Antimony Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 14.5 % Zinc Leachate BS EN 12457 14.5 % Chloride Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 17.0 % Sulphate Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % DOC Leachate BS EN 12457 10.0 % Silt Content Soil BS 3882:	Cadmium	Leachate	BS EN 12457	12.6	%
Mercury Leachate BS EN 12457 16.2 % Molybdenum Leachate BS EN 12457 13.6 % Nickel Leachate BS EN 12457 16.0 % Lead Leachate BS EN 12457 12.4 % Antimony Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 14.5 % Zinc Leachate BS EN 12457 14.5 % Chloride Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 12.0 % Fluoride Leachate BS EN 12457 10.0 % DOC Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % Silt Content Soil BS 3882	Chromium	Leachate	BS EN 12457	13.4	%
Molybdenum Leachate BS EN 12457 13.6 % Nickel Leachate BS EN 12457 16.0 % Lead Leachate BS EN 12457 12.4 % Antimony Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 14.5 % Selenium Leachate BS EN 12457 14.5 % Chloride Leachate BS EN 12457 17.0 % Chloride Leachate BS EN 12457 17.0 % Sulphate Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil	Copper	Leachate	BS EN 12457	13.1	%
Nickel Leachate BS EN 12457 16.0 % Lead Leachate BS EN 12457 12.4 % Antimony Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 16.5 % Zinc Leachate BS EN 12457 14.5 % Chloride Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 10.0 % TDS Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % DOC Leachate BS EN 12457 10.0 % Silt Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882:	Mercury	Leachate	BS EN 12457	16.2	%
Lead Leachate BS EN 12457 12.4 % Antimony Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 16.5 % Zinc Leachate BS EN 12457 14.5 % Chloride Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 12.4 % DH Soil BS 3882: 2015 12.4 % PH Soil BS 3882:	Molybdenum	Leachate	BS EN 12457	13.6	%
Antimony Leachate BS EN 12457 14.6 % Selenium Leachate BS EN 12457 16.5 % Zinc Leachate BS EN 12457 14.5 % Chloride Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 25.1 % TDS Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % Phonol Index Leachate BS EN 12457 10.0 % Soll BS 3882: 2015 12.9 % Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 12.4 % DH Soil BS 3882: 2015	Nickel	Leachate	BS EN 12457	16.0	%
Selenium Leachate BS EN 12457 16.5 % Zinc Leachate BS EN 12457 14.5 % Chloride Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 25.1 % TDS Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 12.4 % Loss on Ignition Soil BS 3882: 2015 0.248 Uni Carbonate	Lead	Leachate	BS EN 12457	12.4	%
Zinc Leachate BS EN 12457 14.5 % Chloride Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 25.1 % Sulphate Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 10.0 % DOC Leachate BS EN 12457 10.0 % Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 12.4 % Loss on Ignition Soil BS 3882: 2015 0.248 Uni Carbonate Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 12.0 % Phosphorus (Extractabl	Antimony	Leachate	BS EN 12457	14.6	%
Chloride Leachate BS EN 12457 17.0 % Fluoride Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 25.1 % TDS Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 12.9 % DOC Leachate BS EN 12457 10.0 % Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 13.0 % Loss on Ignition Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 12.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Potassium (Extractable)	Selenium	Leachate	BS EN 12457	16.5	%
Fluoride Leachate BS EN 12457 12.0 % Sulphate Leachate BS EN 12457 25.1 % TDS Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 12.9 % DOC Leachate BS EN 12457 10.0 % Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 13.0 % Loss on Ignition Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 0.248 Uni Carbonate Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 12.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 14.9 % Copper <td>Zinc</td> <td>Leachate</td> <td>BS EN 12457</td> <td>14.5</td> <td>%</td>	Zinc	Leachate	BS EN 12457	14.5	%
Sulphate Leachate BS EN 12457 25.1 % TDS Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 12.9 % DOC Leachate BS EN 12457 10.0 % Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 13.0 % Loss on Ignition Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 0.248 Unit Carbonate Soil BS 3882: 2015 12.0 % Total Nitrogen Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 14.9 % Zinc	Chloride	Leachate	BS EN 12457	17.0	%
TDS Leachate BS EN 12457 10.0 % Phenol Index Leachate BS EN 12457 12.9 % DOC Leachate BS EN 12457 10.0 % Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 13.0 % Loss on Ignition Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 0.248 Unit Carbonate Soil BS 3882: 2015 12.0 % Total Nitrogen Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 14.9 % Zinc Soil BS 3882: 2015 16.0 % Available	Fluoride	Leachate	BS EN 12457	12.0	%
Phenol Index Leachate BS EN 12457 12.9 % DOC Leachate BS EN 12457 10.0 % Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 13.0 % Loss on Ignition Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 12.0 % Total Nitrogen Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 14.9 % Zinc Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium <td>Sulphate</td> <td>Leachate</td> <td>BS EN 12457</td> <td>25.1</td> <td>%</td>	Sulphate	Leachate	BS EN 12457	25.1	%
DOC Leachate BS EN 12457 10.0 % Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 13.0 % Loss on Ignition Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 0.248 Unit Carbonate Soil BS 3882: 2015 12.0 % Total Nitrogen Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 26.0 % Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium<	TDS	Leachate	BS EN 12457	10.0	%
Clay Content Soil BS 3882: 2015 15.0 % Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 13.0 % Loss on Ignition Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 0.248 Uni Carbonate Soil BS 3882: 2015 12.0 % Total Nitrogen Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 14.9 % Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Phenol Index	Leachate	BS EN 12457	12.9	%
Silt Content Soil BS 3882: 2015 14.0 % Sand Content Soil BS 3882: 2015 13.0 % Loss on Ignition Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 0.248 Unit Carbonate Soil BS 3882: 2015 12.0 % Total Nitrogen Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 14.9 % Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	DOC	Leachate	BS EN 12457	10.0	%
Sand Content Soil BS 3882: 2015 13.0 % Loss on Ignition Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 0.248 Uni Carbonate Soil BS 3882: 2015 12.0 % Total Nitrogen Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 26.0 % Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Clay Content	Soil	BS 3882: 2015	15.0	%
Loss on Ignition Soil BS 3882: 2015 12.4 % pH Soil BS 3882: 2015 0.248 Uni Carbonate Soil BS 3882: 2015 12.0 % Total Nitrogen Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 26.0 % Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Silt Content	Soil	BS 3882: 2015	14.0	%
pH Soil BS 3882: 2015 0.248 Unit Carbonate Soil BS 3882: 2015 12.0 % Total Nitrogen Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 26.0 % Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Sand Content	Soil	BS 3882: 2015	13.0	%
Carbonate Soil BS 3882: 2015 12.0 % Total Nitrogen Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 26.0 % Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Loss on Ignition	Soil	BS 3882: 2015	12.4	%
Total Nitrogen Soil BS 3882: 2015 12.0 % Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 26.0 % Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	рН	Soil	BS 3882: 2015	0.248	Units
Phosphorus (Extractable) Soil BS 3882: 2015 24.0 % Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 26.0 % Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Carbonate	Soil	BS 3882: 2015	12.0	%
Potassium (Extractable) Soil BS 3882: 2015 20.0 % Magnesium (Extractable) Soil BS 3882: 2015 26.0 % Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Total Nitrogen	Soil	BS 3882: 2015	12.0	%
Magnesium (Extractable) Soil BS 3882: 2015 26.0 % Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Phosphorus (Extractable)	Soil	BS 3882: 2015	24.0	%
Zinc Soil BS 3882: 2015 14.9 % Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Potassium (Extractable)	Soil	BS 3882: 2015	20.0	%
Copper Soil BS 3882: 2015 16.0 % Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Magnesium (Extractable)	Soil	BS 3882: 2015	26.0	%
Nickel Soil BS 3882: 2015 17.7 % Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Zinc	Soil	BS 3882: 2015	14.9	%
Available Sodium Soil BS 3882: 2015 23.0 % Available Calcium Soil BS 3882: 2015 23.0 %	Copper	Soil	BS 3882: 2015	16.0	%
Available Calcium Soil BS 3882: 2015 23.0 %		Soil		17.7	%
Available Calcium Soil BS 3882: 2015 23.0 %	Available Sodium	Soil	BS 3882: 2015	23.0	%
Electrical Conductivity Soil BS 3882: 2015 10.0 %	Available Calcium	Soil		23.0	%
	Electrical Conductivity	Soil	BS 3882: 2015	10.0	%

Proposed Haul Road Hertfordshire Constabulary HQ Ground Investigation Report

Appendix H Contamination Assessment Screening

STU5824-R01 Rev A November 2022

GQRA Screening

Assessments	Status	Date	Created by	Reviewed By
Acute human health risk - Soils	Completed	16.11.22	KB	SD
Chronic human health risk - Soils	Completed	16.11.22	KB	SD
Chronic human health risk - Groundwater vapour	Not undertaken			
Controlled waters risk - Surface water	Not undertaken			
Controlled waters risk - Drinking water	Not undertaken			
Controlled waters - Free phase indicator	Not undertaken			
Phytotoxicity	Not undertaken			
Ecotoxicity	Not undertaken			

Key

Assessment	Abbr.	GQRA Source (in order of preference)	Last Update
All	NGA	No guideline value available	-
Acute human health risk - Soils	AGAC	Acute Generic Assessment Criteria (SoBRA)	April 2019
Acute numan nealth risk - Solls	**sat.**	Contaminant poses a low acute risk unless the soil saturation limit is exceeded and a free oil phase is present.	April 2019
	C4SL	Category 4 Screening Levels (DEFRA)	May 2021
Chronic human health risk - Soils	S4UL	Suitable 4 Use Levels (LQM)	August 2015
Cirronic numan neatti risk - sons	ATK	Atrisk Soil Screening Values (Atkins)	June 2017
	CL:AIRE	Generic Assessment Criteria (CL:AIRE)	Jan 2010

Created: 17/11/2022

Chronic human health risk (soils)

Scenario	
End user	Proposed site user
Receptor	Industrial/Commercial
SOM	1.00%
GAC Preference	C4SLs over S4ULs

		Guideline	Max	Location HR_CS_0	1 HR_CS_02	TP01	TP02	TP03	TP04	TP05	TP05	TP06	
Contaminant	Guideline source	value	value	Depth (m) 0.00	0.00	0.05	0.60	1.00	0.50	0.05	0.60	0.30	
	source	(mg/kg)	(mg/kg)	Date 05/10/2	2 06/10/22	06/10/22	06/10/22	06/10/22	06/10/22	05/10/22	05/10/22	06/10/22	
Inorganics - Metals													
Arsenic	C4SL	640	53	53	18	12	19	23	16	4	28	11	
Beryllium	S4UL	12	1.9	1.9	1.4	0.8	0.9	< 0.5	0.7	< 0.5	0.9	0.8	
Boron	S4UL	240000	1.9	1.1	< 1	1.1	< 1	< 1	< 1	< 1	1.9	< 1	
Cadmium	C4SL	410	3.2	3.2	0.3	0.2	0.2	0.2	1	< 0.2	0.2	< 0.2	
Chromium (III)	S4UL	8600	28	24	20	17	23	11	22	5	28	19	
Chromium (VI)	C4SL	49	<lod< td=""><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td></td></lod<>	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	
Copper	S4UL	68000	221	221	42	27	25	26	73	9	26	24	
Cyanide - Free	ATK	34	<lod< td=""><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td></td></lod<>	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	
Lead	C4SL	2300	2670	2670	103	50	43	448	233	19	42	71	
Mercury	S4UL	1100	3.6	3.6	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	
Nickel	S4UL	980	31	31	15	16	20	19	16	5	19	15	
Selenium	S4UL	12000	<lod< td=""><td><3</td><td>< 3</td><td>< 3</td><td>< 3</td><td>< 3</td><td>< 3</td><td>< 3</td><td>< 3</td><td>< 3</td><td></td></lod<>	<3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	
Vanadium	S4UL	9000	49	49	39	29	45	26	32	12	46	31	
Zinc	S4UL	730000	3440	3440	159	102	121	298	908	37	101	63	
Inorganics - Asbestos													
Asbestos Screen		N/A		Not Detec	ed Not Detected	t							
Organics - PAH & Phenol													
Acenaphthene	S4UL	84000	1.6	< 0.1	1.6	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Acenaphthylene	S4UL	83000	0.15	< 0.1	0.15	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Anthracene	S4UL	520000	6.25	0.15	6.25	< 0.1	< 0.1	< 0.1	0.34	< 0.1	< 0.1	< 0.1	
Benzo(a)anthracene	S4UL	170	12.3	0.74	12.3	0.93	0.27	< 0.1	1.5	0.79	0.18	< 0.1	
Benzo(a)pyrene	C4SL	77	11.4	0.59	11.4	0.98	0.26	< 0.1	1.39	0.86	0.18	< 0.1	
Benzo(b)fluoranthene	S4UL	44	12.5	0.67	12.5	1.02	0.27	< 0.1	1.43	0.87	0.2	< 0.1	
Benzo(ghi)perylene	S4UL	3900	5.96	0.29	5.96	0.61	0.17	< 0.1	0.73	0.6	< 0.1	< 0.1	
Benzo(k)fluoranthene	S4UL	1200	4.41	0.19	4.41	0.36	< 0.1	< 0.1	0.54	0.32	< 0.1	< 0.1	
Chrysene	S4UL	350	9.93	0.6	9.93	0.73	0.2	< 0.1	1.47	0.66	0.14	< 0.1	
Dibenz(a,h)anthracene	S4UL	3.5	1.75	< 0.1	1.75	0.15	< 0.1	< 0.1	0.21	0.17	< 0.1	< 0.1	
luoranthene	S4UL	23000	33.2	1.11	33.2	1.26	0.34	< 0.1	3.58	0.94	0.24	0.15	
luorene	S4UL	63000	1.2	< 0.1	1.2	< 0.1	< 0.1	< 0.1	0.13	< 0.1	< 0.1	< 0.1	
ndeno(1,2,3-cd)pyrene	S4UL	500	6.63	0.34	6.63	0.67	0.18	< 0.1	0.88	0.64	< 0.1	< 0.1	
Naphthalene	S4UL	190	0.16	0.16	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Phenanthrene	S4UL	22000	24.3	0.8	24.3	0.34	0.11	< 0.1	2.73	0.16	0.14	< 0.1	
Phenol	S4UL	440	<lod< td=""><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td></td></lod<>	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Pyrene	S4UL	54000	27.7	0.95	27.7	1.14	0.32	< 0.1	3.02	0.98	0.21	0.13	
Organics - TPH CWG and BTEX													
Benzene	C4SL	98	<lod< td=""><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td></td></lod<>	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	
Toluene	S4UL	56000	0.013	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Ethylbenzene	S4UL	5700	<lod< td=""><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td></td></lod<>	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	
o-Xylene	S4UL	6600	<lod< td=""><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td></td></lod<>	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	
m & p-xylene	S4UL	5900	<lod< td=""><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td></td></lod<>	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	
(ylenes (sum of)	S4UL	5900	<lod< td=""><td>< LoD</td><td>< LoD</td><td>< LoD</td><td>< LoD</td><td>< LoD</td><td>< LoD</td><td>< LoD</td><td>< LoD</td><td>< LoD</td><td></td></lod<>	< LoD	< LoD	< LoD	< LoD	< LoD	< LoD	< LoD	< LoD	< LoD	
EC05 - EC06 Aliphatic	S4UL	3200	<lod< td=""><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td></td></lod<>	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
EC>06 - EC08 Aliphatic	S4UL	7800	<lod< td=""><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td>< 0.05</td><td></td></lod<>	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
C>08 - EC10 Aliphatic	S4UL	2000	<lod< td=""><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td></td></lod<>	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	
EC>10 - EC12 Aliphatic	S4UL	9700	<lod< td=""><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td></td></lod<>	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	
C>12 - EC16 Aliphatic	SAUL	59000	<lod <lod< td=""><td><3</td><td>< 3</td><td>< 3</td><td><3</td><td>< 3</td><td><3</td><td><3</td><td><3</td><td><3</td><td></td></lod<></lod 	<3	< 3	< 3	<3	< 3	<3	<3	<3	<3	
C>16 - EC21 Aliphatic	S4UL	1600000	<lod< td=""><td>< 3</td><td>< 3</td><td>< 3</td><td><3</td><td><3</td><td><3</td><td><3</td><td>< 3</td><td>< 3</td><td></td></lod<>	< 3	< 3	< 3	<3	<3	<3	<3	< 3	< 3	
C>21 - EC35 Aliphatic	SAUL	1600000	<lod< td=""><td><10</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td><td>< 10</td><td></td></lod<>	<10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	
C5 - EC7 (benzene)	S4UL	26000	<lod <lod< td=""><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td></td></lod<></lod 	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
C7 - >EC8 (toluene)	S4UL S4UL	56000	<lod <lod< td=""><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td>< 0.01</td><td></td></lod<></lod 	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
C>08 - EC10 Aromatic	S4UL	3500	<lod <lod< td=""><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td></td></lod<></lod 	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	
C>10 - EC12 Aromatic	S4UL	16000	<lod <lod< td=""><td>- 2</td><td>- 2</td><td>- 22</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>- 2</td><td>< 2</td><td></td></lod<></lod 	- 2	- 2	- 22	< 2	< 2	< 2	< 2	- 2	< 2	
EC>10 - EC12 Aromatic EC>12 - EC16 Aromatic	S4UL S4UL	36000	14	<2	14	< 2	< 2	< 2	< 2	< 2	< 2	< 2	
	S4UL S4UL	28000					< 3	< 3		< 3	< 3	< 3	-
EC>16 - EC21 Aromatic		28000	125	3	125	3			12			< 3	

Chronic human health risk (soils)

Scenario	
End user	Proposed site user
Receptor	Industrial/Commercial
SOM	1.00%
GAC Preference	C4SLs over S4ULs

Guideline Max Location HR_CS_01 HR_CS_02 TP01 TP02 TP03		TP04	TP04 TP05
Contaminant Source value value Depth (m) 0.00 0.00 0.05 0.60 1.00		0.50	
Organics - Volatile Organic Compounds (VOCs)			
1,1,2-Tetrachloroethane S4UL 110 < LoD			
1,1,1-Trichloroethane S4UL 660 < LoD			
1,1,2,2-Tetrachloroethane S4UL 270 < LoD			
1,1,2-Trichloroethane CL:AIRE 94 < LDD			
1,1-Dichloroethane CL:AIRE 280 < LoD			
1,1-Dichloroethene CL:AIRE 26 < LoD			
1,1-Dichloropropene			
,2,3-Trichloropropane NGA NGA < LoD			
,2,4-Trimethylbenzene CL:AIRE 42 < LoD			
2-Dibromo-3-chloropropane NGA NGA < LoD			
,2-Dibromoethane NGA NGA < LoD			
2-Dichloroethane S4UL 0.67 < LoD			
2-Dichloropropane CL:AIRE 3.3 < LoD			
,3,5-Trimethylbenzene NGA NGA < LoD			
3-Dichloropropane NGA NGA < LoD			
2-Dichloropropane			
-Chlorotoluene NGA NGA < LDD			
-Chlorotoluene NGA NGA < LoD			
romobenzene CL:AIRE 97 < LOD			
romochloromethane NGA NGA < LoD			
romodichloromethane CL:AIRE 2.1 < LoD			
romoform CL:AIRE 760 < LoD			
romomethane NGA NGA <lod< td=""><td></td><td></td><td></td></lod<>			
arbon Tetrachloride S4UL 2.9 < LoD			
hlorobenzene S4UL 56 < LoD			
hloroethane CL:AIRE 960 < LOD			
chloroform S4UL 99 < LoD			
chloromethane CL:AIRE 1 < LOD			
is-1,2-Dichloroethene CL:AIRE 14 < LOD			
is-1,3-Dichloropropene NGA NGA < LoD			
bromochloromethane ATK 9.27 < LoD			
bromomethane NGA NGA < LOD			
chlorodifluoromethane NGA NGA < LOD			
opropylbenzene CL:AIRE 1400 < LoD			
TIBE CL:AIRE 7900 < LOD < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	< 0.005		< 0.005
-Butylbenzene NGA NGA < LoD			
P-Propylbenzene CL:AIRE 4100 < LoD			
-Isopropyltoliene NGA NGA < LOD			
proportionate NGA NGA < LOD			
Styrene CL:AIRE 3300 < LoD			
syrene C.Iinie 3000 CDD [AME NGA NGA CDD]		_	
terributylbenzene NGA NGA < LOD			
Tetrachloroethene C4SL 24 < LOD			
trans-1,2-Dichloroethene CL-AIRE 22 < LoD			
trans-1,3-Dichloropropene NGA NGA < LoD			
Trans-1,3-Unithoropropene			
Trichlorofluoromethane NGA NGA < LOD			
Vinyl Chloride C4SL 1.1 < LoD			

Chronic human health risk (soils)

Scenario	
End user	Proposed site user
Receptor	Industrial/Commercial
SOM	1.00%
CAC Broforonco	CASIs over SALUs

		Guideline	Max	Location	HR_CS_01	HR_CS_02	TP01	TP02	TP03	TP04	TP05	TP05	TP06	TP06
Contaminant	Guideline	value	value	Depth (m)	0.00	0.00	0.05	0.60	1.00	0.50	0.05	0.60	0.30	2.00
Organics - Semi-Volatile Organic Co														
Chlorophenols (sum of)	S4UL	3500	< LoD									< LoD		< LoE
Cresols (sum of)	CL:AIRE	16000	< LoD											
o-Cresol	NGA	NGA	< LoD											
1,2,4-Trichlorobenzene	S4UL	220	< LoD											
1,2-Dichlorobenzene	S4UL	2000	< LoD											
1,3-Dichlorobenzene	S4UL	30	< LoD									< 0.1		< 0.00
1,4-Dichlorobenzene	S4UL	4400	< LoD											
2,4,5-Trichlorophenol	NGA	NGA	< LoD											
2,4,6-Trichlorophenol	NGA	NGA	< LoD									< 0.1		< 0.1
2,4-Dichlorophenol	NGA	NGA	< LoD									< 0.1		< 0.1
2,4-Dimethylphenol	CL:AIRE	16000	< LoD									< 0.15		< 0.15
2,4-Dinitrotoluene	CL:AIRE	3700	< LoD									< 0.1		< 0.1
2,6-Dinitrotoluene	CL:AIRE	1900	< LoD									< 0.1		< 0.1
2-Chloronaphthalene	CL:AIRE	390	< LoD									< 0.1		< 0.1
2-Chlorophenol	NGA	NGA	< LoD									< 0.1		< 0.1
2-Methylnaphthalene	NGA	NGA	< LoD									< 0.1		< 0.1
2-Nitroaniline	NGA	NGA	< LoD									< 0.1		< 0.1
2-Nitrophenol	NGA	NGA	< LoD									< 0.1		< 0.1
3-Nitroaniline	NGA	NGA	< LoD									< 0.1		< 0.1
4-Bromophenyl phenyl ether	NGA	NGA	< LoD									< 0.1		< 0.1
4-Chloro-3-methylphenol	NGA	NGA	< LoD									< 0.1		< 0.1
4-Chloroaniline	NGA	NGA	< LoD									< 0.15		< 0.1
4-Chlorophenyl phenyl ether	NGA	NGA	< LoD									< 0.1		< 0.1
4-Nitroaniline	NGA	NGA	< LoD									< 0.1		< 0.1
4-Nitrophenol	NGA	NGA	< LoD									< 0.1		< 0.1
Azobenzene	NGA	NGA	< LoD									< 0.1		< 0.1
Benzyl butyl phthalate	CL:AIRE	940000	< LoD									< 0.1		< 0.1
bis(2-chloroethoxy)methane	NGA	NGA	< LoD									< 0.1		< 0.1
bis(2-chloroethyl)ether	NGA	NGA	< LoD									< 0.1		< 0.1
bis(2-ethylhexyl)phthalate	CL:AIRE	85000	< LoD									< 0.15		< 0.15
Carbazole	NGA	NGA	< LoD									< 0.1		< 0.1
Dibenzofuran	NGA	NGA	< LoD									< 0.1		< 0.1
Dibutyl phthalate	CL:AIRE	15000	< LoD									< 0.1		< 0.1
Diethyl phthalate	CL:AIRE	150000	< LoD									< 0.1		< 0.1
Dimethyl phthalate	NGA	NGA	< LoD									< 0.1		< 0.1
Di-n-octyl phthalate	CL:AIRE	89000	< LoD									< 0.1		< 0.1
Hexachlorobenzene	S4UL	110	< LoD									< 0.1		< 0.1
Hexachlorobutadiene	S4UL	31	< LoD									< 0.005		< 0.1
Hexachlorocyclopentadiene	NGA	NGA	< LoD									< 0.1		< 0.1
Hexachloroethane	CL:AIRE	22	< LoD									< 0.1		< 0.1
Isophorone	NGA	NGA	< LoD									< 0.1		< 0.1
Nitrobenzene	NGA	NGA	< LoD									< 0.1		< 0.1
p-Cresol	NGA	NGA	< LoD									< 0.15		< 0.15

Acute human health risk (soils)

Scenario	Occupational exposure (construction worker)
Critical receptor	Adult female worker
Oral exposure	Ingestion of soil and dusts over a single working day
Demal exposure	Soil being left on the skin for several hours, assumed no PPE worn
Inhalation exposure	30 mins exposure - worker standing adjacent to active excavation (assumed no RPE)

Contaminant	Guideline	Principal pathway	Guideline value	Max value	Location Depth (m)	HR_CS_01 0.00	HR_CS_02 0.00	TP01 0.05	TP02 0.60	TP03	TP04 0.50	TP05 0.05	TP05 0.60	TP06 0.30	TP06 2.00
	source	source		(mg/kg)	Date	05/10/22	06/10/22	06/10/22	06/10/22	06/10/22	06/10/22	05/10/22	05/10/22	06/10/22	06/10/22
Inorganics															
Arsenic	AGAC	Oral	7,000	53		53	18	12	19	23	16	4	28	11	17
Cadmium	AGAC	Oral	12,000	3.2		3.2	0.3	0.2	0.2	0.2	1	< 0.2	0.2	< 0.2	0.3
Cyanide - Free	AGAC	Oral & Inhalation	1,400	<lod< td=""><td></td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td><td>< 2</td></lod<>		< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Organics															
Benzene	AGAC	Inhalation	240	<lod< td=""><td></td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td><td>< 0.002</td></lod<>		< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Phenol	AGAC	**sat.**	**sat.**	<lod< td=""><td></td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td><td>< 0.1</td></lod<>		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Trichloroethene	AGAC	Inhalation	16,000	<lod< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 0.005</td><td></td><td>< 0.005</td></lod<>	1								< 0.005		< 0.005
Vinyl Chloride	AGAC	Inhalation	220	<lod< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 0.005</td><td></td><td>< 0.005</td></lod<>									< 0.005		< 0.005

Proposed Haul Road Hertfordshire Constabulary HQ Ground Investigation Report

Appendix I Waste Characterisation Analysis

STU5824-R01 Rev A November 2022

Waste Classification Assessment Summary

Waste population	Topsoil-Made Ground
Hazard assessment	Non-hazardous waste
List of waste code	17-05-04
List of waste description	Soil and stones other than those mentioned in 17-05-03

Hazard property	Assessment
HP1 - Explosive	Not hazardous by HP1
HP2 - Oxidising	Not hazardous by HP2
HP3 - Flammable	Not hazardous by HP3
HP4 - Irritant	Not hazardous by HP4
HP5 - STOT & aspiration toxicity	Not hazardous by HP5
HP6 - Acute toxicity	Not hazardous by HP6
HP7 - Carcinogenic	Not hazardous by HP7
HP8 - Corrosive	Not hazardous by HP8
HP9 - Infectious	Not hazardous by HP9
HP10 - Toxic for reproduction	Not hazardous by HP10
HP11 - Mutagenic	Not hazardous by HP11
HP12 - Release of an acute toxic gas	Not hazardous by HP12
HP13 - Sensitising	Not hazardous by HP13
HP14 - Ecotoxic	Not hazardous by HP14

Created: 17/11/2022 Sheet 1 of 2

soiltechnics

Waste classification

Overall assessment	
Waste population	Topsoil-Made Ground
Hazard assessment	Non-hazardous waste
List of Waste code	17-05-04
List of waste description	Soil and stones other than those mentioned in 17-05-03
Is the statistical approach non- parametric method B utilised?	No
Moisture content correction factor	No correction made

	Asbestos assessment		
Ī	Query	Value	Assessment
Ī	Are bulk ACMs visually identifiable?	No	Non-hazardous
Ī	Have free fibres been detected?	No	Non-hazardous
Т	What is the free fibre concentration	N/A	Non-hazardous

ammability assessment		Hydrocarbon assessm
omment	Assessment	Query
ne waste is not considered flammable as it is a solid		Is the origin of the oil contamination known
aste without a free draining liquid phase, and the PH concentration and composition is not	Non-hazardous	B(a)P: TPH ratio (%)
insdiered to present a likely flammable hazard.		RialP marker assessm

pH assessment		
Query	Value	Assessment
Are all substances present in the waste known?	No	See pH assessment below
pH - Min	7.00	Non-hazardous
pH - Max	7.90	Non-hazardous

Oxidising assessment	
Comment	Assessment
Cr (VI) is the only compound with an oxidising hazard statement (H271). On review, the concentration is considered too low to present a viable oxidising hazard in a waste soil	Non-hazardous

Ecotoxic assessmen	rt		
Equation	Sum	Criteria	Assessment
WM3. Eq. 2	0.00%	25%	Non-hazardous
WM3 Eq. 3	0.00%	25%	Non-hazardous
WM3 Eq. 4	0.00%	25%	Non-hazardous

Compound hazard assessments

																																							oncentration limits	
				Hazard Property	escription		Irritant		Spe	cific Target Organ T	oxicity / Aspiration	Taxicity					Acute	Toxicity					Carcino	ogenic	Corrosive	Taxic for rep	production	Muta	igenic	Ser	nsitising		Eco	otoxic			STO	т		Carc.
				Haza	d Property		HP4			1	HPS						н	HP6					HP	97	HP8	HP:	10	н	11		HP13		н	P14			HPS	5		HP7
				Hazard	Statement	H314	H315 and/or H319	H318	H304	Н335	H372	H373	H300	H301	H302	H310	H311	H312	H330	H330	H331	H332	H350	H351	H314	H360	H361	H340	H341	H317	H334	H400	H410	H411	H413	H335 (CrO3)	H372 (CdS)	H373 (CdS)	H373 (PbSO4)	H350 (BaP) (Da,hA)
inant	Max. concentration (mg/kg)	n Realistic worst case compound	Mass conversion factor	P Hazar	I Class / pound ration (%)	Skin Corr.1A	Skin Irrit.2 Eye Irrit.2	Eye Dam.1	Asp.Tox.1	STOT SE.3	STOT RE.1	STOT RE.2	Acute Tox.2 (Oral)	Acute Tox.3 (Oral)	Acute Tox.4 (Oral)	Acute Tox.1 (Dermal)	Acute Tox.3 (Dermal)	Acute Tox.4 (Dermal)	Acute Tox.1 (Inhal.)	Acute Tox.2 (Inhal)	Acute Tox.3 (Inhal)	Acute Tox.4 (Inhal)	Carc.1A Carc.1B	Carc.2	Skin Corr.1A Skin Corr.1B	Repr.1A Repr.1B	Repr.2	Muta.1A Muta.1B	Muta 2.	Skin Sens.1	Resp. Sens. 1	Aquatic Acute.1	Aquatic Chronic.1	Aquatic Chronic.2	Aquatic Chronic.4	STOT SE.3	STOT RE.1	STOT RE.2	STOT RE.2	Carc.1B
- Total	2.0	Salts of hydrogen cyanide, using sodium cyanide	¹⁶ 1.88	N/A C	000	•							0.000			0.000			0.000	0.000		•	•									0.000	0.000							
	18.0	Nickel diarsenide	1.78	N C							0.003												0.003							0.003		0.003	0.003			<u> </u>				
(secondary)	18.0	Arsenic trioxide	1.32	N C		0.002							0.002												0.002											<u> </u>				
m m	0.3	Beryllium oxide Cadmium sulfide	1.29	N C			0.000			0.000	0.000 See specific	See specific		0.000	0.000				0.000	0.000			0.000				0.000		0.000	0.000					0.000	<u> </u>	0.000	0.000		
m (secondary)	0.3	Cadmium oxide	1.14	N C							assessment	assessment			0.500				0.000	0.000			0.000				0.550		0.550			0.000	0.000					0.000		
ım (III)	20.0	Chromium (III) oxide	1.46	N C			0.003								0.003											0.003				0.003	0.003				0.003					
um (VI)	2.0	Chromium (VI) trioxide	1.92	N/A C	000	0.000				See specific assessment	0.000			0.000			0.000		0.000	0.000			0.000		0.000		0.000	0.000		0.000	0.000	0.000	0.000			0.000				
	42.0	Copper (I) oxide	1.25	N C	005																											0.005	0.005							
r (secondary)	42.0	Copper(II) oxide	1.13	N C	005			0.005							0.005							0.005																		
	103.0	Lead compounds, using lead sulphate	1.46	N C	015							See specific assessment			0.015							0.015		0.015		0.015	See specific assessment					0.015	0.015						0.015	
у	1.0	Mercury dichloride	1.35	N C	000	0.000					0.000		0.000												0.000		0.000		0.000			0.000	0.000							
	16.0	Nickel carbonate	2.02	N C	003		0.003				0.003				0.003							0.003	0.003			0.003			0.003	0.003	0.003	0.003	0.003							
m	3.0	Selenium compounds, using selenium dioxide	1.41	N C	000							0.000		0.000							0.000											0.000	0.000							
	159.0	Zinc sulphide	1.49	N C			0.024																							0.024	0.024		0.024							
um	39.0	Vanadium pentoxide	1.79	N C	007					0.007	0.007				0.007							0.007					0.007		0.007					0.007		<u> </u>				
																																				<u> </u>				
salene	0.1	Naphthalene	1	N/A C											0.000									0.000								0.000	0.000			<u> </u>				
hthana	1.6	Acenaphthylene Acenaphthene	1	N/A C			0.000			0.000					0.000	0.000			0.000	0.000												0.000	0.000							
ne	1.2	Fluorene	1	N/A C			0.000			0.000																						0.000	0.000							
threne	24.3	Phenanthrene	1	N/A (0.002																	0.002	0.002			<u> </u>				
cene	6.3	Anthracene	1	N/A (001		0.001			0.001																				0.001		0.001	0.001							
inthene	33.2	Fluoranthene	1	N/A C	003		0.003								0.003																	0.003	0.003							
	27.7	Pyrene	1	N/A 0	003		0.003			0.003																						0.003	0.003							
(a)anthracene	12.3	Benzo(a)anthracene	1	N/A 0	001																		0.001									0.001	0.001							
ne	9.9	Chrysene	1	N/A 0	001																		0.001						0.001			0.001	0.001							
b)fluoranthene	12.5	Benzo(b)fluoranthene	1	N/A C	001																		0.001									0.001	0.001							
k)fluoranthene	4.4	Benzo(k)fluoranthene	1	N/A (000																		0.000									0.000	0.000			<u></u>				
a)pyrene	11.4	Benzo(a)pyrene	1	N/A (001																		See specific assessment			0.001		0.001		0.001		0.001	0.001			<u> </u>				0.001
(1,2,3-cd)pyrene	6.6	Indeno(1,2,3-cd)pyrene	1	N/A 0	001																			0.001																
z(a,h)anthracene	1.8	Dibenz(a,h)anthracene	1	N/A C																			See specific assessment									0.000	0.000							0.000
(ghi)perylene	6.0	Benzo(ghi)perylene	1	N/A C	001																											0.001	0.001			 				
ТРН																							See specific					See specific								<u> </u>				
°H	0.0		1	N/A 0			0.000		0.025		0.000	0.025											assessment 0.000				0.025	assessment 0.000						0.025		-				
	0.0		1	N/A C			0.000		0.000		0.000	0.000											0.000				0.000	0.000												
nzene	0.0		1	N/A C					0.000			0.000										0.000														 				
25	0.00		1	N/A (0.000											0.000				0.000																		
				Cut-o	f value (%)	1%	1%	1%	N/A	N/A	N/A	N/A	0.1%	0.1%	1%	0.1%	0.1%	1%	0.1%	0.1%	0.1%	1%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.1%	0.1%	1%	1%	N/A	N/A	N/A	N/A	N/A
				Total (r greatest)	0.00%	0.00%	0.00%	0.02%	(0.01%)	(0.01%)	(0.02%)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	(0%)	(0.02%)	0.00%	(0.02%)	(0.02%)	(0%)	(0.01%)	(0.02%)	(0.02%)	0.00%	0.00%	0.00%	0.00%	(0%)	(0%)	(0%)	(0.02%)	(0.001%)
					threshold	1%	20%	10%	10%																															0.01%

Waste Classification Assessment Summary

Waste population	Made Ground (general)
Hazard assessment	Hazardous waste*
List of waste code	17-05-03*
List of waste description	Soil and stones containing hazardous substances

Hannad automotive	
Hazard property	Assessment
HP1 - Explosive	Not hazardous by HP1
HP2 - Oxidising	Not hazardous by HP2
HP3 - Flammable	Not hazardous by HP3
HP4 - Irritant	Not hazardous by HP4
HP5 - STOT & aspiration toxicity	Not hazardous by HP5
HP6 - Acute toxicity	Not hazardous by HP6
HP7 - Carcinogenic	Not hazardous by HP7
HP8 - Corrosive	Not hazardous by HP8
HP9 - Infectious	Not hazardous by HP9
HP10 - Toxic for reproduction	Hazardous by HP10
HP11 - Mutagenic	Not hazardous by HP11
HP12 - Release of an acute toxic gas	Not hazardous by HP12
HP13 - Sensitising	Not hazardous by HP13
HP14 - Ecotoxic	Hazardous by HP14

Created: 17/11/2022 Sheet 1 of 2

soiltechnics

Waste classification

Overall assessment	
Waste population	Made Ground (general)
Hazard assessment	Hazardous waste*
List of Waste code	17-05-03*
List of waste description	Soil and stones containing hazardous substances
Is the statistical approach non- parametric method B utilised?	No
Moisture content correction factor	No correction made

Asbestos assessment		
Query	Value	Assessment
Are bulk ACMs visually identifiable?	No	Non-hazardous
Have free fibres been detected?	No	Non-hazardous
What is the free fibre concentration	N/A	Non-hazardous

Flammability assessment		Hydrocarbo
Comment	Assessment	Query
The waste is not considered flammable as it is a solid		Is the origin contaminati
waste without a free draining liquid phase, and the TPH concentration and composition is not	Non-hazardous	B(a)P:TPH:
consdiered to present a likely flammable hazard.		B(a)P marke

pH assessment		
Query	Value	Assessment
Are all substances present in the waste known?	No	See pH assessment below
pH - Min	7.40	Non-hazardous
pH - Max	7.90	Non-hazardous

Comment Assessment Cr [VI] is the only compound with an oxidising hazard statement [H273]. On review, the concentration is considered too low powerst a viable avoidising Non-hazardous	Oxidising assessment	
statement (H271). On review, the concentration is	Comment	Assessment

Ecotoxic assessmen	ıt		
Equation	Sum	Criteria	Assessment
WM3. Eq. 2	0.39%	25%	Non-hazardous
WM3 Eq. 3	90.33%	25%	HP14
WM3 Eq. 4	0.90%	25%	Non-hazardous

Compound hazard assessments

																																					Su	bstance specific cor	centration ninits	
				Hazard Prope	erty Description		Irritant		Spe	cific Target Organ To	oxicity / Aspiration 1	Taxicity					Acute To	xicity					Carcino	ogenic	Corrosive	Toxic for rep	oroduction	Muta	genic	Ser	nsitising		Eco	toxic			STOT	т		Carc.
				H	Hazard Property		HP4			1	HPS						HPE	5					HP7	77	HP8	HP:	10	HP	11	1	HP13		н	P14			HPS	i		HP7
				На	zard Statement	H314	H315 and/or H319	H318	H304	H335	H372	H373	H300	H301	H302	H310	H311	H312	H330	H330	H331	H332	H350	H351	H314	H360	H361	H340	H341	H317	H334	H400	H410	H411	H413	H335 (CrO3)	H372 (CdS)	H373 (CdS)	H373 (PbSO4)	H350 (BaP) (Da,hA)
nant	Max. concentration (mg/kg)	on Realistic worst case compoun	Mass conversion factor	MC applied?	lazard Class / Compound ncentration (%)	Skin Corr.1A	Skin Irrit.2 Eye Irrit.2	Eye Dam.1	Asp.Tox.1	STOT SE.3	STOT RE.1	STOT RE.2	Acute Tox.2 (Oral)	Acute Tox.3 (Oral)	Acute Tox.4 (Oral)	Acute Tox.1 (Dermal)	Acute Tox.3 (Dermal)	Acute Tox.4 (Dermal)	Acute Tox.1 (Inhal.)	Acute Tox.2 (Inhal)	Acute Tox.3 (Inhal)	Acute Tox.4 (Inhal)	Carc.1A Carc.1B	Carc.2	Skin Corr.1A Skin Corr.1B	Repr.1A Repr.1B	Repr.2	Muta.1A Muta.1B	Muta 2.	Skin Sens.1	Resp. Sens. 1	Aquatic Acute.1	Aquatic Chronic.1	Aquatic Chronic.2	Aquatic Chronic.4	STOT SE.3	STOT RE.1	STOT RE.2	STOT RE.2	Carc.1B
Total	2.0	Salts of hydrogen cyanide, usi sodium cyanide	ing 1.88	N/A	0.000								0.000			0.000		-	0.000	0.000												0.000	0.000					<u> </u>		
	53.0	Nickel diarsenide	1.78	N							0.009												0.009							0.009		0.009	0.009							
econdary)	1.9	Arsenic trioxide Beryllium oxide	2.78	N N		0.007	0.001			0.001	0.001		0.007	0.001					0.001	0.001			0.001		0.007					0.001										
	3.2	Cadmium sulfide	1.29	N N			0.001			0.002	See specific assessment	See specific assessment		0.001	0.000				0.002	0.002			0.000				0.000		0.000	0.001					0.000		0.000	0.000		
(secondary)	3.2	Cadmium oxide	1.14	N							assessment	assessment							0.000	0.000												0.000	0.000							
m (III)	24.0	Chromium (III) oxide	1.46	N	0.004		0.004								0.004											0.004				0.004	0.004				0.004					
um (VI)	2.0	Chromium (VI) trioxide	1.92	N/A	0.000	0.000				See specific assessment	0.000			0.000			0.000		0.000	0.000			0.000		0.000		0:000	0.000		0.000	0.000	0.000	0.000			0.000				
	221.0	Copper (I) oxide	1.25	N	0.028																											0.028	0.028			<u></u>				
r (secondary)	221.0	Copper(II) oxide Lead compounds, using lead	1.13	N				0.025				See marific			0.025							0.025					See marifir													
	2670.0	sulphate		N								See specific assessment			0.391							0.391		0.391		0.391	See specific assessment					0.391	0.391						0.391	
у	3.6	Mercury dichloride Nickel carbonate	2.02	N N		0.000	0.006				0.000		0.000		0.006							0.006	0.006		0.000	0.006	0.000		0.000	0.006	0.006	0.000	0.000							
n	3.0	Selenium compounds, using		N N			0.006				0.000	0.000		0.000	0.000						0.000	0.000	0.006			0.000			0.000	0.006	0.000	0.000	0.000							
	3440.0	selenium dioxide Zinc sulphide	1.49	N			0.512																							0.512	0.512		0.512							
n	49.0	Vanadium pentoxide	1.79	N	0.009					0.009	0.009				0.009							0.009					0.009		0.009					0.009						
salene	0.2	Naphthalene	1	N/A	0.000										0.000									0.000								0.000	0.000							
hthylene	0.1	Acenaphthylene	1	N/A	0.000		0.000			0.000					0.000	0.000			0.000	0.000																<u>. </u>				
nthene	0.1	Acenaphthene	1	N/A	0.000		0.000																									0.000	0.000			<u> </u>				
e	0.1	Fluorene	1	N/A			0.000			0.000																						0.000	0.000							
threne	2.7	Phenanthrene	1	N/A											0.000																	0.000	0.000							
thene	3.6	Anthracene	1	N/A N/A			0.000			0.000					0.000															0.000		0.000	0.000							
2	3.0	Pyrene	1	N/A			0.000			0.000					0.550																	0.000	0.000							
a)anthracene	1.5	Benzo(a)anthracene	1	N/A																			0.000									0.000	0.000							
ne	1.5	Chrysene	1	N/A	0.000																		0.000						0.000			0.000	0.000							
b)fluoranthene	1.4	Benzo(b)fluoranthene	1	N/A	0.000																		0.000									0.000	0.000							
(k)fluoranthene	0.5	Benzo(k)fluoranthene	1	N/A	0.000																		0.000									0.000	0.000							
)pyrene	1.4	Benzo(a)pyrene	1	N/A	0.000																		See specific assessment			0.000		0.000		0.000		0.000	0.000			<u> </u>				0.000
(1,2,3-cd)pyrene	0.9	Indeno(1,2,3-cd)pyrene	1	N/A	0.000																			0.000												<u></u>				
ız(a,h)anthracene	0.2	Dibenz(a,h)anthracene	1	N/A																			See specific assessment									0.000	0.000							0.000
(ghi)perylene	0.7	Benzo(ghi)perylene	1	N/A	0.000																											0.000	0.000							
PH	42.0	Unknown oil	1	N/A	0.004				0.004			0.004											See specific assessment				0.004	See specific assessment						0.004						
e	0.0	Benzene	1	N/A	0.000		0.000		0.000		0.000												0.000					0.000												
e	0.0	Toluene	1	N/A	0.000		0.000		0.000			0.000															0.000													
enzene	0.0	Ethylbenzene	1	N/A	0.000				0.000			0.000										0.000																		
s	0.00	Xylenes	1	N/A	0.000		0.000											0.000				0.000																		
					cut-off value (%)		1%	1%		N/A (0.01%)		N/A (0%)																					0.1%	1%	0.00%		N/A	N/A	N/A	N/A
					tal (or greatest)	1%	0.00%	0.00%		(0.01%)	,	,																				0.39%							(0.39%)	(0%)
				н	azard threshold	1%	20%	10%	10%	20%	176	10%	U.25%	5%	25%	0.25%	15%	22%	0.1%	U.5%	3.5%	22.5%	0.1%	1%	5%	U.3%	5%	0.1%	1%	10%	10%	wins eq.2	www.s eq.s & eq.4		wws eq.4	1.0%	10.0%	U.1%	0.5%	J.U1%

Waste Classification Assessment Summary

Waste population	Made Ground - landfill material
Hazard assessment	Non-hazardous waste
List of waste code	17-05-04
List of waste description	Soil and stones other than those mentioned in 17-05-03

Hazard property	Assessment
HP1 - Explosive	Not hazardous by HP1
HP2 - Oxidising	Not hazardous by HP2
HP3 - Flammable	Not hazardous by HP3
HP4 - Irritant	Not hazardous by HP4
HP5 - STOT & aspiration toxicity	Not hazardous by HP5
HP6 - Acute toxicity	Not hazardous by HP6
HP7 - Carcinogenic	Not hazardous by HP7
HP8 - Corrosive	Not hazardous by HP8
HP9 - Infectious	Not hazardous by HP9
HP10 - Toxic for reproduction	Not hazardous by HP10
HP11 - Mutagenic	Not hazardous by HP11
HP12 - Release of an acute toxic gas	Not hazardous by HP12
HP13 - Sensitising	Not hazardous by HP13
HP14 - Ecotoxic	Not hazardous by HP14
	·

Created: 17/11/2022 Sheet 1 of 2

soiltechnics

Waste classification

Overall assessment	
Waste population	Made Ground - landfill material
Hazard assessment	Non-hazardous waste
List of Waste code	17-05-04
List of waste description	Soil and stones other than those mentioned in 17-05-03
Is the statistical approach non- parametric method B utilised?	No
Moisture content correction factor	No correction made

Asbestos assessment		
Query	Value	Assessment
Are bulk ACMs visually identifiable?	No	Non-hazardous
Have free fibres been detected?	No	Non-hazardous
What is the free fibre concentration	N/A	Non-hazardous

Flammability assessment	
Comment	Assessment
The waste is not considered flammable as it is a solid waste without a free draining liquid phase, and the TPH concentration and composition is not considered to present a likely flammable hazard.	Non-hazardous

	pH assessment		
	Query	Value	Assessment
	Are all substances present in the waste known?	No	See pH assessment below
	pH - Min	7.90	Non-hazardous
	pH - Max	7.90	Non-hazardous

Oxidising assessment	
Comment	Assessment
Cr (VI) is the only compound with an oxidising hazard statement (H271). On review, the concentration is considered too low to present a viable oxidising hazard in a waste soil	Non-hazardous

Ecotoxic assessmen	nt		
Equation	Sum	Criteria	Assessment
WM3. Eq. 2	0.00%	25%	Non-hazardous
WM3 Eq. 3	0.00%	25%	Non-hazardous
WM3 Fn. 4	0.00%	25%	Non-hazardous

Compound hazard accomments

									_																					_						-				
				Hazard Property	escription		Irritant		Sper	cific Target Organ T	oxicity / Aspiration	Taxicity					Acute	Toxicity					Carcino	ogenic	Corrosive	Taxic for rep	production	Muta	genic	Ser	sitising		Eco	otoxic			STOT	т		Carc.
				Haza	d Property		HP4				HPS						н	HP6					HP	77	HP8	HP:	10	н	11	1	HP13		н	HP14			HPS	5		HP7
				Hazard	Statement	H314	H315 and/or H319	H318	H304	н335	H372	H373	Н300	H301	H302	H310	H311	H312	H330	H330	H331	H332	H350	H351	H314	H360	H361	H340	H341	H317	H334	H400	H410	H411	H413	H335 (CrO3)	H372 (CdS)	H373 (CdS)	H373 (PbSO4)	H350 (BaP) (Da,hA)
inant	Max. concentratio (mg/kg)	Realistic worst case compound	Mass conversion factor	P Hazar	Class / cound ration (%)	Skin Corr.1A	Skin Irrit.2 Eye Irrit.2	Eye Dam.1	Asp.Tox.1	STOT SE.3	STOT RE.1	STOT RE.2	Acute Tox.2 (Oral)	Acute Tox.3 (Oral)	Acute Tox.4 (Oral)	Acute Tox.1 (Dermal)	Acute Tox.3 (Dermal)	Acute Tox.4 (Dermal)	Acute Tox.1 (Inhal.)	Acute Tox.2 (Inhal)	Acute Tox.3 (Inhal)	Acute Tox.4 (Inhal)	Carc.1A Carc.1B	Carc.2	Skin Corr.1A Skin Corr.1B	Repr.1A Repr.1B	Repr.2	Muta.1A Muta.1B	Muta 2.	Skin Sens.1	Resp. Sens. 1	Aquatic Acute.1	Aquatic Chronic.	Aquatic Chronic.2	Aquatic Chronic.4	STOT SE.3	STOT RE.1	STOT RE.2	STOT RE.2	Carc.1B
- Total	2.0	Salts of hydrogen cyanide, usir sodium cyanide	¹⁶ 1.88	N/A 0	000								0.000			0.000			0.000	0.000												0.000	0.000							
	28.0	Nickel diarsenide	1.78	N C							0.005												0.005							0.005		0.005	0.005			<u> </u>				
: (secondary)	1.0	Arsenic trioxide Beryllium oxide	2.78	N C		0.004	0.000			0.000	0.000		0.004	0.000					0.000	0.000			0.000		0.004					0.000										
	0.3	Cadmium sulfide	1.29	N C			0.000			0.000	See specific	See specific		0.000	0.000				0.000	0.000			0.000				0.000		0.000	0.000					0.000		0.000	0.000		
ium (secondary)	0.3	Cadmium oxide	1.14	N C							assessment	assessment							0.000	0.000												0.000	0.000							
nium (III)	28.0	Chromium (III) oxide	1.46	N C	004		0.004								0.004											0.004				0.004	0.004				0.004		-		-	
nium (VI)	2.0	Chromium (VI) trioxide	1.92	N/A C	000	0.000				See specific assessment	0.000			0.000			0.000		0.000	0.000			0.000		0.000		0.000	0.000		0.000	0.000	0.000	0.000			0.000				
er	29.0	Copper (I) oxide	1.25	N C	004																											0.004	0.004			<u></u>				
	29.0	Copper(II) oxide	1.13	N C				0.003							0.003							0.003														<u> </u>				
	56.0	Lead compounds, using lead sulphate		N C								See specific assessment			0.008							0.008		0.008		0.008	See specific assessment					0.008	0.008						0.008	
iry	1.0	Mercury dichloride	1.35		000	0.000					0.000		0.000		0.004								0.004		0.000	0.004	0.000		0.000		0.004	0.000	0.000							
ım	3.0	Nickel carbonate Selenium compounds, using	1.41	N C			0.004				0.004	0.000		0.000	0.004						0.000	0.004	0.004			0.004			0.004	0.004	0.004	0.004	0.004							
	140.0	selenium dioxide Zinc sulphide	1.49	N C			0.021																							0.021	0.021		0.021							
um	46.0	Vanadium pentoxide	1.79	N C	108					0.008	0.008				0.008							0.008					0.008		0.008					0.008						
nalene	0.1	Naphthalene	1	N/A C	000										0.000									0.000								0.000	0.000				-			-
hthylene	0.1	Acenaphthylene	1	N/A C	000		0.000			0.000					0.000	0.000			0.000	0.000																				
hthene	0.1	Acenaphthene	1	N/A 0	000		0.000																									0.000	0.000							
ene	0.1	Fluorene	1	N/A 0			0.000			0.000																						0.000	0.000			<u> </u>				
	0.1	Phenanthrene	1	N/A 0											0.000																	0.000	0.000			<u> </u>				
	0.1	Anthracene	1	N/A C			0.000			0.000					0.000															0.000		0.000	0.000							
	0.3	Fluoranthene	1	N/A C			0.000			0.000					0.000																	0.000	0.000							
	0.2	Benzo(a)anthracene	1	N/A (0.000			0.000													0.000									0.000	0.000							
	0.1	Chrysene	1	N/A 0																			0.000						0.000			0.000	0.000							
(b)fluoranthene	0.2	Benzo(b)fluoranthene	1	N/A 0	000																		0.000									0.000	0.000				-		-	
(k)fluoranthene	0.1	Benzo(k)fluoranthene	1	N/A C	000																		0.000									0.000	0.000							
a)pyrene	0.2	Benzo(a)pyrene	1	N/A C	000																		See specific assessment			0.000		0.000		0.000		0.000	0.000							0.000
(1,2,3-cd)pyrene	0.1	Indeno(1,2,3-cd)pyrene	1	N/A C	000																			0.000												<u> </u>				
nz(a,h)anthracene	0.1	Dibenz(a,h)anthracene	1	N/A C																			See specific assessment									0.000	0.000			<u> </u>				0.000
o(ghi)perylene	0.1	Benzo(ghi)perylene	1	N/A C	000																											0.000	0.000							
грн	42.0	Unknown oil	1	N/A (004				0.004			0.004											See specific assessment				0.004	See specific assessment						0.004						
e	0.0	Benzene	1	N/A 0	000		0.000		0.000		0.000												0.000					0.000												
ne	0.0	Toluene	1	N/A C	000		0.000		0.000			0.000															0.000													
enzene	0.0	Ethylbenzene	1	N/A (000				0.000			0.000										0.000														<u> </u>				
ıs	0.00	Xylenes	1	N/A 0	000		0.000											0.000				0.000																		
				0.1	value (%)	1%	1%	1%	N/A	N/A	ps/a	N/A	0.1%	0.1%	194	0.1%	0.1%	794	0.1%	0.1%	0.1%	1%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	pa/a	N/A	0.1%	0.1%	1%	1%	N/A	N/A	N/A	N/A	N/A
					r greatest)		0.00%	0.00%		(0.01%)		(0%)							0.00%													0.00%				(0%)		(0%)		
					threshold	1%	20%	10%	10%	20%	18/	100																										0.1%		0.01%

Waste acceptance

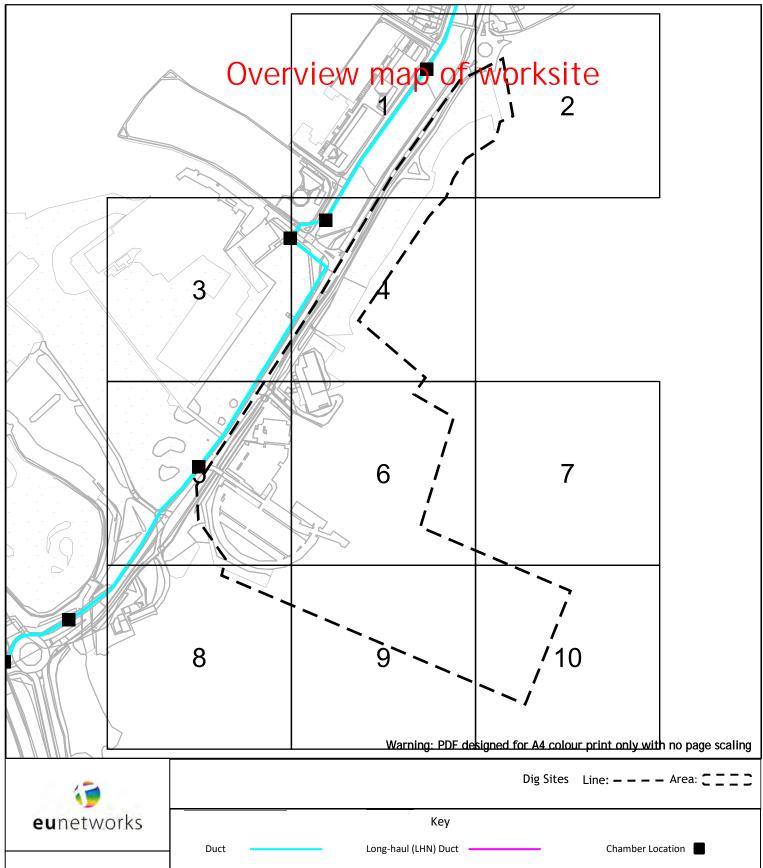
Parameter	Inert waste Iandfill	Stable non-reactive hazardous waste in a non-hazardous landfill cell (SNRHW)	Hazardous waste landfill	Location Depth (m) Date	HR_CS_01 0.00 05/10/22	0.00 06/10/22	0.60 05/10/22
Parameters determined on th	e waste						
Total organic carbon	3	5	6		2.1	2.3	0.7
Loss on ignition			10		7.4	5.5	4.2
BTEX	6				< 0.05	< 0.05	< 0.05
PCBs (7 congeners)	1				< 0.1	< 0.1	< 0.1
Mineral oil	500				< 10	< 10	< 10
PAH (17 congeners)	100				6.6	161	< 1.7
рН		6			7.8	7.9	7.9
Limit values (mg kg ⁻¹) for com	pliance test using	g BN 12457-3 at L/S 10 l					
Arsenic	0.5	2	25		< 0.2	< 0.2	< 0.2
Barium	20	100	300		0.4	0.2	0.5
Cadmium	0.04	1	5		< 0.02	< 0.02	< 0.02
Chromium (III)	0.5	10	70		< 0.20	< 0.20	< 0.20
Copper	2	50	100		< 0.5	< 0.5	< 0.5
Mercury	0.01	0.2	2		< 0.005	< 0.005	< 0.005
Molybdenum	0.5	10	30	1	< 0.1	< 0.1	0.1
Nickel	0.4	10	40		< 0.2	< 0.2	< 0.2
Lead	0.5	10	50		< 0.2	< 0.2	< 0.2
Antimony	0.06	0.7	5		< 0.05	< 0.05	< 0.05
Selenium	0.1	0.5	7		< 0.05	< 0.05	< 0.05
Zinc	4	50	200		1	< 0.2	< 0.2
Chloride	800	15,000	25,000		41	46	33
Fluoride	10	150	500		< 1	6	8.3
Sulphate	1,000	20,000	50,000		230	75	697
Total dissolved solids	4,000	60,000	100,000		1053	813	1647
Phenol	1				< 0.5	< 0.5	< 0.5
Dissolved organic carbon	500	800	1000		294	371	316
Classifications							
Waste classification					Hazardous	Non- hazardous	Non- hazardous
Landfill type					SNRHW	Non- hazardous	Inert

Key Notes:

3) In a hazardous waste, either the TOC or LOI must be used.

Created: 17/11/2022 Sheet 1 of 1

¹⁾ The values for total dissolved solids (TDS) can be used alternatively to the values for sulphate and chloride.


²⁾ Soils with TOC values over the limit value may still be accepted provided the DOC value falls are below it's respective limit value.

Proposed Haul Road Hertfordshire Constabulary HQ Ground Investigation Report

Appendix J Utility Service Plans

STU5824-R01 Rev A November 2022

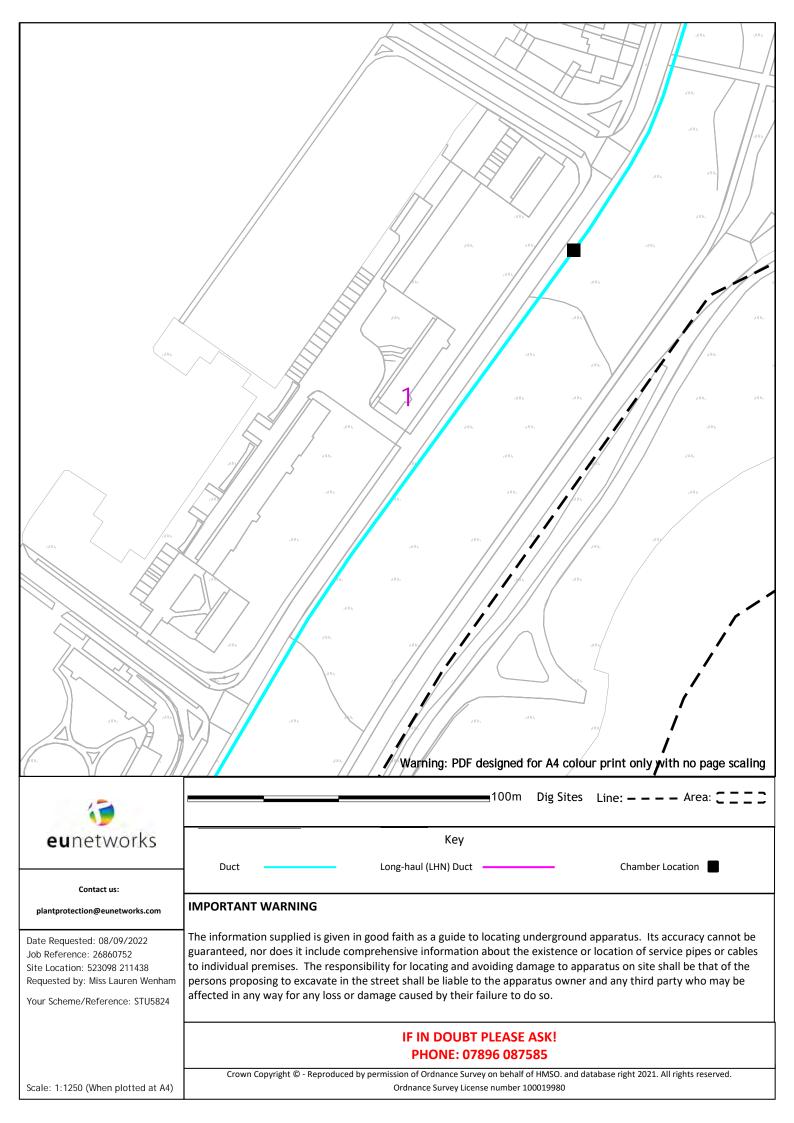
Contact us:

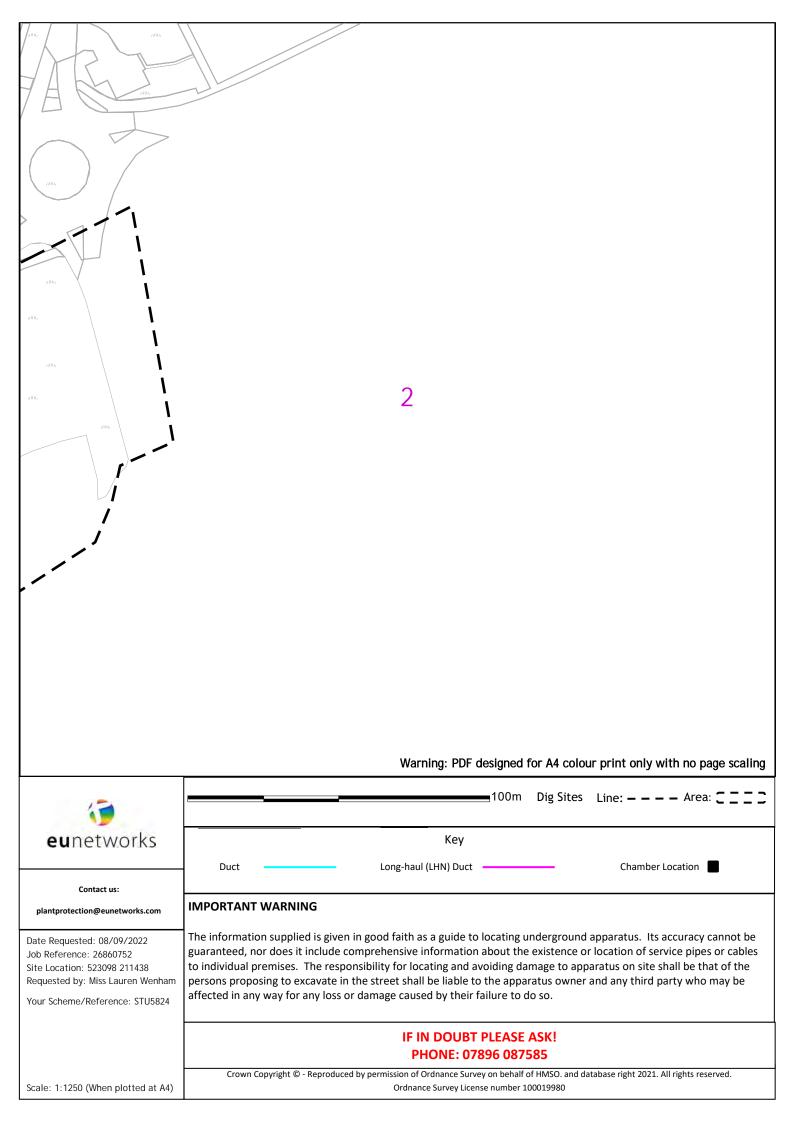
plantprotection@eunetworks.com

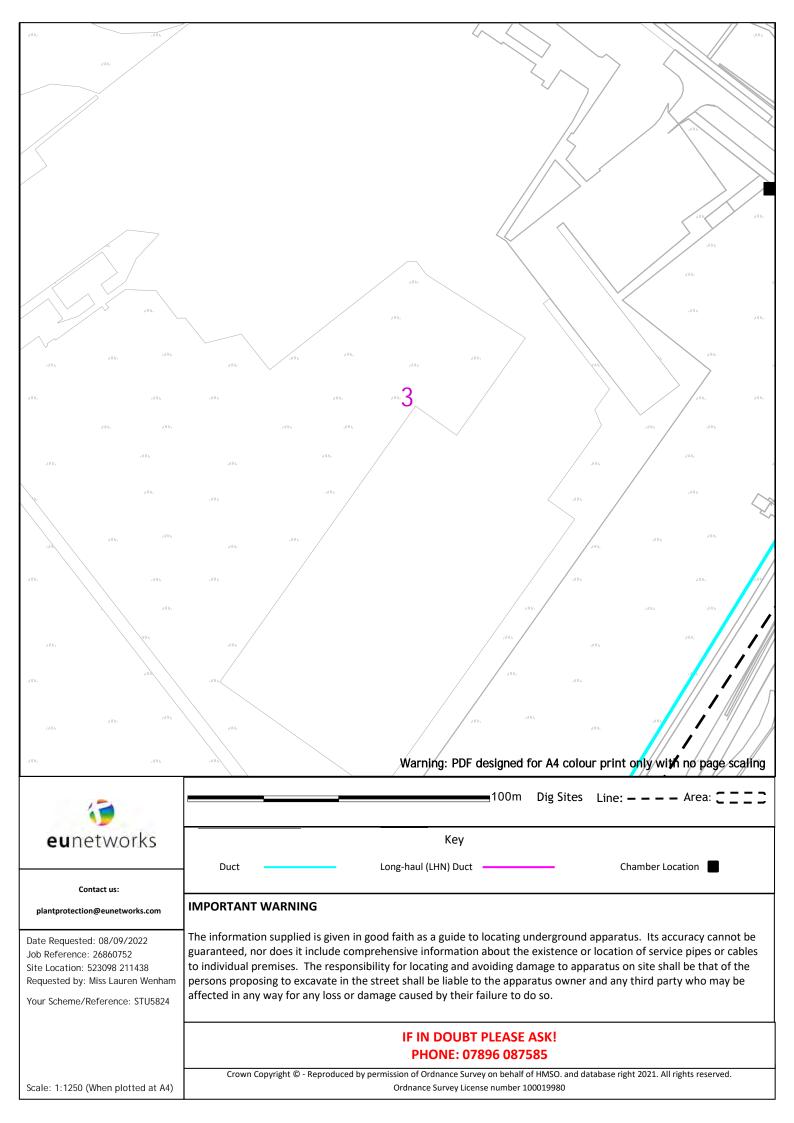
Date Requested: 08/09/2022 Job Reference: 26860752 Site Location: 523098 211438 Requested by: Miss Lauren Wenham

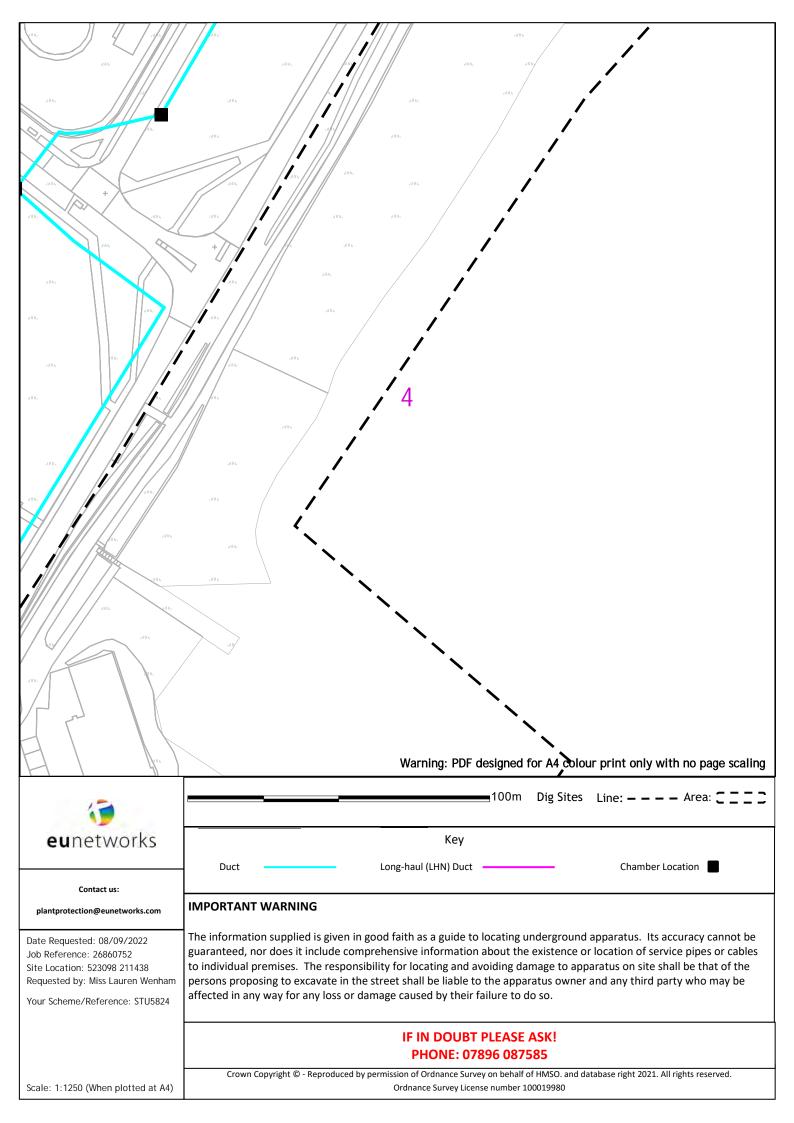
Your Scheme/Reference: STU5824

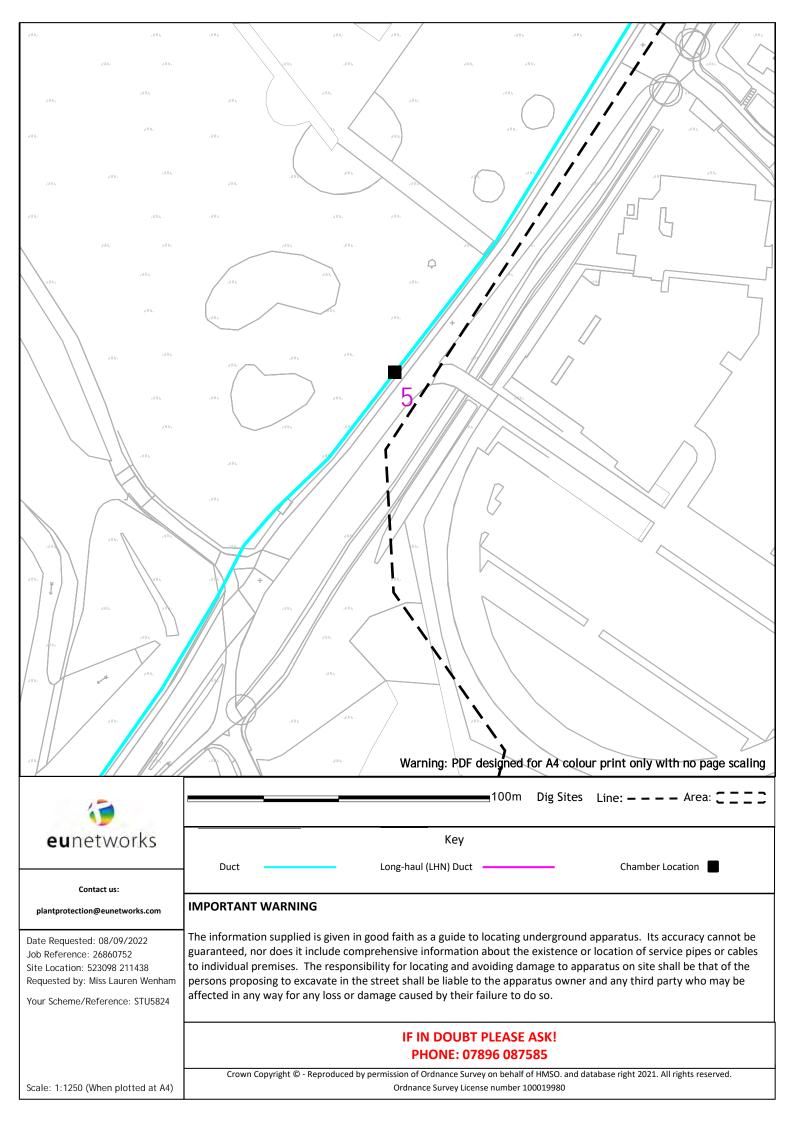
IMPORTANT WARNING

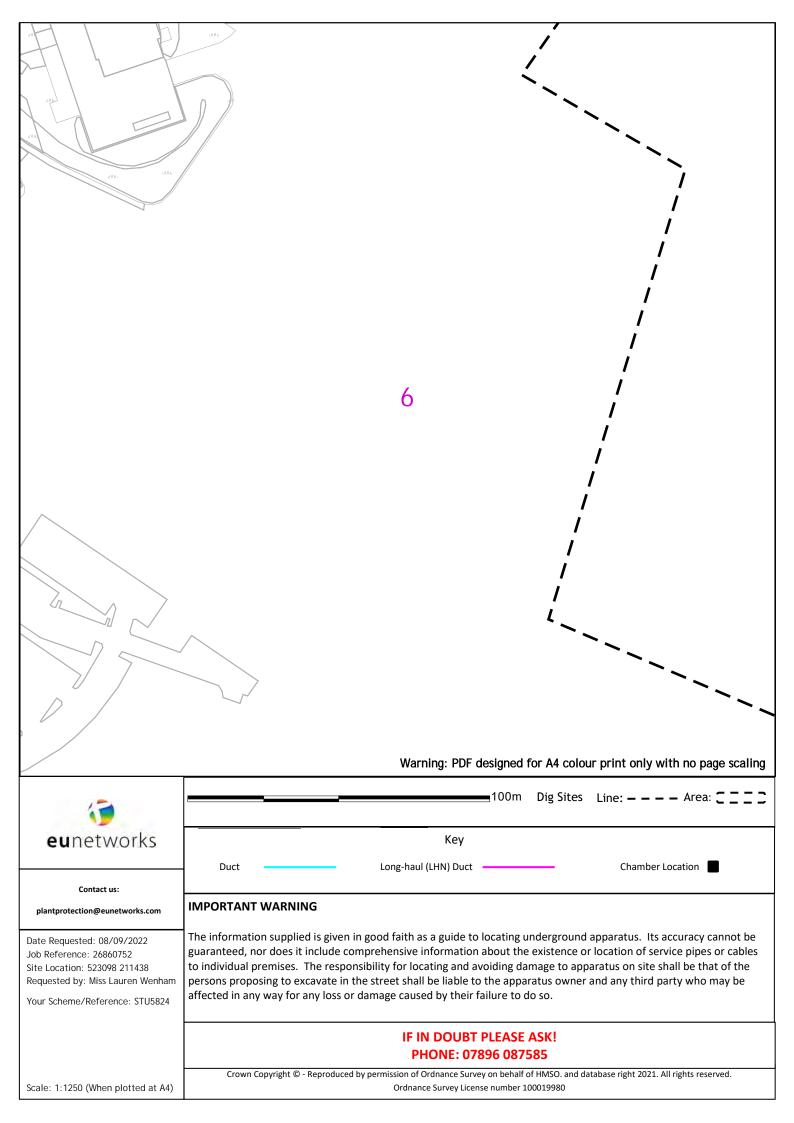

The information supplied is given in good faith as a guide to locating underground apparatus. Its accuracy cannot be guaranteed, nor does it include comprehensive information about the existence or location of service pipes or cables to individual premises. The responsibility for locating and avoiding damage to apparatus on site shall be that of the persons proposing to excavate in the street shall be liable to the apparatus owner and any third party who may be affected in any way for any loss or damage caused by their failure to do so.

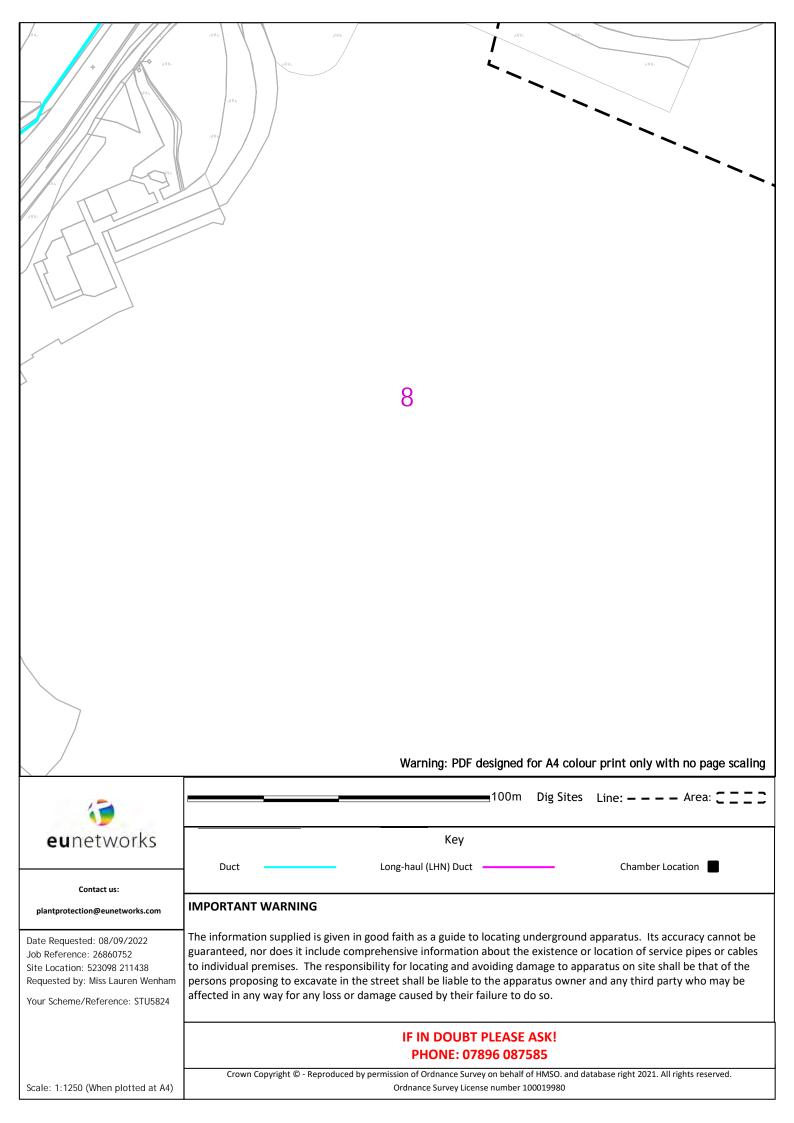

IF IN DOUBT PLEASE ASK! PHONE: 07896 087585

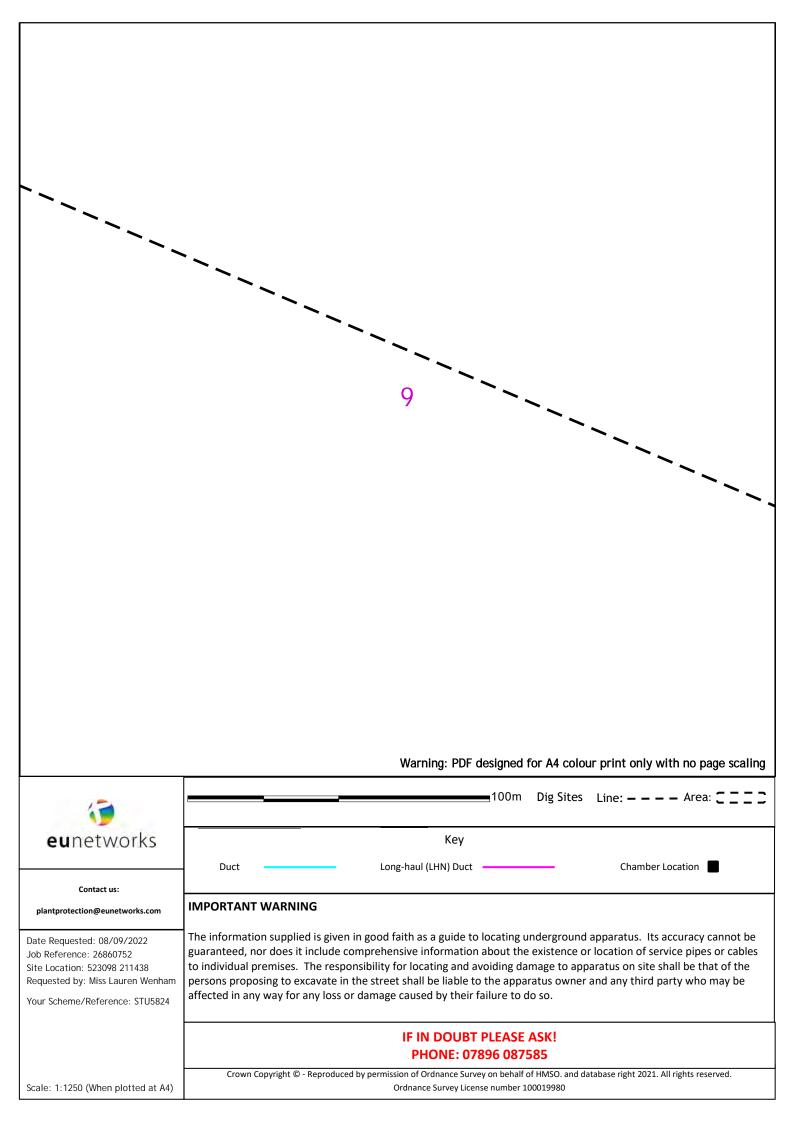

Crown Copyright © - Reproduced by permission of Ordnance Survey on behalf of HMSO. and database right 2021. All rights reserved.

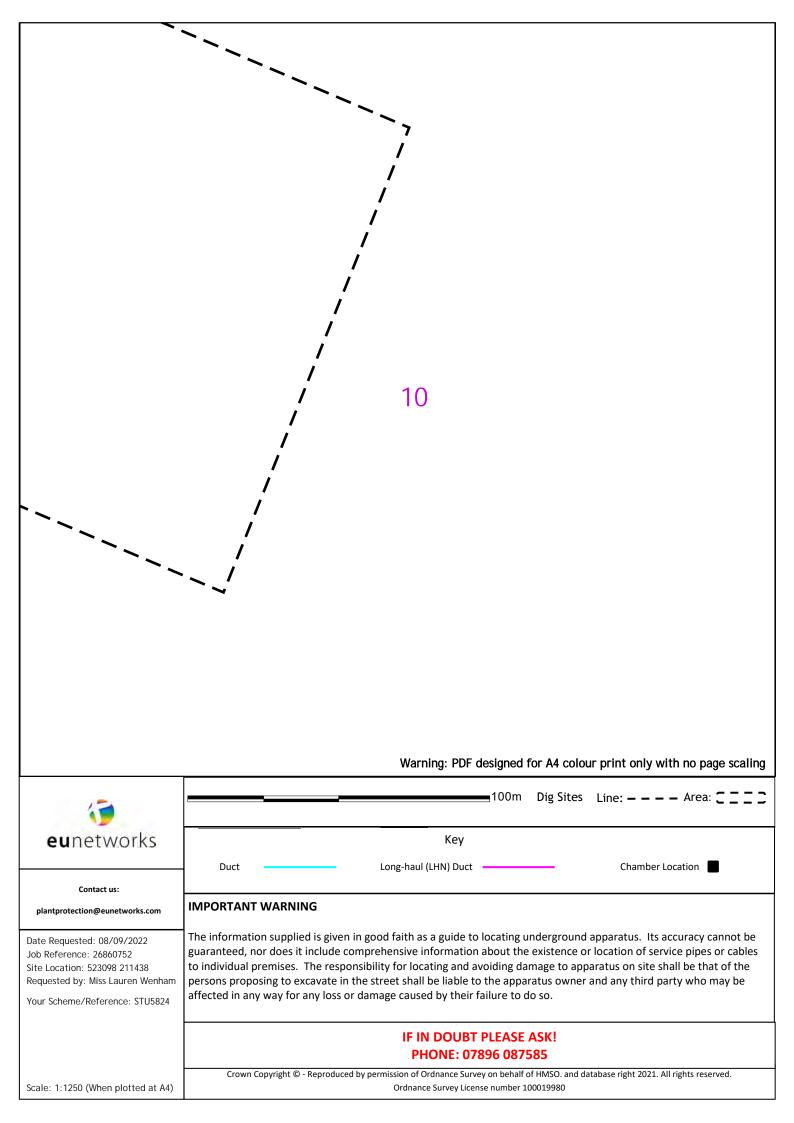

Ordnance Survey License number 100019980

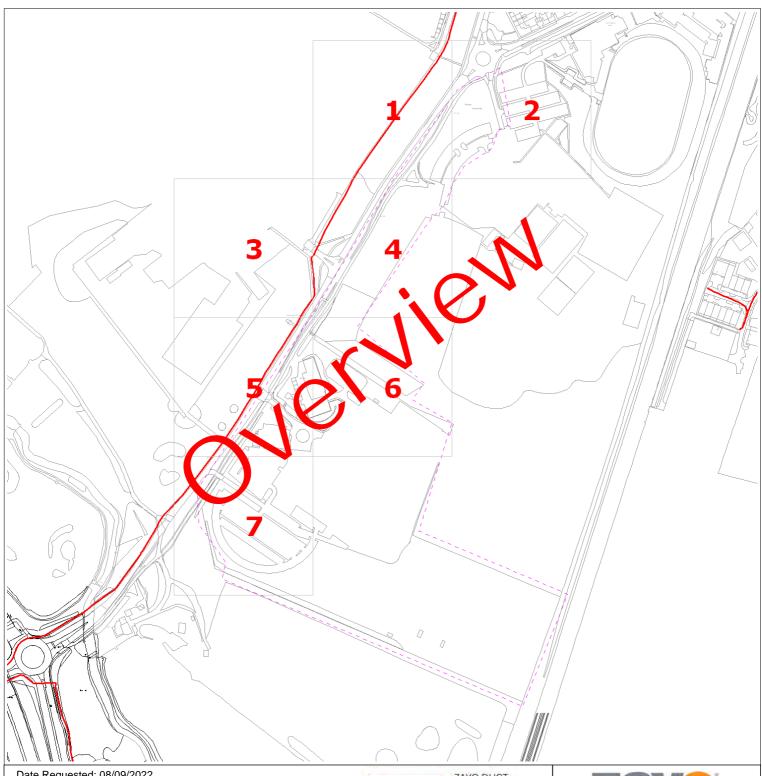

Scale: 1:5125 (When plotted at A4)











	7
	<i>,</i>
\	
	Warning: PDF designed for A4 colour print only with no page scaling
2	100m Dig Sites Line: — — — Area: []]
eu networks	Key
	Duct — Long-haul (LHN) Duct — Chamber Location
Control	Each Each Chairman Each Each Each Each Each Each Each Each
Contact us:	IMPORTANT WARNING
plantprotection@eunetworks.com	THE CATALLY WARRING
Date Requested: 08/09/2022	The information supplied is given in good faith as a guide to locating underground apparatus. Its accuracy cannot be
Job Reference: 26860752	guaranteed, nor does it include comprehensive information about the existence or location of service pipes or cables
Site Location: 523098 211438 Requested by: Miss Lauren Wenham	to individual premises. The responsibility for locating and avoiding damage to apparatus on site shall be that of the persons proposing to excavate in the street shall be liable to the apparatus owner and any third party who may be
Your Scheme/Reference: STU5824	affected in any way for any loss or damage caused by their failure to do so.
3.00024	
	IF IN DOUBT PLEASE ASK!
	PHONE: 07896 087585
	Crown Copyright © - Reproduced by permission of Ordnance Survey on behalf of HMSO. and database right 2021. All rights reserved.
Scale: 1:1250 (When plotted at A4)	Ordnance Survey License number 100019980

Your Scheme/Reference: STU5824

ZAYO DUCT

Or ZAYO CHAMBER

Dig Sites: Line ---- Area L.....

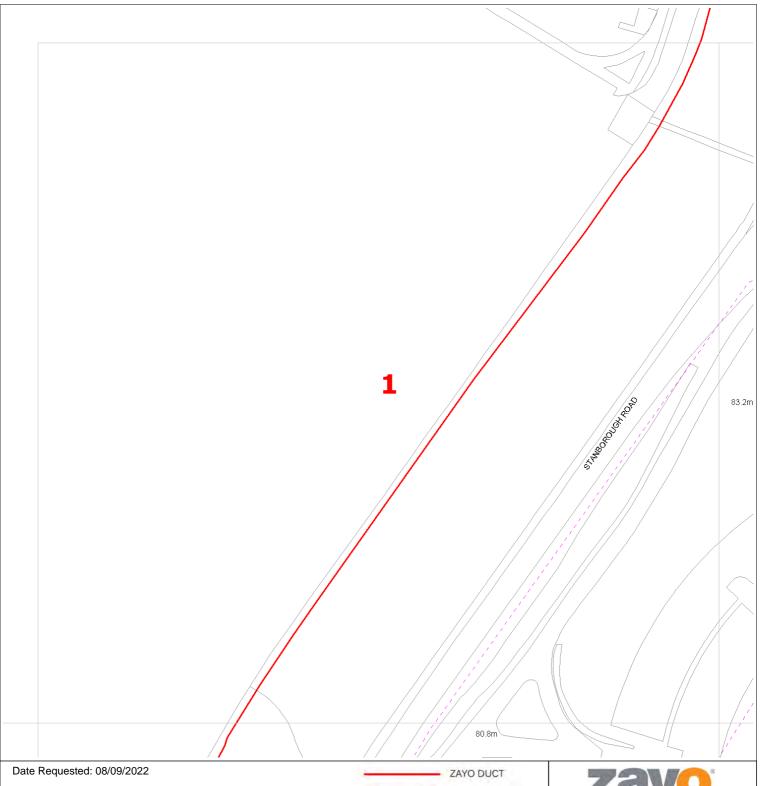
Scale on A4 paper: 1:1000

The information on this document is proprietary and shall not be used, copied, reproduced or disclosed in whole or in part without written consent of Zayo Group UK Ltd. Approximate location only is shown. To determine exact location a trial hole must be dug with a Zayo Group UK Ltd Supervisor present. Zayo Group UK Ltd and JSM Construction Ltd accept no liability for errors or omissions.

Warning: PDF designed for colour print only with no page scaling. This Information is given as a guide only and its accuracy cannot be guaranteed

Protecting Lives, Cables & Pipes

In Emergency Only and if Zayo Plant or Cables damaged call: 0800 169 1646 $\,$


CROWN COPYRIGHT © All Rights Reserved. Ordnance Survey Licence number: 100040487

4th Floor Harmsworth House 13-15 Bouverie Street London EC4Y 8DP

JSM Group Ltd Sterling House Mutton Lane, Potters Bar Hertfordshire, EN6 3AR T: 01992 788 019

Your Scheme/Reference: STU5824

ZAYO DUCT

ZAYO CHAMBER

Dig Sites: Line ---- Area

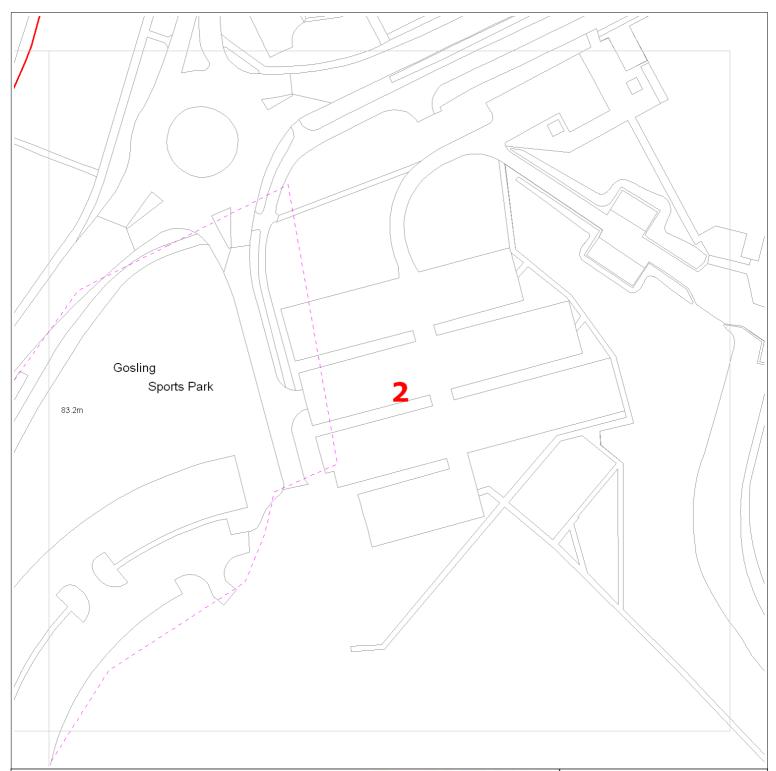
Scale on A4 paper: 1:1000

The information on this document is proprietary and shall not be used, copied, reproduced or disclosed in whole or in part without written consent of Zayo Group UK Ltd. Approximate location only is shown. To determine exact location a trial hole must be dug with a Zayo Group UK Ltd Supervisor present. Zayo Group UK Ltd and JSM Construction Ltd accept no liability for errors or omissions.

Warning: PDF designed for colour print only with no page scaling. This Information is given as a guide only and its accuracy cannot be guaranteed

Protecting Lives, Cables & Pipes

In Emergency Only and if Zayo Plant or Cables damaged call: $0800\ 169\ 1646$


CROWN COPYRIGHT © All Rights Reserved. Ordnance Survey Licence number: 100040487

4th Floor Harmsworth House 13-15 Bouverie Street London EC4Y 8DP

JSM Group Ltd Sterling House Mutton Lane, Potters Bar Hertfordshire, EN6 3AR T: 01992 788 019

Your Scheme/Reference: STU5824

ZAYO DUCT

ZAYO CHAMBER

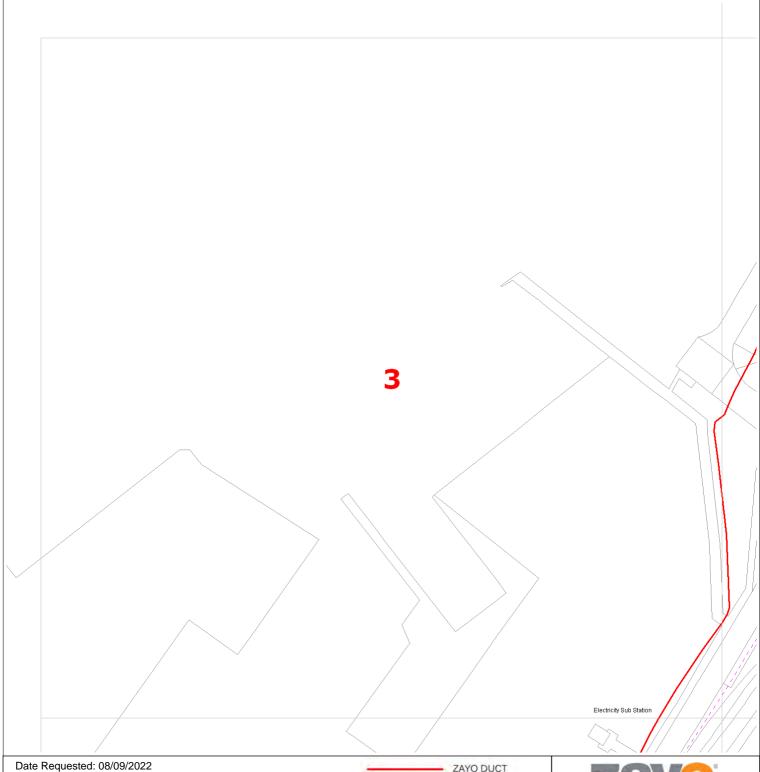
Dig Sites: Line ---- Area ----
Scale on A4 paper: 1:1000

The information on this document is proprietary and shall not be used, copied, reproduced or disclosed in whole or in part without written consent of Zayo Group UK Ltd. Approximate location only is shown. To determine exact location a trial hole must be dug with a Zayo Group UK Ltd Supervisor present. Zayo Group UK Ltd and JSM Construction Ltd accept no liability for errors or omissions.

Warning: PDF designed for colour print only with no page scaling. This Information is given as a guide only and its accuracy cannot be guaranteed

Protecting Lives, Cables & Pipes

In Emergency Only and if Zayo Plant or Cables damaged call: $0800\ 169\ 1646$


CROWN COPYRIGHT © All Rights Reserved. Ordnance Survey Licence number: 100040487

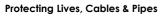
4th Floor Harmsworth House 13-15 Bouverie Street London EC4Y 8DP

JSM Group Ltd Sterling House Mutton Lane, Potters Bar Hertfordshire, EN6 3AR T: 01992 788 019

Your Scheme/Reference: STU5824

ZAYO DUCT

ZAYO CHAMBER

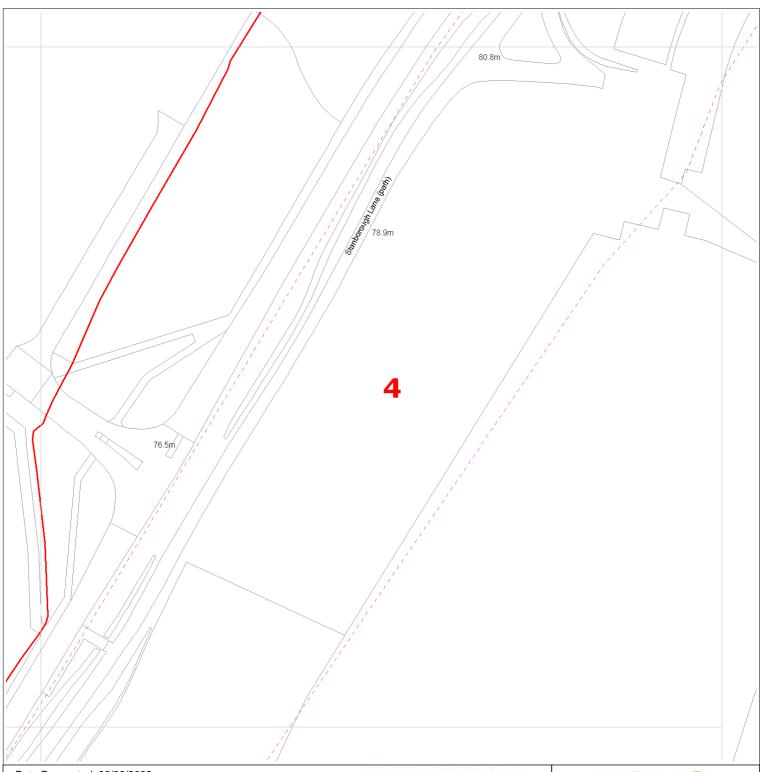

Dig Sites: Line ---- Area

Scale on A4 paper: 1:1000

The information on this document is proprietary and shall not be used, copied, reproduced or disclosed in whole or in part without written consent of Zayo Group UK Ltd. Approximate location only is shown. To determine exact location a trial hole must be dug with a Zayo Group UK Ltd Supervisor present. Zayo Group UK Ltd and JSM Construction Ltd accept no liability for errors or omissions.

Warning: PDF designed for colour print only with no page scaling. This Information is given as a guide only and its accuracy cannot be guaranteed

In Emergency Only and if Zayo Plant or Cables damaged call: $0800\ 169\ 1646$

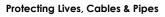

CROWN COPYRIGHT © All Rights Reserved. Ordnance Survey Licence number: 100040487

4th Floor Harmsworth House 13-15 Bouverie Street London EC4Y 8DP

JSM Group Ltd Sterling House Mutton Lane, Potters Bar Hertfordshire, EN6 3AR T: 01992 788 019

Your Scheme/Reference: STU5824

ZAYO DUCT

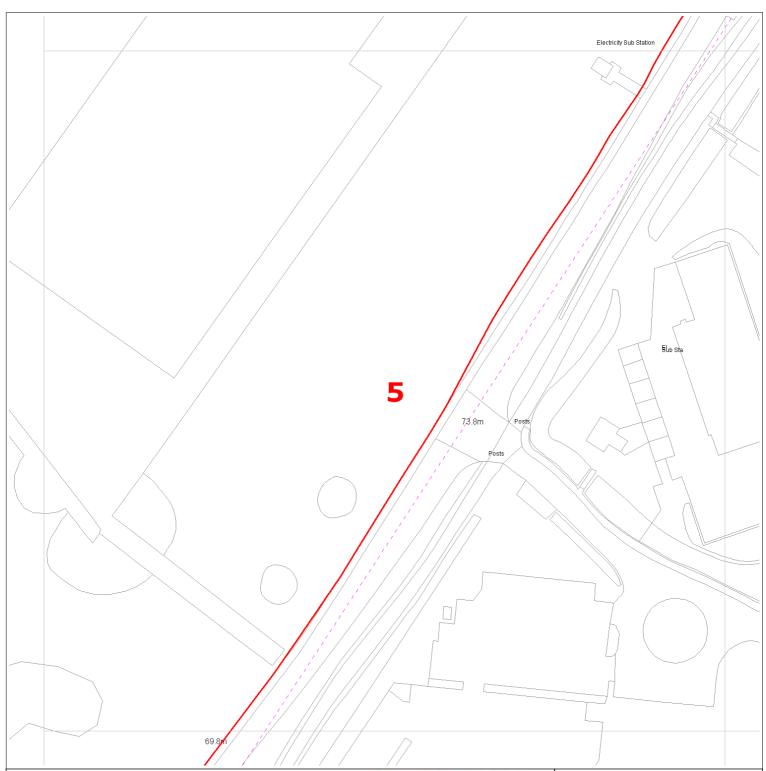

ZAYO CHAMBER

Dig Sites: Line ---- Area ----
Scale on A4 paper: 1:1000

The information on this document is proprietary and shall not be used, copied, reproduced or disclosed in whole or in part without written consent of Zayo Group UK Ltd. Approximate location only is shown. To determine exact location a trial hole must be dug with a Zayo Group UK Ltd Supervisor present. Zayo Group UK Ltd and JSM Construction Ltd accept no liability for errors or omissions.

Warning: PDF designed for colour print only with no page scaling. This Information is given as a guide only and its accuracy cannot be guaranteed

In Emergency Only and if Zayo Plant or Cables damaged call: 0800 169 1646


CROWN COPYRIGHT © All Rights Reserved. Ordnance Survey Licence number: 100040487

4th Floor Harmsworth House 13-15 Bouverie Street London EC4Y 8DP

JSM Group Ltd Sterling House Mutton Lane, Potters Bar Hertfordshire, EN6 3AR T: 01992 788 019

Your Scheme/Reference: STU5824

ZAYO DUCT

OF ZAYO CHAMBER

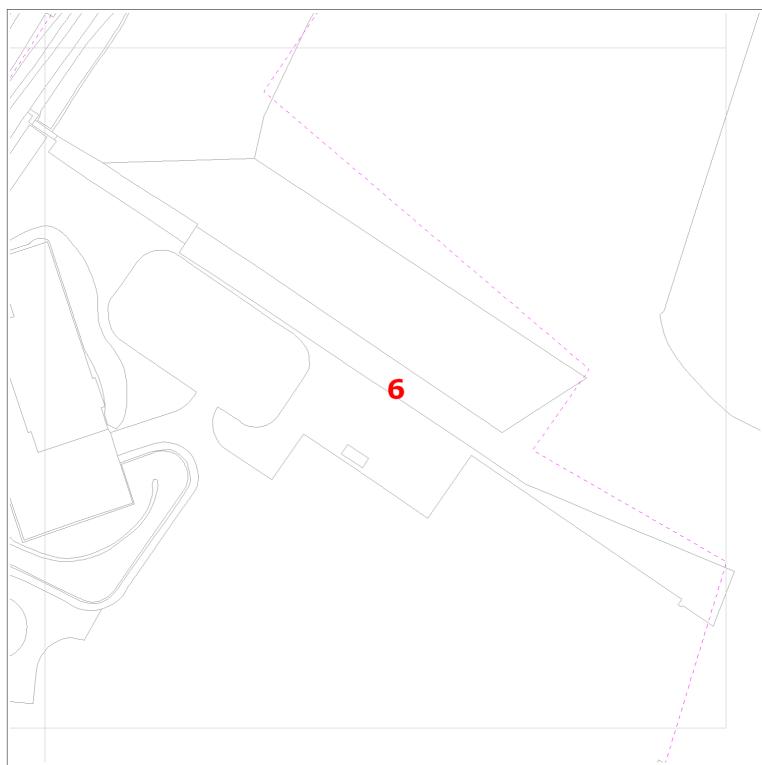
Dig Sites: Line ---- Area ----
Scale on A4 paper: 1:1000

The information on this document is proprietary and shall not be used, copied, reproduced or disclosed in whole or in part without written consent of Zayo Group UK Ltd. Approximate location only is shown. To determine exact location a trial hole must be dug with a Zayo Group UK Ltd Supervisor present. Zayo Group UK Ltd and JSM Construction Ltd accept no liability for errors or omissions.

Warning: PDF designed for colour print only with no page scaling. This Information is given as a guide only and its accuracy cannot be guaranteed

Protecting Lives, Cables & Pipes

In Emergency Only and if Zayo Plant or Cables damaged call: $0800\ 169\ 1646$


CROWN COPYRIGHT © All Rights Reserved. Ordnance Survey Licence number: 100040487

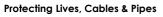
4th Floor Harmsworth House 13-15 Bouverie Street London EC4Y 8DP

JSM Group Ltd Sterling House Mutton Lane, Potters Bar Hertfordshire, EN6 3AR T: 01992 788 019

Your Scheme/Reference: STU5824

ZAYO DUCT

Or ZAYO CHAMBER

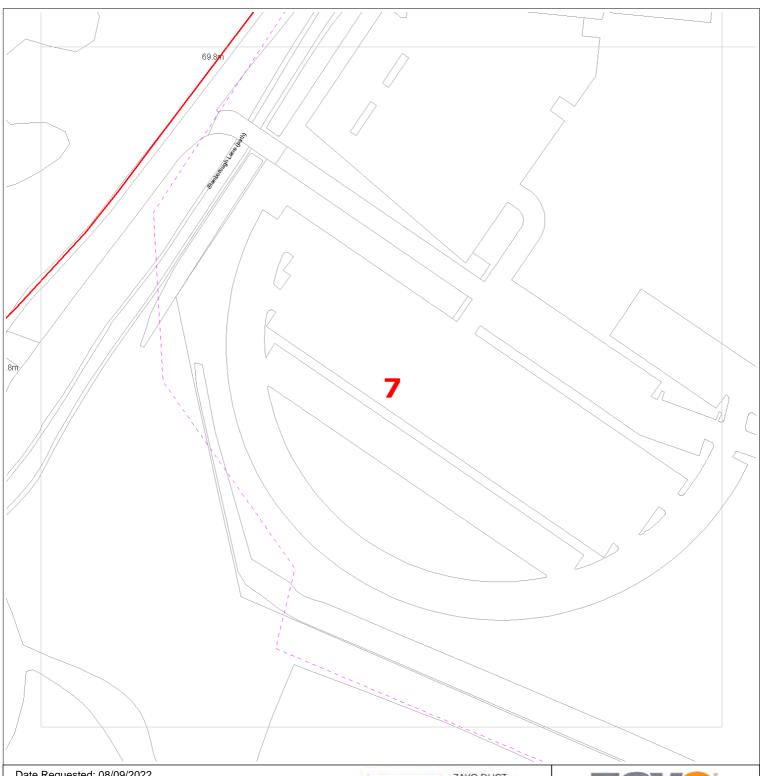

Dig Sites: Line ---- Area

Scale on A4 paper: 1:1000

The information on this document is proprietary and shall not be used, copied, reproduced or disclosed in whole or in part without written consent of Zayo Group UK Ltd. Approximate location only is shown. To determine exact location a trial hole must be dug with a Zayo Group UK Ltd Supervisor present. Zayo Group UK Ltd and JSM Construction Ltd accept no liability for errors or omissions.

Warning: PDF designed for colour print only with no page scaling. This Information is given as a guide only and its accuracy cannot be guaranteed

In Emergency Only and if Zayo Plant or Cables damaged call: $0800\ 169\ 1646$

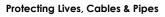

CROWN COPYRIGHT © All Rights Reserved. Ordnance Survey Licence number: 100040487

4th Floor Harmsworth House 13-15 Bouverie Street London EC4Y 8DP

JSM Group Ltd Sterling House Mutton Lane, Potters Bar Hertfordshire, EN6 3AR T: 01992 788 019

Your Scheme/Reference: STU5824

ZAYO DUCT


ZAYO CHAMBER

Dig Sites: Line ---- Area ----
Scale on A4 paper: 1:1000

The information on this document is proprietary and shall not be used, copied, reproduced or disclosed in whole or in part without written consent of Zayo Group UK Ltd. Approximate location only is shown. To determine exact location a trial hole must be dug with a Zayo Group UK Ltd Supervisor present. Zayo Group UK Ltd and JSM Construction Ltd accept no liability for errors or omissions.

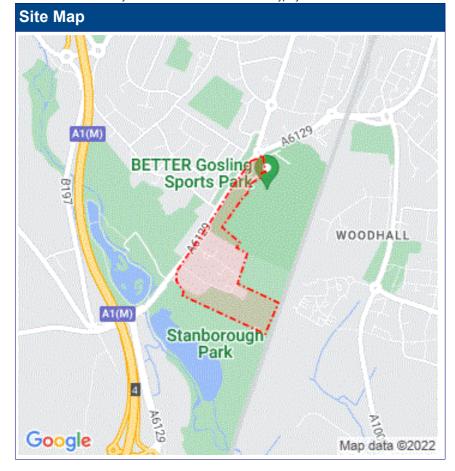
Warning: PDF designed for colour print only with no page scaling. This Information is given as a guide only and its accuracy cannot be guaranteed

In Emergency Only and if Zayo Plant or Cables damaged call: 0800 169 1646

CROWN COPYRIGHT © All Rights Reserved. Ordnance Survey Licence number: 100040487

4th Floor Harmsworth House 13-15 Bouverie Street London EC4Y 8DP

JSM Group Ltd Sterling House Mutton Lane, Potters Bar Hertfordshire, EN6 3AR T: 01992 788 019


Enquiry Confirmation LSBUD Ref: 26860752

Date of enquiry: 08/09/2022 Time of enquiry: 10:52

Enquirer			
Name	Miss Lauren Wenham	Phone	01604 781877
Company	Soiltechnics Ltd	Mobile	Not Supplied
Address	Cedar Barn White Lodge		
	Walgrave Northamptonshire NN6 9PY		
Email	admin@soiltechnics.net		

Enquiry Details						
Scheme/Reference	STU5824					
Enquiry type	Planned Works	Work cate	Work category		Development Projects	
Start date	09/09/2022	Work type	Work type		Commercial/industrial	
End date	09/09/2022	Site size	Site size		162426 metres square	
Searched location	XY= 523062, 211340	Work type	Work type buffer*		75 metres	
Confirmed location	00 52					
Site Contact Name	Not Supplied	ıpplied		one No	Not Supplied	
Description of Works						
Description of Works						

^{*} The WORK TYPE BUFFER is a distance added to your search area based on the Work type you have chosen.

Enquiry Confirmation LSBUD Ref: 26860752

Date of enquiry: 08/09/2022
Time of enquiry: 10:52

Asset Owners

Terms and Conditions. Please note that this enquiry is subject always to our standard terms and conditions available at www.linesearchbeforeudig.co.uk ("Terms of Use") and the disclaimer at the end of this document. Please note that in the event of any conflict or ambiguity between the terms of this Enquiry Confirmation and the Terms of Use, the Terms of Use shall take precedence.

Notes. Please ensure your contact details are correct and up to date on the system in case the LSBUD Members need to contact you.

Validity and search criteria. The results of this enquiry are based on the confirmed information you entered and are valid only as at the date of the enquiry. It is your responsibility to ensure that the Enquiry Details are correct, and LinesearchbeforeUdig accepts no responsibility for any errors or omissions in the Enquiry Details or any consequences thereof. LSBUD Members update their asset information on a regular basis so you are advised to consider this when undertaking any works. It is your responsibility to choose the period of time after which you need to resubmit any enquiry but the maximum time (after which your enquiry will no longer be dealt with by the LSBUD Helpdesk and LSBUD Members) is 28 days. If any details of the enquiry change, particularly including, but not limited to, the location of the work, then a further enquiry must be made.

Asset Owners & Responses. Please note the enquiry results include the following:

- 1. "LSBUD Members" who are asset owners who have registered their assets on the LSBUD service.
- 2. "Non LSBUD Members" are asset owners who have not registered their assets on the LSBUD service but LSBUD is aware of their existence. Please note that there could be other asset owners within your search area.

Below are three lists of asset owners:

- 1. LSBUD Members who have assets registered within your search area. ("Affected")
 - a. These LSBUD Members will either:
 - i. Ask for further information ("Email Additional Info" noted in status). The additional information includes: Site contact name and number, Location plan, Detailed plan (minimum scale 1:2500), Cross sectional drawings (if available), Work Specification.
 - ii. Respond directly to you ("Await Response"). In this response they may either send plans directly to you or ask for further information before being able to do so, particularly if any payments or authorisations are required.
- 2. LSBUD Members who do not have assets registered within your search area. ("Not Affected")
- 3. Non LSBUD Members who may have assets within your search area. Please note that this list is not exhaustive and all details are provided as a guide only. It is your responsibility to identify and consult with all asset owners before proceeding.

Enquiry Confirmation LSBUD Ref: 26860752

Date of enquiry: 08/09/2022 Time of enquiry: 10:52

LSBUD Members who have assets registered on the LSBUD service within the vicinity of your search area.

List of affected LSBUD members				
Asset Owner	Phone/Email	Emergency Only	Status	
Cadent Gas	0800688588	0800111999	Await response	
EUNetworks Fiber UK Limited	02031788003	02031788003	Await response	
UK Power Networks	08000565866	08000565866	Await response	
Zayo Group UK Ltd c/o JSM Group Ltd	01992 655 919	0800 169 1646	Await response	

LSBUD Members who do not have assets registered on the LSBUD service within the vicinity of your search area. Please be aware that LSBUD Members make regular changes to their assets and this list may vary for new enquiries in the same area.

	List of not affected LSBUD members	5
Angus Energy	AWE Pipeline	Balfour Beatty Investments Limited
BOC Limited (A Member of the Linde Group)	Box Broadband	BP Exploration Operating Company Limited
ВРА	Carrington Gas Pipeline	CATS Pipeline c/o Wood Group PSN
Cemex	Centrica Storage Ltd	CNG Services Ltd
Concept Solutions People Ltd	ConocoPhillips (UK) Teesside Operator Ltd	D.S.Smith
Diamond Transmission Corporation	DIO (MOD Abandoned Pipelines)	DIO (MOD Live Pipelines)
E.ON UK CHP Limited	EirGrid	Eleclink Limited
Electricity North West Limited	Energy Assets Networks	ENI & Himor c/o Penspen Ltd
EnQuest NNS Limited	EP Langage Limited	ESP Utilities Group
ESSAR	Esso Petroleum Company Limited	EXA Infrastructure
Exolum Pipeline System	Fulcrum Electricity Assets Limited	Fulcrum Pipelines Limited
Gamma	Gas Networks Ireland (UK)	Gateshead Energy Company
Gigaclear Ltd	Harbour Energy	Heathrow Airport LTD
Humbly Grove Energy	IGas Energy	INEOS FPS Pipelines
INEOS Manufacturing (Scotland and TSEP)	INOVYN ChlorVinyls Limited	INOVYN Enterprises Limited
Intergen (Coryton Energy or Spalding Energy)	Jurassic Fibre Ltd	Last Mile
Mainline Pipelines Limited	Manchester Jetline Limited	Manx Cable Company
Marchwood Power Ltd (Gas Pipeline)	Melbourn Solar Limited	Moray East Offshore Windfarm
Murphy Utility Assets	National Grid Electricity Transmission	National Grid Gas Transmission
Neos Networks	Northumbrian Water Group	NPower CHP Pipelines
NTT Global Data Centers EMEA UK Ltd	NYnet Ltd	Oikos Storage Limited
Ørsted	Palm Paper Ltd	Perenco UK Limited (Purbeck Southampton Pipeline)
Petroineos	Phillips 66	Portsmouth Water
Premier Transmission Ltd (SNIP)	Redundant Pipelines - LPDA	RWE - Great Yarmouth Pipeline (Bacton to Great Yarmouth Power Station)
RWEnpower (Little Barford and South Haven)	SABIC UK Petrochemicals	SAS Utility Services Ltd
Scottish and Southern Electricity Networks	Scottish Power Generation	Seabank Power Ltd
SES Water	SGN	Shell

Shell NOP	SP Energy Networks	Squire Energy Networks
SSE Generation Ltd	SSE Transmission	SSE Utility Solutions Limited
Tata Communications (c/o JSM Construction Ltd)	Total Colnbrook Pipelines	Total Finaline Pipelines
Transmission Capital	Uniper UK Ltd	University of Cambridge Granta Backbone Network
Vattenfall	Veolia ES SELCHP Limited	Veolia ES Sheffield Ltd
Voneus Limited	VPI Power Limited	Wales and West Utilities
West of Duddon Sands Transmission Ltd	Western Power Distribution	Westminster City Council

Enquiry Confirmation LSBUD Ref: 26860752

Date of enquiry: 08/09/2022 Time of enquiry: 10:52

The following Non-LSBUD Members may have assets in your search area. It is YOUR RESPONSIBILITY to contact them before proceeding. Please be aware this list is not exhaustive and it is your responsibility to identify and contact all asset owners within your search area.

Non-LSBUD members (Asset owners not registered on LSBUD)			
Asset Owner	Preferred contact method	Phone	Status
Affinity Water	maps@affinitywater.co.uk	03453572428	Not Notified
ВТ	https://www.swns.bt.com/pls/mbe/welcome.home	08000232023	Not Notified
CityFibre	asset.team@cityfibre.com	033 3150 7282	Not Notified
Colt	plantenquiries@catelecomuk.com	01227768427	Not Notified
ENGIE	nrswa.uk@equans.com	0800 130 3600	Not Notified
GTC	https://pe.gtc-uk.co.uk/PlantEnqMembership	01359240363	Not Notified
Hertfordshire County Council	highway.structures@hertfordshire.gov.uk	01992556121	Not Notified
Lumen Technologies	plantenquiries@instalcom.co.uk	02087314613	Not Notified
Mobile Broadband Network Limited	mbnl.plant.enquiries@turntown.com	01212 621 100	Not Notified
Network Rail	OPBuriedServicesEnquiries@networkrail.co.uk	01904523401	Not Notified
Sky UK Limited	nrswa@sky.uk	02070323234	Not Notified
Sota	SOTA.plantenquiries@instalcom.co.uk		Not Notified
Thames Water	http://www.digdat.co.uk	08450709145	Not Notified
Utility assets Ltd	assetrecords@utilityassets.co.uk		Not Notified
Verizon Business	osp-team@uk.verizonbusiness.com	01293611736	Not Notified
Virgin Media	http://www.digdat.co.uk	08708883116	Not Notified
Vodafone	osm.enquiries@atkinsglobal.com	01454662881	Not Notified

Disclaimer

Please refer to LinesearchbeforeUdig's Terms of Use for full terms of use available at www.linesearchbeforeudig.co.uk

The results of this Enquiry are personal to the Enquirer and shall not be shared with or relied upon by any other party. The asset information on which the Enquiry results are based has been provided by LSBUD Members, therefore LinesearchbeforeUdig will provide no guarantee that such information is accurate or reliable nor does it monitor such asset information for accuracy and reliability going forward. There may also be asset owners which do not participate in the enquiry service operated by LinesearchbeforeUdig, including but not exclusively those set out above. Therefore, LinesearchbeforeUdig cannot make any representation or give any guarantee or warranty as to the completeness of the information contained in the enquiry results or accept any responsibility for the accuracy of the mapping images used. LinesearchbeforeUdig and its employees, agents and consultants accept no liability (save that nothing in this Enquiry Confirmation excludes or limits our liability for death or personal injury arising from our negligence, or our fraud or fraudulent misrepresentation, or any other liability that cannot be excluded or limited by English law) arising in respect thereof or in any other way for errors or omissions including responsibility to any person by reason of negligence.

Miss Lauren Wenham Soiltechnics Ltd Cedar Barn White Lodge Walgrave Northamptonshire NN6 9PY

Date: 08/09/2022

Your Reference: STU5824 Our Reference: 26860752

Dear Miss Lauren Wenham,

Zayo Plant Protection Centre

c/o JSM Group Ltd Plant Protection Department Sterling House Mutton Lane Potters Bar

Herts, EN6 3AR

ZAYO GROUP LTD UK AFFECTED C2 PRELIMINARY PLANT ENQUIRY

We acknowledge with thanks your request dated 08/09/2022 10:02:10 AM for information on the location of our assets.

We confirm we have reviewed your proposed plan and have enclosed maps of the area in which Zayo Group UK Ltd have apparatus.

Please note these maps indicate approximate location only and their accuracy cannot be guaranteed. To determine the exact location a trial hole must be dug using extreme caution and hand dig methods only. Please refer to the attached document "Guide to Excavation within the vicinity of Zayo Apparatus".

Please forward all C3 and C4 Diversionary Estimate requests for diversionary works under the New Roads and Street Works Act 1991 "Measures necessary where apparatus is affected by Major Works (Diversionary Works), A Code of Practice", to zayodiversions@jsmgroup.com.

Please do not hesitate to contact us for further assistance.

Yours faithfully,

Zayo Group UK Ltd c/o JSM Group Ltd JSM Plant Protection Department T: 01992 655 919 zayoplantenquiries@jsmgroup.com Landscaping

Appendix C 3: Soiltechnics Ground Investigation Report –

Project number: 60600329